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Abstract 

Background: The dimensionality of genomic information is limited by the number of independent chromosome 
segments (Me), which is a function of the effective population size. This dimensionality can be determined approxi-
mately by singular value decomposition of the gene content matrix, by eigenvalue decomposition of the genomic 
relationship matrix (GRM), or by the number of core animals in the algorithm for proven and young (APY) that 
maximizes the accuracy of genomic prediction. In the latter, core animals act as proxies to linear combinations of Me. 
Field studies indicate that a moderate accuracy of genomic selection is achieved with a small dataset, but that further 
improvement of the accuracy requires much more data. When only one quarter of the optimal number of core ani-
mals are used in the APY algorithm, the accuracy of genomic selection is only slightly below the optimal value. This 
suggests that genomic selection works on clusters of Me.

Results: The simulation included datasets with different population sizes and amounts of phenotypic information. 
Computations were done by genomic best linear unbiased prediction (GBLUP) with selected eigenvalues and cor-
responding eigenvectors of the GRM set to zero. About four eigenvalues in the GRM explained 10% of the genomic 
variation, and less than 2% of the total eigenvalues explained 50% of the genomic variation. With limited phenotypic 
information, the accuracy of GBLUP was close to the peak where most of the smallest eigenvalues were set to zero. 
With a large amount of phenotypic information, accuracy increased as smaller eigenvalues were added.

Conclusions: A small amount of phenotypic data is sufficient to estimate only the effects of the largest eigenvalues 
and the associated eigenvectors that contain a large fraction of the genomic information, and a very large amount 
of data is required to estimate the remaining eigenvalues that account for a limited amount of genomic information. 
Core animals in the APY algorithm act as proxies of almost the same number of eigenvalues. By using an eigenvalues-
based approach, it was possible to explain why the moderate accuracy of genomic selection based on small datasets 
only increases slowly as more data are added.
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Background
Genomic best linear unbiased prediction (GBLUP) 
is a common tool for genomic analysis in animal and 
plant breeding [1]. Its basic form is equivalent to single 

nucleotide polymorphism (SNP) BLUP [2] and assumes 
an identical distribution of all SNP effects [1, 3, 4]. When 
not all the individuals are genotyped, a special version of 
GBLUP called single-step GBLUP (ssGBLUP) can merge 
pedigree and genomic relationships into a single matrix 
[5]. The advantage of GBLUP (and especially ssGBLUP) is 
simplicity, since existing models and BLUP software can 
be reused just by changing a relationship matrix.
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GBLUP and ssGBLUP have become popular method-
ologies for the genetic evaluation of livestock. Although 
Bayesian variable selection methods [2, 6] were found 
to be more accurate with small datasets, their advan-
tage seemed to be lost with large reference populations 
[7]. Daetwyler et al. [8] showed that selection of SNPs 
via BayesB outperformed GBLUP only if the number 
of quantitative trait loci (QTL) was small compared 
to the number of independent chromosome segments 
( Me ). Therefore, if the amount of phenotypic data is 
small, SNPs that are selected by tagging large QTL seg-
ments can improve accuracy by reducing the number of 
parameters to estimate. Karaman et  al. [7] found that 
the advantage of BayesB over GBLUP fades with large 
datasets. Consequently, when the amount of infor-
mation is sufficient to estimate most of the segments, 
selection of SNPs is no longer beneficial. Although 
selection of SNPs is possible with GBLUP [9, 10], its 
application is difficult in complex multitrait models, 
such as those used for commercial genetic evaluations.

There are several formulas to determine Me . The first 
formula reported by Stam [11] is based on the number 
of chromosome junctions in a fixed size population with 
random mating, i.e. 4NeL , where Ne is the effective size of 
the population and L is the genome length in Morgan. By 
taking selection into account, Hayes et  al. [12] reduced 
that number to 2NeL , and Goddard [4] reduced that 
number even further to 2NeL/ log(4NeL) . Assuming typi-
cal values for Ne (100) and L (30) in Holstein dairy cattle, 
according to these three formulas, Me would be equal to 
12,000, 6000, and 600, respectively.

Pocrnic et  al. [13] related Me to the dimensionality of 
the genomic relationship matrix (GRM). For large popu-
lations that are genotyped with many SNPs, NeL , 2NeL , 
and 4NeL corresponded approximately to the number of 
eigenvalues that explained 90, 95, and 98% of the GRM 
variation, respectively. To determine which number of 
eigenvalues maximizes the accuracy of genomic selec-
tion, they applied ssGBLUP with a GRM inverted by 
the algorithm for proven and young (APY) [14], which 
computes a sparse generalized inverse while indirectly 
assuming Me as derived in Misztal [15]. The accuracy 
of prediction was maximized for a range of Ne when the 
assumed dimensionality was approximately 4NeL . How-
ever, the accuracy was only marginally lower when the 
assumed dimensionality was 2NeL or NeL . Pocrnic et al. 
[16] found similar results when analyzing field datasets 
for dairy and beef cattle, pigs, and chickens and estimated 
the Me at ~ 10,000 to 15,000 in cattle and ~ 4000 in pigs 
and chickens. Although the theory of genomic prediction 
by chromosome segments is interesting, it seems to be 
incomplete. Assuming that all chromosome segments are 
independent and approximately of equal size, Daetwyler 

et al. [8, 17], Goddard [4], Goddard et al. [18] presented 
several formulas to estimate accuracy of genomic selec-
tion based on heritability, Me , and the size of the refer-
ence population. However, in a meta-analysis using field 
datasets, their formulas had little predictive power [19].

If all the segments had approximately the same size, 
assuming half the optimal dimensionality in the APY 
(the largest eigenvalues that explained 98% of the GRM 
variation/2) would lead to half the reliability compared 
with using full dimensionality. However, using half of the 
optimal number as core animals reduced the reliability 
by less than 2%, and using only a third of that number 
reduced the reliability by less than 5% [13, 16]. Therefore, 
the decrease in reliability was tiny with both simulated 
and field datasets. In Pocrnic et  al. [16], approximately 
25% of the eigenvalues explained more than 90% of the 
genetic variation in the GRM. This suggests that genomic 
selection by GBLUP (and SNP BLUP) can also be seen 
as being based on estimates of eigenvalues of GRM. The 
first purpose of our study was to determine the distri-
bution of eigenvalues in a GRM as well as the GBLUP 
accuracy when only the top eigenvalues of the GRM are 
considered. The second purpose was to determine if the 
optimum number of core animals in the APY algorithm 
is more related to the number of independent chromo-
some segments or to the number of top eigenvalues.

Methods
Data simulation
Data for this study were generated using the QMSim 
software [20]. Each of the simulated scenarios was rep-
licated five times. The initial historical population con-
sisted of 1250 generations with a gradual decrease in 
size from 5000 to 1000 breeding individuals and then an 
increase to 25,015 breeding individuals with equal sex 
ratio, non-overlapping generations, random mating, no 
selection, and no migration, in order to create a bottle-
neck and initial linkage disequilibrium (LD) and to estab-
lish mutation-drift balance in the population. Then, 10 
discrete, recent generations with Ne of ~ 40 were simu-
lated by random mating of 1000 females and 10 males per 
generation, which resulted in 6000 genotyped individuals 
in generations 8 to 10. Phenotypes for individuals from 
generations 8 and 9 were simulated with an overall mean 
as the only fixed effect and with assumed heritabilities 
of 0.1, 0.3, 0.6, and 0.9. Scenarios with a heritability of 
0.6 were replicated by simulating half (3000) and twice 
(12,000) the number of genotyped animals. To keep Ne 
consistent across scenarios with increasing or decreas-
ing numbers of animals, the number of breeding males 
per generation was fixed at 10. The simulated genome 
was assumed to have 10 chromosomes of equal length 
of 100 cM each; 3000 biallelic and randomly distributed 
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QTL affected the trait, with allelic effects sampled from 
a gamma distribution as predefined in the QMSim soft-
ware. The recurrent mutation rate of the markers and 
QTL was assumed to be 2.5 ×  10−5 per locus per gen-
eration [21]. The first generation of the historic popula-
tion had 50,000 evenly allocated biallelic SNPs with equal 
allele frequencies.

Model and GRM matrices
GBLUP was used for the analysis with the follow-
ing model y = 1µ+ u + e with var(u) = Gσ 2

u and 
var(e) = Iσ 2

e  , where y is a vector of phenotypes, µ is a 
simple mean, u is a vector of animal effects, e is a vector 
of residuals, G is a GRM, σ 2

u is the additive variance set 
to result in the desired heritability, and σ 2

e  is the residual 
variance.

GBLUP was run with three options for the GRM. For 
the first option, a standard GRM was constructed as in 
VanRaden [1]: 

where Z is a matrix of allele content centered for allele 
frequency and pj is the allele frequency for marker j . For 
the second option, a reduced-rank GRM was constructed 
based on G = UDU′ , where U is a matrix of eigenvectors 
and D is a diagonal matrix of eigenvalues arranged from 
the highest to the lowest value. Then, a GRM restricted 
to r eigenvalues and eigenvectors ( Geig ) was constructed 
as Geig = UDrU

′ , where Dr includes only the r largest 
eigenvalues in D . To enable inversion in GBLUP, 0.01 I 
was added to both G and Geig for full rank. This method is 
equivalent to using the largest singular values in the SNP-
BLUP design matrix ( Z ). As a third option, the inverse 
of the GRM was derived using APY ( G−1

APY) as in Misztal 
[15]: 

where c and n designate core and noncore animals, 
respectively, in blocks of G and

The inverse is sparse and requires only the dense 
inverse of the block of GRM for core animals.

Computations
Standard GRM were calculated for the three populations 
(3000, 6000, and 12,000 genotyped animals) and repli-
cated five times. Then, the number of eigenvalues that 
explained approximately 10, 30, 50, 70, 90, 95, and 98% of 

G =
ZZ

′

2
∑

pj
(

1− pj
) ,

G−1
APY =

[

G−1
cc 0
0 0

]

+

[

−G−1
cc Gcn

I

]

M−1
nn

[

−GncG
−1
cc I

]

,

Mnn = diag
{

mnn,i

}

= diag
{

gii − gicG
−1
cc gci

}

.

the variance in the GRM was computed; the fraction was 
defined as tr(Dr)/tr(D) . Subsequent computations were 
performed only on the 6000-animal population. GBLUP 
was run using standard GRM ( G) , Geig , and G−1

APY . For 
G−1
APY , the same number of eigenvalues as for Geig was 

used as number of core animals. Core animals were cho-
sen randomly from all available genotypes.

Validation
Two methods for assessing accuracy were applied. The 
first method calculated a realized accuracy as the correla-
tion between the genomic estimated breeding value and 
the simulated breeding value for animals from the last 
generation without phenotypes. The second method was 
based on prediction error variance (PEV) that was calcu-
lated in a training set of animals. Validation was done on 
exactly the same animals as in the first method, but this 
time those animals were completely excluded from the 
GBLUP equations. The number of validation animals var-
ied per scenario and was 1000, 2000, or 4000.

The accuracy for animal i ( acci ) based on PEV is calcu-
lated as follows: 

where LHSii is the diagonal term of the inverse of the left-
hand side of the mixed-model equations corresponding 
to animal i . The same accuracy can be represented as: 

where α = σ 2
e /σ

2
a  is the ratio of residual to animal genetic 

( a ) variance and dpi  and dgi  are the effective number of 
records per individual for phenotypic and genomic infor-
mation, respectively [22–24]; with one phenotype per 
animal, dpi ≈ 1 . If the amount of genomic information is 
calculated for animals with phenotypes only, the approxi-
mate accuracy for young animals from the same popula-
tion but with no phenotypic information will be:

where dgi  is the average amount of genomic information 
based on a dgi  of a training population and is common for 
all the validation animals. The dgi  of a training population 
was based on PEV that are calculated by a direct inver-
sion of the corresponding left-hand side of the mixed-
model equation for training animals using the BLUPF90 
software [25].
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√
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σ 2
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σ 2
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These two methods can be compared because they 
both result in a measure of accuracy based on the whole 
population rather than on individuals.

Results and discussion
Figure  1 shows the eigenvalue profiles for 3000, 6000, 
and 12,000 genotyped animals. The number of eigen-
values that explained 30, 50, 70, 90, 95 and 98% of the 
total genomic variation ranged from 15 to 16, 45 to 49, 
113 to 130, 357 to 453, 585 to 804, and 964 to 1495, 
respectively. Standard deviations across replicates were 
negligible. When varying the number of genotyped 
animals, the number of eigenvalues that explained a 
given percentage of the variance did not change much 
for lower percentages of explained variance, and the 
change was more marked for higher percentages. For 
lower percentages of explained variance (10 to 50%), 
the number of eigenvalues was relatively small (3 to 50). 

For higher percentages, the number of eigenvalues was 
more variable. For example, the number of eigenvalues 
that explained 90% of the GRM variance ranged from 
about 900 for a population of 3000 genotyped animals 
to 1800 for 12,000 animals. Based on Stam [11], Pocrnic 
et al. [13] reported that approximately 4NeL eigenvalues 
explained 98% of the variance, but their study assumed 
a population much larger than 4NeL , and the eigenvalue 
profile undergoes compression at higher percentages 
for smaller populations. The logarithm of the number 
of eigenvalues explaining 30 to 90% of the GRM vari-
ance increased almost linearly.

The accuracy of GBLUP with the standard G 
increased with increased heritability as expected and 
was used as a benchmark for the Geig and G−1

APY meth-
ods. Average accuracy (±  standard error) values were 
0.69 ± 0.03, 0.79 ± 0.01, 0.90 ± 0.01, and 0.96 ± 0.00 
for heritabilities of 0.1, 0.3, 0.6, and 0.9, respectively. 

Fig. 1 Eigenvalue profiles for explained variance of the genomic relationship matrix (GRM). Eigenvalues are expressed as either the log of the 
number (a) or the number itself (b) for simulated populations of 3000, 6000, and 12,000 genotyped animals
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For a heritability of 0.6 and half the number of animals 
(3000), average accuracy was reduced to 0.87 ±  0.01; 
with twice the number of animals (12,000) it increased 
to 0.92 ± 0.01.

The accuracy of GBLUP with Geig relative to the per-
centage of explained GRM variance is shown in Fig. 2 and 
the corresponding number of eigenvalues in Fig.  3 for 
heritabilities of 0.1, 0.3, and 0.9 for 6000 genotyped ani-
mals. For a heritability of 0.1, accuracy stops increasing 

at ~ 70% of the explained variance and for a heritability 
of 0.3, it stops increasing at ~ 90% of the explained vari-
ance. For a heritability of 0.9, it continues to improve up 
to 98% of the explained variance. For all heritabilities, 
accuracy at 98% of the explained GRM variance was the 
same as for GBLUP with a standard G . Figure  4 shows 
the eigenvalues on a logarithmic scale for 6000 geno-
typed animals and heritabilities of 0.1, 0.3, and 0.9 and 
includes points beyond which eigenvalues are smaller 

Fig. 2 Accuracy of the genomic relationship matrix (GRM) restricted by eigenvalues based on the percentage of explained GRM variance (EIG) and 
heritability (h2). Accuracy is measured as the correlation between genomic estimated breeding values obtained with EIG and simulated breeding 
values (TBV). Heritability (h2) was 0.1, 0.3, or 0.9 for a population of 6000 genotyped animals

Fig. 3 Accuracy of the genomic relationship matrix restricted by eigenvalues (EIG) based on number of eigenvalues and heritability (h2). Accuracy is 
measured as the correlation between genomic estimated breeding values obtained with EIG and simulated breeding values (TBV). Heritability (h2) 
was 0.1, 0.3, or 0.9 for a population of 6000 genotyped animals
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than the variance ratio α; details on the computation are 
provided in the Appendix. These eigenvalues are likely to 
affect accuracy, whereas smaller eigenvalues are likely to 
be ignored. For a heritability of 0.1, the point is approxi-
mately a log(eigenvalue) of 130, which corresponds to 
70% of the explained GRM variance; the corresponding 
point is ~ 340 (< 90% of explained variance) for a herit-
ability of 0.3 and ~ 1500 (98–99% of the explained vari-
ance) for a heritability of 0.9. These points correspond 
approximately to the points where the accuracy plateau 
is reached for Geig (Figs. 2 and 3). The lower the heritabil-
ity (or the smaller the effective information), the fewer 
eigenvalues are considered, and subsequently the infor-
mation included in the smaller eigenvalues is ignored. 
With a higher heritability, the information contained in 
smaller eigenvalues is included.

The accuracy of GBLUP with Geig relative to the num-
ber of eigenvalues is shown in Fig. 5 for population sizes 
of 3000, 6000, and 12,000 and a heritability of 0.6. For the 
largest population, accuracy is slightly lower at smaller 
numbers of eigenvalues and slightly higher for larger 
numbers of eigenvalues. In general, accuracy is expected 
to be higher with a larger population when a complete 
relationship matrix is used. However, the largest eigen-
values could correspond to the largest clusters of haplo-
types, and those clusters can account for slightly more 
variation with smaller populations. Accuracy increases 
when genetically similar animals are part of the reference 
population; therefore, prediction accuracy for a large 
population with many animals for which both genotypes 

and phenotypes are available will improve by including 
additional information (e.g., herd mates) in the reference 
population [26]. For all population sizes, differences in 
accuracy were small. When the amount of phenotypic 
information is sufficient to estimate the effects due to 
most of the eigenvalues, accuracy is high and improves 
little with additional data.

Figure  6 shows the average accuracy of GBLUP with 
heritabilities of 0.3 and 0.9 for Geig and G−1

APY using the 
same number of eigenvalues and core animals, respec-
tively, for a population of 6000 genotyped animals. Accu-
racy is lower for G−1

APY than for Geig at the number of 
eigenvalues corresponding to 70% of the explained vari-
ance but very similar at larger numbers. Using n eigen-
values is almost equivalent to assuming recursion with 
n animals. Therefore, animal effects for any n animals 
include almost the same information as the n largest 
eigenvalues. Sampling variance among the five replicates 
was larger with G−1

APY than with Geig , especially at smaller 
numbers. The choice of the core animals in the APY algo-
rithm is critical when their number is small but not when 
it is large [13].

Validation methods used to assess accuracy of GBLUP 
are compared in Fig. 7. For all heritability levels, accuracy 
was slightly lower for the method based on average num-
ber of effective records than for realized accuracy. The 
difference was largest for a heritability of 0.3 and small-
est for a heritability of 0.9. The method based on average 
number of effective records can be a useful and simple 

Fig. 4 Relationship between logs of eigenvalues and numbers of eigenvalues for a population of 6000 genotyped animals. Specific curve points 
beyond which the eigenvalues are smaller than the ratio of residual to animal genetic variance are noted for heritabilities (h2) of 0.1, 0.3, and 0.9. The 
values shown after h2 are the number of eigenvalues at specific curve points and the variance ratios at given h2
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approximation for population accuracies of validation 
animals.

In animal breeding programs, approximations of 
individual accuracy are of interest, but they cannot be 
derived by inversion because of the large amount of data. 
Although several approximations exist, those formulas 

are unclear when evaluations include genomic infor-
mation [24, 27, 28]. One possibility is to use eigenvalue 
decomposition of G (possible derivations are presented 
in the Appendix). PEV from the direct inversion of the 
left-hand side of the mixed-model equation were com-
pared with PEV from the eigenvalue decomposition of G 

Fig. 5 Accuracy of the genomic relationship matrix restricted by eigenvalues (EIG) based on number of eigenvalues and population size. Accuracy 
is measured as the correlation between genomic estimated breeding values obtained with the EIG and simulated breeding values (TBV). Population 
size was 3000, 6000, or 12,000 genotyped animals with a heritability of 0.6

Fig. 6 Accuracy of the genomic relationship matrix either restricted by eigenvalues (EIG) or with the inverse derived by using the algorithm for 
proven and young (APY) based on number of core animals [15]. Accuracy is measured as the correlation of simulated breeding values (TBV) with 
genomic estimated breeding values obtained with either EIG or APY. Heritability (h2) was either 0.3 or 0.9 for a population of 6000 genotyped 
animals
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using 2000, 4000, and 8000 genotyped animals that were 
treated as training animals for validation with heritabili-
ties of 0.1, 0.3, 0.6, and 0.9. For all scenarios, correlations 
were equal to 1. Meuwissen et al. [29] reported a similar 
method for obtaining PEV using singular value decompo-
sition for SNP BLUP. Approaches to approximate accu-
racy are experimental, and further research is needed to 
evaluate and incorporate these formulas beyond simple 
GBLUP, especially for ssGBLUP.

It would be useful to derive new formulas on expected 
genomic accuracies given the heritabilities, the num-
ber of genotyped animals and population parameters. 
According to this study, such an accuracy depends on the 
fraction of variance explained by subsequent eigenval-
ues. We attempted to capture that fraction given different 
effective population sizes and genome lengths. Prelimi-
nary studies indicated that the biggest eigenvalues were 
not affected by genome length, the smallest eigenvalues 
were affected by population size and all eigenvalues were 
affected by effective population size. We plan to address 
this issue in a future study.

Conclusions
The distribution of eigenvalues of the GRM is very 
uneven, with a small fraction of the largest eigenval-
ues explaining a large portion of the genetic variation. 
The accuracy of genomic selection by GBLUP depends 
on how many eigenvalues can be estimated well, given 
the amount of information. With a small amount of 

information, only the effects of the largest eigenvalues 
are considered, but that small number of eigenvalues 
can explain a large portion of the genetic variation. 
Consequently, genomic selection is moderately accu-
rate even with a limited amount of genomic informa-
tion, and accuracy only increases slowly with larger 
datasets. Accuracies obtained by GBLUP using the 
GRM with only n largest eigenvalues and correspond-
ing eigenvectors are similar to using the APY inverse of 
GRM with recursion on n animals. Subsequently, n ani-
mals carry almost the same genomic information as the 
n largest eigenvalues. Selection by GBLUP is based on 
clusters of independent chromosome segments and not 
on individual independent chromosome segments.
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Appendix
Derivation of PEV for individual animals using eigenvalue 
decomposition.

Let U be the eigenvectors and S be the eigenvalues of the 
GRM,

Assuming full-rank G:

The LHS of the mixed-model equation using α as the 
ratio of residual 

(

σ 2
e

)

 to animal genetic 
(

σ 2
a

)

 variance is:

with the inverse:

where 

and si is the eigenvalue i . The effect of eigenvalues on 
PEV is relative to the variance ratio directly and to the 
heritability indirectly. Such eigenvalues are especially 
unimportant if: 

or eigenvalues much smaller than α do not matter. For 
a high heritability, α is smaller and, therefore, smaller 
eigenvalues matter more. Individual accuracy can be 
computed as: 

where ui. is the corresponding eigenvector.

G = USU′.

G−1
= US−1U′.

σ 2
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= U
(
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)
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σ 2
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= U
(
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)−1

U′
= UFU′,
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1+ α
si

}

,

α

si
≫ 1 → α ≫ si,

LHSii

σ 2
e

= ui.
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I+ αS−1
)−1

u
′

.i,
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