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Abstract 

Background:  Bayesian regression models are widely used in genomic prediction, where the effects of all markers are 
estimated simultaneously by combining the information from the phenotypic data with priors for the marker effects 
and other parameters such as variance components or membership probabilities. Inferences from most Bayesian 
regression models are based on Markov chain Monte Carlo methods, where statistics are computed from a Markov 
chain constructed to have a stationary distribution that is equal to the posterior distribution of the unknown param-
eters. In practice, chains of tens of thousands steps are typically used in whole-genome Bayesian analyses, which is 
computationally intensive.

Methods:  In this paper, we propose a fast parallelized algorithm for Bayesian regression models called independent 
intensive Bayesian regression models (BayesXII, “X” stands for Bayesian alphabet methods and “II” stands for “parallel”) 
and show how the sampling of each marker effect can be made independent of samples for other marker effects 
within each step of the chain. This is done by augmenting the marker covariate matrix by adding p (the number of 
markers) new rows such that columns of the augmented marker covariate matrix are orthogonal. Ideally, the compu-
tations at each step of the MCMC chain can be accelerated by k times, where k is the number of computer processors, 
up to p times, where p is the number of markers.

Results:  We demonstrate the BayesXII algorithm using the prior for BayesCπ , a Bayesian variable selection regression 
method, which is applied to simulated data with 50,000 individuals and a medium-density marker panel ( ∼ 50,000 
markers). To reach about the same accuracy as the conventional samplers for BayesCπ required less than 30 min using 
the BayesXII algorithm on 24 nodes (computer used as a server) with 24 cores on each node. In this case, the BayesXII 
algorithm required one tenth of the computation time of conventional samplers for BayesCπ . Addressing the heavy 
computational burden associated with Bayesian methods by parallel computing will lead to greater use of these 
methods.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Genome-wide single nucleotide polymorphism (SNP) 
data have been adopted for whole-genome analyses, 
including genomic prediction [1] and genome-wide 

association studies [2]. Bayesian regression models are 
widely used in genomic prediction, where the effects of 
all markers are estimated simultaneously by combining 
the information from the phenotypic data and priors for 
the marker effects and other parameters such as vari-
ance components or membership probabilities. Most of 
the widely-used Bayesian regression models differ only 
in the prior used for the marker effects. For example, the 
prior for each marker effect in BayesA [1] follows a scaled 
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t-distribution, whereas in variable selection regression, 
the prior for each marker effect is a mixture distribution, 
such as BayesB [1], BayesC [3], BayesCπ [4] and BayesR 
[5, 6].

In these Bayesian regression models, closed-form 
expressions for the marginal posterior distributions of 
parameters of interest, e.g., marker effects, are usually 
not available. Thus, inferences from most Bayesian meth-
ods are based on Markov chain Monte Carlo (MCMC) 
methods, where statistics are computed from a Markov 
chain that is constructed such that the stationary dis-
tribution of a random vector x is equal to the posterior. 
It has been shown that statistics computed from such a 
Markov chain converge to those from the stationary dis-
tribution as the chain length increases [7]. In Bayesian 
regression models for genomic prediction, the vector x 
has a length about equal to the number p of markers or a 
multiple of it if auxiliary variables such as locus-specific 
marker effect variances are introduced to the analysis as 
in BayesA or BayesB. A widely used method to construct 
such a Markov chain is Gibbs sampling. In Gibbs sam-
pling, at step t, each component of the vector xt is sam-
pled from the conditional distribution of that component 
given all the other components sampled up to that point 
[8]. In some Gibbs samplers proposed for Bayesian vari-
able selection methods such as BayesB [1, 9], BayesC [3] 
or BayesCπ [4], for example, within each step, each vari-
able in the vector x is sampled conditionally on all the 
other variables. This includes, for each marker i, its effect, 
the effect variance and a Bernoulli variable indicating 
whether the effect is zero or non-zero, as well as all non-
marker effects and the residual variance. These are exam-
ples of a single-site Gibbs sampler where each variable is 
iteratively sampled conditional on the current values of 
all other variables.

In practice, chains of about tens of thousands steps 
are typically used in whole-genome Bayesian regres-
sion models [10, 11], and within each step of the chain, 
Gibbs sampling requires iteratively sampling at least p 
unknowns. Medium-level marker panels are often used 
in whole-genome prediction projects in animal breeding, 
where p is about 50,000 or larger. Thus, Bayesian regres-
sion models are usually computationally intensive, and 
commonly used strategies to sample these p unknowns 
efficiently are demanding.

The Ergodic theorem of Markov chain theory states 
that statistics computed from an increasingly long 
chain converge to those from the stationary distribu-
tion [7], whereas no such theory demonstrates that 
convergence can be achieved from an increasing num-
ber of shorter chains. It has sometimes been suggested 
that parallel computing can be adopted in MCMC by 

using multiple processors to obtain several short chains 
in parallel and then pooling the statistics computed 
from these short chains. In this case, caution is needed 
to make sure these short chains have converged to the 
stationary distribution. Combining several short chains 
will reduce the Monte Carlo variance of the computed 
quantities, but this may not yield statistics from the sta-
tionary distribution. Thus, to rapidly construct a single 
long enough chain in parallel is key to addressing the 
problem of the long computing time in Bayesian regres-
sion models. This is difficult because a Markov chain is 
an iterative process, and it can not be broken into sev-
eral independent processes.

Parallel computing has been used in whole-genome 
prediction with Bayesian regression models by parallel-
izing the computations, including vector additions and 
dot products, associated with each marker at each step 
of the chain. To parallelize the computations, vectors 
are split up and additions or products are done in par-
allel on multiple processors [12, 13]. These strategies 
can be used for most methods involving matrix or vec-
tor calculations. Speedup from these approaches, how-
ever, is limited, because marker effects still need to be 
sampled iteratively.

Another appealing approach is to parallelize the 
Gibbs sampling for all markers within each step of the 
chain. In a single-site Gibbs sampler, however, sam-
pling of a marker effect is from the full conditional dis-
tribution, which is the conditional distribution of this 
marker effect given the current values of all the other 
markers. Thus, parallelizing Gibbs sampling would 
not be feasible unless the full conditional distributions 
do not depend on the values of the variables being 
conditioned on, i.e., unless the full-conditionals are 
independent. In this paper, we show how the full con-
ditional distributions of the marker effects can be made 
independent within each step of the chain. This is done 
by augmenting the marker covariate matrix by adding p 
new rows such that columns of the augmented marker 
covariate matrix are mutually orthogonal. The phe-
notypes corresponding to the augmented rows of the 
marker covariate matrix are considered missing.

The objective of this paper is to propose a fast par-
allelized algorithm for Bayesian regression models 
that we call BayesXII, where “X” stands for Bayesian 
alphabet methods and “II” stands for “parallel”. In this 
paper, the prior for BayesCπ , a Bayesian variable selec-
tion regression method, was used to demonstrate the 
BayesXII algorithm. Use of this approach with other 
priors, such as those in BayesA, BayesB or Bayesian 
Lasso, should be straightforward. Simulated data for 
50,000 individuals with genotypes from a medium-level 
marker panel ( ∼ 50,000 markers) were used to compare 
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the computational efficiency of the BayesXII algorithm 
with the conventional sampler for BayesCπ.

Methods
Bayesian linear regression models
In Bayesian linear regression models, for simplicity and 
without loss of generality, we assume that individuals 
have a general mean as the only fixed effect. Phenotypes 
of n genotyped individuals are then modeled as

where y is the vector of n phenotypes, µ is the overall 
mean, X is the n× p marker covariate matrix (coded as 0, 
1, 2), a is a vector of p random additive marker effects and 
e is a vector of n random residuals. A flat prior is used 
for µ . The prior for the residual e is e|σ 2

e ∼ N (0, Iσ 2
e ) 

with 
(
σ
2
e | νe, S

2
e

)
∼ νeS

2
eχ

−2
νe

 . The columns of X are usu-
ally centered prior to further computation. In BayesCπ , 
a Bayesian variable selection method, the prior for the 
marker effect is a mixture of a point mass at zero and a 
univariate normal distribution with null mean and a 
common locus variance σ 2
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[3, 4].

Gibbs sampling for marker effects in Bayesian regression 
models
In Gibbs sampling, the full conditional distribution of aj , 
the marker effect for locus j, when aj is non-zero, can be 
written as

where ELSE stands for all the other parameters and y , Xj 
is the jth column of X , and âj is the solution to

The derivation of the full conditional distributions of 
other parameters of interest in Bayesian regression mod-
els are shown in Appendix.

Parallelized Bayesian regression models (BayesXII)
In commonly-used Gibbs sampling, the sample for each 
marker effect, aj , can not be obtained simultaneously, i.e., 
in parallel, because samples for other marker effects, aj′ �=j , 
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appear in the term 
∑

j
′

�=j X
T
j Xj

′aj′ on the right-hand-side 
of (2), i.e., the full conditional distributions of the marker 
effects are not independent. One solution is to orthogonal-
ize columns of the marker covariate matrix X such that the 
term 

∑
j
′

�=j X
T
j Xj

′aj′ in (2) becomes zero. A data augmen-
tation approach [14] to obtain a design matrix with orthog-
onal columns is described below.

Orthogonal data augmentation (ODA)
Let Wo =

[
1 X

]
 be the incidence matrix for the Bayesian 

regression analysis. Following Ghosh et  al. [14], we show 

here how to augment Wo as Wc =

[
Wo

Wa

]
 such that

where Wa is a square matrix of dimension p+ 1 and D is 
a diagonal matrix. Thus,

and Wa can be obtained using Cholesky decomposition 
(or Eigen decomposition) of, D−WT

o Wo , the right-
hand-side of (3). Our choice of D is Id , where I is an 
identity matrix and d is set to be the largest eigenvalue 
of WT

o Wo . In practice, a small value, e.g., 0.001, is added 
to d to avoid computationally unstable solutions. A small 
numerical example of ODA can be found in Appendix.

Gibbs sampling for marker effects in the BayesXII algorithm
Employing ODA, Bayesian linear regression models can be 
written as:

where ỹ denotes a vector of unobserved phenotypes that 

are introduced into the model, 
[
e
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are obtained using (3) with Wa =
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]
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]
.

In the BayesXII algorithm, the full conditional distribu-
tion of aj when aj is non-zero, under model (4), which was 
derived in Appendix, can be written as:

where the mean and variance parameters are free of the 
values of the other marker effects aj′ �=j . Thus, the full 
conditional distributions of the marker effects are inde-
pendent, and thus, samples for each marker can be 
obtained simultaneously and therefore in parallel. Note 
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that XT
j y does not change, and only X̃T

j ỹ needs to be 
computed at each step of the MCMC chain, where the 
number of operations for this is always of order p regard-
less of the size of n. In the BayesXII algorithm, sampling 
marker effects at each MCMC step, however, requires 
sampling of the vector ỹ of unobserved phenotypes. At 
each step of the MCMC chain, each element of the “miss-
ing” phenotypes ỹ is sampled from independent univari-
ate normal distributions as:

Note that the means of these normal distributions can be 
computed in parallel as described in Appendix. Once the 
means are computed, each element in ỹ can be sampled 
in parallel. The derivation of the full conditional distri-
butions of other parameters of interest in the BayesXII 
algorithm and parallel implementation of the BayesXII 
algorithm using Message Passing Interface (MPI) [15] are 
shown in Appendix.

Data analysis
A dataset of 60,000 observations with a medium-density 
marker panel was simulated using software XSim [16] to 
compare the BayesXII algorithm with the conventional 
sampler for BayesCπ . Publicly available genotypes for a 
medium-density marker panel ( ∼ 42,000 markers after 
quality control) were obtained for 100 German Holstein 
cattle (https​://datas​hare.is.ed.ac.uk/handl​e/10283​/3040). 
Then, haplotypes of these 100 individuals were estimated 
from their genotypic data using the software WinHap 
[17]. Starting from a base population of these 100 indi-
viduals, random mating was simulated for 100 genera-
tions, and continued for one more generation to increase 
the population size to 60,000 individuals, which were 
then used in the analysis. A random sample of five per-
cent of the total number of loci were selected as quantita-
tive trait loci (QTL), and their effects were sampled from 
a univariate normal distribution with mean zero and 
variance one. The QTL effects were scaled such that the 
genetic variance from the last generation was 1.0. A trait 
with a heritability 0.3 was simulated by adding independ-
ent residuals to the genetic values. In our analysis, a ran-
domly sampled subset of 50,000 individuals was used for 
training and the remaining 10,000 individuals were used 
for testing.

This dataset was used to compare the BayesXII algo-
rithm with the conventional sampler for BayesCπ . For 
both BayesXII algorithm and conventional sampler for 
BayesCπ , five Markov chains of length 100,000 were gen-
erated from five different sets of starting values for marker 
effects sampled from a normal distribution with null mean 

(6)
(
ỹ|ELSE

)
∼ N (̃Jµ+ X̃a, Iσ 2

e ).

and variance calculated as σ 2
a =

σ
2
g

(1−π)

∑
2pi(1−pi)

 , where σ 2
g  

is the genetic variance, pi is the allele frequency for locus i, 
and π is the probability that a marker has a null effect.

Prediction accuracies, which are calculated as the cor-
relation between estimated breeding values and adjusted 
phenotypic values, in the testing population were used 
to compare these two methods. The correlation between 
estimated breeding values of these two methods for the 
testing population was investigated to: (1) confirm that 
the BayesXII algorithm can provide about the same 
prediction accuracy as the conventional sampler for 
BayesCπ ; and (2) quantify the relative convergence of 
the BayesXII algorithm and conventional sampler for 
BayesCπ . Our BayesXII algorithm was implemented 
using the Message Passing Interface (MPI) [15], which is 
a message-passing standard for distributed memory pro-
gramming. The speed of our parallel implementation of 
the BayesXII algorithm was tested on a server with up to 
24 nodes in the same rack, and there were 24 cores on 
each node.

The authors state that all data necessary for confirming 
the conclusions presented in this article are represented 
fully within the article.

Results
The speed of the BayesXII algorithm is shown in Table 1. 
The total runtime for the BayesXII algorithm was sped 
up nearly linearly by the number of computer processors. 
Using 576 processors (24 nodes with 24 cores on each 
node), the BayesXII algorithm required about 47 min to 
obtain samples for a chain of length 100,000. However, 
the conventional sampler for BayesCπ running on one 
node and one core required about 7900 minutes for the 
same chain length, which was about 170 times slower 
than the BayesXII algorithm.

Prediction accuracies were obtained from five chains 
of length 100,000 for each method. The potential scale 
reduction factor (PSRF) was used to diagnose the conver-
gence of the Markov chain [18, 19]. Using conventional 

Table 1  Computing time for  the  BayesXII algorithm 
to obtain samples for a chain of length 100,000

a Note that different number of processes in MPI were tested for different 
number of nodes (computer used as a server), but only the fastest time is shown

Number of nodes Total number of cores Runtimea (min)

2 48 436

5 120 191

10 240 94

15 360 69

20 480 54

24 576 47

https://datashare.is.ed.ac.uk/handle/10283/3040
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sampler for BayesCπ , convergence required about 3000 
iterations (PSRF value for the marker effect variance 
was smaller than 1.1), where the prediction accuracy of 
BayesCπ was 0.5139. The correlation between estimated 
breeding values from the BayesXII algorithm with those 
from the conventional sampler for BayesCπ for the test-
ing population was larger than 0.99 when the chain for 
the BayesXII algorithm was longer than 50,500, where 
the prediction accuracy for the BayesXII algorithm was 
0.5104. The trajectory of the prediction accuracy of the 
BayesXII algorithm is provided in the Appendix. In sum-
mary, the BayesXII algorithm requires 17 times more 
samples than the conventional sampler for BayesCπ to 
obtain about the same prediction accuracy. Considering 
that the BayesXII algorithm was 170 times faster than the 
conventional sampler for BayesCπ using 24 nodes with 
24 cores on each node (i.e., about 25 minutes for a chain 
of length 50,500), the BayesXII algorithm required one 
tenth of the computation time in the conventional sam-
pler for BayesCπ.

Discussion
Whole-genome Bayesian multiple regression methods 
are usually computationally intensive, where a MCMC 
chain comprising tens of thousands of steps is typically 
used for inference. In this paper, a strategy to parallel-
ize Gibbs sampling for each marker within each step of 
the MCMC chain was proposed. This parallelization is 
accomplished using an orthogonal data augmentation 
strategy, where the marker covariate matrix is augmented 
with p new rows such that its columns are orthogonal. 
Then, the full conditional distributions of marker effects 
become independent within each step of the chain, and 
thus, samples of marker effects within each step can be 
drawn in parallel. Ideally, the BayesXII algorithm can be 
accelerated by k times, where k is the number of com-
puter processors, up to p times, where p is the number 
of markers. In this paper, the full conditional distribu-
tions that are needed for BayesCπ with orthogonal data 
augmentation (BayesXII) were derived and the speed 
of the BayesXII algorithm was evaluated. In the simula-
tion data with 50,000 individuals and a medium-density 
marker panel ( ∼ 50,000 markers), the BayesXII algorithm 
reached about the same accuracy as the conventional 
sampler for BayesCπ in less than 30 minutes on 24 nodes 
with 24 cores on each node. In this case, the BayesXII 
algorithm required one tenth of the computation time as 
conventional sampler for BayesCπ.

Computation
Marker effects
The time and space complexity for sampling marker 
effects, the most time-consuming task, in the BayesXII 

algorithm and conventional sampler for BayesCπ , are 
shown in Table 2, where the big O notation [20] is used. 
Time complexity represents the number of elementary 
operations, such as multiplication and addition, per-
formed by an algorithm. Space complexity represents the 
amount of storage required by an algorithm. In Bayesian 
regression model implementations such as BayesCπ , the 
most time consuming task is sampling the marker effects 
from their full conditional distributions. The time com-
plexities for two different computational approaches, 
BayesCπ -I and BayesCπ-II, for conventional sampler for 
BayesCπ are O(npt) and O(p2t) , for which the details are 
described in Appendix. In the BayesXII algorithm, how-
ever, the marker effects can be sampled in parallel within 
each step, using (5), and the time complexity is O(p2t/k) . 
Ideally, the computations at each step of the MCMC 
chain can be accelerated by k times, where k is the num-
ber of computer processors, up to p times, where p is the 
number of markers. In our simulated data, the speed per-
formance of the two computational approaches for con-
ventional sampler for BayesCπ should be similar and only 
the first approach is shown in "Results" section.

Variance components
After marker effects are sampled at each step of the 
MCMC, the computational complexity for sampling 
residual variances and marker effects variances in the 
BayesXII algorithm at each step are O(p) and O(p), which 
are negligible compared with the complexity of sampling 
marker effects. In conventional samplers for BayesCπ , 
the computational complexity for sampling residual var-
iances at each step is O(n) for BayesCπ -I and O(p2) for 
BayesCπ-II.

Building prerequisite matrices
The time complexities for computations to build prereq-
uisite matrices that are done only once for the BayesCπ-I, 
BayesCπ-II and BayesXII algorithms on a single-core are 
O(np), O(np2) and O(np2 + p3) . The computing time for 

Table 2  Time and  space complexity of  alternative 
implementations of Bayesian regression models

aVariables include p, the number of markers; n, the number of observations; 
t1 and t2, the number of steps of MCMC required to converge in the BayesXII 
algorithm and conventional samplers for BayesCπ , respectively; k, the number of 
computer processors

Algorithms Time complexitya Space 
complexitya

Marker effects Missing phenotypes

BayesCπ-I O(npt1) NA O(np)

BayesCπ-II O(p2t1) NA O(p2)

BayesXII O(p2t2/k) O(p2t2/k) O(p2)
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these “only-once” computations, however, is trivial com-
pared to that for sampling marker effects. For example, 
in the BayesXII algorithm, the time complexity for com-
putation to build the augmented matrix Wa as in (3) on 
a single core is O(np2 + p3) . In (3), the two tasks are: (1) 
computation of XTX , where X is an n× p matrix; and (2) 
Cholesky decomposition of a positive definite matrix of 
size p. Parallel computing approaches for the first of these 
two tasks is given in Appendix. The computing time for 
the Cholesky decomposition in the second task is rela-
tively short, requiring about 5 minutes for p = 50, 000 on 
a workstation with 4 cores and 64G memory.

More complicated scenarios
Larger sample size
In the BayesXII algorithm, the marker covariate matrix is 
augmented by adding p new rows such that its columns 
are orthogonal. Compared with the conventional sampler 
for BayesCπ , the p “missing” phenotypes are sampled at 
each step of the MCMC chain in the BayesXII algorithm. 
This makes the convergence of the BayesXII algorithm 
slower than for the conventional sampler. Thus, the ratio 
of the number p of markers and the number n of indi-
viduals may affect the convergence of the BayesXII algo-
rithm. We simulated new datasets with 1000 markers 
and different number of individuals. A random sample of 
five percent of those 1000 markers were selected as QTL. 
Figure  1 shows the effect of sample size on the conver-
gence of the BayesXII algorithm, where the number of 
steps required for the BayesXII algorithm to obtain simi-
lar estimated breeding value as conventional sampler for 
BayesCπ was shown for different n with p = 1000 . It can 
be seen that fewer iterations are needed as more individ-
uals (n) become available. This is happening in genomic 
prediction as more individuals are genotyped.

High‑density marker panel
In the BayesXII algorithm, the marker covariate matrix 
is augmented by adding a matrix X̃ to make all columns 
of the augmented marker covariate matrix orthogonal 
to each other. However, with high-density marker pan-
els (e.g., whole-genome sequence data), a large amount 
of memory will be used to store X̃ , and the Cholesky 
decomposition of what may be a huge square matrix of 
size p is required, which can be very slow or infeasible. 
Thus, we propose another approach below. Markers are 
partitioned into small groups, and a square matrix X̃i is 
generated to orthogonalize columns of the marker covar-
iate matrix in group i such that marker effects for mark-
ers in the same group can be sampled in parallel at each 
step. For example, for a marker covariate matrix parti-
tioned into m groups, X =

[
X1 X2 · · · Xm

]
 , the aug-

mented marker covariate matrix can be written as:

where

and Di is a diagonal matrix for group i. Note that the way 
in which markers are partitioned into small groups may 
affect the convergence.

Conclusions
A fast parallelized algorithm called BayesXII is proposed 
in this paper. Ideally, the computations at each step of the 
MCMC chain can be accelerated by k times, where k is 
the number of computer processors, up to p times, where 
p is the number of markers. In a simulation analysis with 
50,000 individuals and a medium-density marker panel, 
the BayesXII algorithm reached about the same prediction 
accuracy as the conventional samplers for BayesCπ within 
one tenth of the computation time for the conventional 
sampler. In conclusion, we believe that the BayesXII algo-
rithm is a practical alternative for accelerating Gibbs sam-
pling for some applications of Bayesian regression models, 
such as those encountered in genomic prediction. Address-
ing the heavy computational burden associated with Bayes-
ian regression models by parallel computing will lead to 
greater use of these models.
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Fig. 1  Effect of sample size on the convergence of the BayesXII 
algorithm. Number of MCMC steps required for the BayesXII 
algorithm to obtain similar estimated breeding value as conventional 
sampler for BayesCπ using a low-density marker panel (1000 markers)
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Appendix
Two computational approaches for the conventional 
sampler for BayesCπ
Detailed derivation of the full conditional distributions 
of the marker effect for locus j in conventional sampler 
for BayesCπ is in Fernando and Garrick [21]. As shown 
in [21], the full conditional distribution of aj in BayesCπ , 
when aj is non-zero, is

where ELSE stands for all the other unknowns and y , Xj is 
the jth column of X , and âj is the solution to:

It is worth noting that two approaches are available to 
compute the right-hand-side of (8). The first approach, 
BayesCπ-I, corresponding to (8) is briefly described 
below. 

1.	 Initially:

•	Compute XT
j Xj with j = 1, 2, 3, . . . , p,

•	Compute ycorr = y − 1µ−

∑
Xjaj , which is the 

vector y corrected for all fixed and random effects, 
using their current values, and

•	Store X in the memory.

2.	 Then, for each locus at each step of MCMC:
•	Before sampling the marker effect, the right-hand-

side of (8) is updated as
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 then
•	 once a new value of aj , denoted by a∗j  , is sampled, 

ycorr is updated as 

The second approach, BayesCπ-II, corresponding to (9) is 
briefly described below. 

1.	 Initially:

•	Compute XTX , XT1 and XTy , then,
•	Store these matrices in memory.

2.	 Then for each locus at each step of MCMC:
•	Before sampling the marker effect, the right-hand-

side is computed as
	

where 
(
XTX

)
:,j

 is the jth column of XTX and 
(
XTX

)
j,j

 is 
the jth diagonal element of XTX . Note that the number 
of operations to sample marker effects for each locus at 
each step of the MCMC is of order n in the first approach 
and of order p for the second approach. Thus, the compu-
tational complexities for sampling marker effects in con-
ventional sampler for BayesCπ are O(npt) for the first 
approach and O(p2t) for the the second approach. The 
space complexities are O(np) for storing X in the first 
approach and O(p2) for storing XTX in the second 
approach.

Single‑site Gibbs sampler for the BayesXII algorithm
Full conditional distribution of the marker effect
The full conditional distribution of aj in the BayesXII 
algorithm, which is shown below, can be obtained from 

(7) and (8) by replacing y with 
[
y
ỹ

]
 , 1 with 
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1
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]
 and X with 
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]
 . Note that columns of the augmented covariate 

matrix 
[
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]
 are orthogonal. Thus, (7) for the BayesXII 

algorithm can be simplified as:
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Thus, the full conditional distribution of aj can be written 
as:

Note that the number of operations is of order p for sam-
pling marker effects, thus the computational complexity 
is O(p2t) . The space complexity is O(p2) for X̃.

Detailed derivation of the full conditional distribution of 
the indicator variable δj indicating if aj had a normal distri-
bution ( δj = 1 ) or if it is null ( δj = 0 ) in the conventional 
sampler for BayesCπ is also in Fernando and Garrick [21]. 
The full conditional distribution of δj in conventional sam-
pler for BayesCπ is:
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The full conditional distribution of δj in the BayesXII 
algorithm, which is shown below, can be obtained from 

(11) by replacing y with 
[
y
ỹ

]
 , 1 with 

[
1

J̃

]
 and X with 

[
X

X̃

]
 . 

Thus, (11) for the BayesXII algorithm can be simplified 
as:
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Full conditional distributions of the unobserved phenotypes
The full conditional distribution of ỹ can be written as:

Full conditional distributions of other unknowns
The derivation of the full conditional distributions of 
other parameters such as µ , σ 2

a  , σ 2
e  , π are straightforward. 

Thus they are presented as below without derivations.
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Parallel implementation of the BayesXII algorithm
As shown above, in the BayesXII algorithm, all marker 
effects can be sampled simultaneously in parallel within 
each step of the chain. Given k available computer pro-
cesses, markers can be split into k groups, and each com-
puter process can be used to sample marker effects in 
the corresponding group. A graph to demonstrate such 
a parallel implementation for sampling marker effects at 
each step is shown in Fig. 2.

Parallel computing of X̃a
In many modern programming languages, such as R, 
Python and Julia, libraries are available to take advan-
tage of multiple processors and GPUs for parallel 
computing of many matrix or vector operations. The 
descriptions given below are only to illustrate the main 
principle underlying parallel computing, which involves 
distributing calculations across processors. Actual 
implementations may be different and will depend on 
the programming language, the library and the hard-
ware used.

To sample the unobserved phenotypic values using 
(6), a matrix by vector product X̃a is needed. Here we 
describe how parallel computing can be used to com-
pute the product of a matrix X̃ by a vector a . 

1	 Partition X̃ of size n× p by columns into smaller sub-
matrices X̃(1), X̃(2), X̃(3), . . . of size n× pi , and parti-
tion a into smaller subvectors a(1), a(2), a(3), . . . of 
length pi with 

∑
pi = p.
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]
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[
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= yT y + ỹT ỹ + dµ2
+ daTa − 2µ
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)

− 2aT
(
XTy + X̃T ỹ

)
.

2	 Compute X̃a as X̃(1)a(1) + X̃(2)a(2) + X̃(3)a(3) + . . . , 
where X̃(i)a(i) for i = 1, 2, . . . are computed on differ-
ent processors and then summed to obtain X̃a.

Note that the same strategy can also be used to calcu-
late XTy by partitioning X by rows.

Parallel computing of XT
X

In (3), computation of XTX is needed. Here we describe 
how parallel computing can be used to compute XTX , 
where X is a n× p matrix. 

1	 Partition X of size n× p by rows into smaller subma-
trices X(1),X(2),X(3), . . . of size ni × p with 

∑
ni = n.

2	 Compute XTX = XT
(1)X(1) + XT

(2)X(2) + . . . , where 
XT
(j)X(j) for j = 1, 2, . . . are computed on different 

processors and then summed to obtain XTX.

Note that once XTX has been built, it can be updated as 
XTX + XT

newXnew when new observations Xnew of size 
nnew × p are available, for which the computation complex-
ity is O(p2nnew) . The computing time is trivial since nnew 
is usually small. In addition to the benefit of reducing the 
computing time, this approach can also address the limita-
tion that X may be too large to be stored on a single com-
puting node ( n ≫ p ) by distributing the X(i) across several 
nodes.

A numerical example of ODA
A small numerical example of ODA is provided here 
to illustrate the orthogonal data augmentation (ODA). 
Assuming there are only three individuals and five markers, 
the centered 3× 5 marker covariate matrix is:

Then, the Wo is

X =



−0.33 − 0.33 0.67 − 0.33 − 1.33
0.67 − 0.33 0.67 0.67 0.67
−0.33 0.67 − 1.33 − 0.33 0.67


 .

Fig. 2  Parallel implementation for sampling marker effects at each step in the BayesXII algorithm. The i-th process will calculate the number of mi 
marker effects on group i, and 

∑k
i=1

mi = p
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The d is set to be the largest eigenvalue of WT
o Wo , which 

is about 4.55 in this example.
In (3), WT

a Wa can be calculated as:

In this example, Wa is obtained using Cholesky decom-
position of WT

a Wa , and Wa is

J̃  equals the first column of Wa , and X̃ is the rest of col-
umns of Wa since Wa =

[̃
J X̃

]
.

Prediction accuracy of the BayesXII algorithm
Prediction accuracies of the BayesXII algorithm for 
BayesCπ were obtained from five chains of length 
100,000. In Fig.  3, the blue solid line is the average of 
prediction accuracies from those five chains, and the 
black dashed line is the prediction accuracy obtained 
from the converged conventional sampler. In summary, 

Wo =
�
1 X

�
=



1 − 0.33 − 0.33 0.67 − 0.33 − 1.33

1 0.67 − 0.33 0.67 0.67 0.67

1 − 0.33 0.67 − 1.33 − 0.33 0.67


 .

WT
a Wa = D−WT

o Wo

= Id −WT
o Wo

=




1.55 0.0 0.0 0.0 0.0 0.0
0.0 3.88 0.33 −0.67 −0.67 −0.67
0.0 0.33 3.88 1.33 0.33 −0.67
0.0 −0.67 1.33 1.88 −0.67 1.33
0.0 −0.67 0.33 −0.67 3.88 −0.67
0.0 −0.67 −0.67 1.33 −0.67 1.88



.

Wa =




1.24 0.0 0.0 0.0 0.0 0.0
0.0 1.97 0.17 − 0.34 − 0.34 − 0.34
0.0 0.0 1.96 0.71 0.2 − 0.31
0.0 0.0 0.0 1.13 − 0.82 1.28
0.0 0.0 0.0 0.0 1.75 0.19
0.0 0.0 0.0 0.0 0.0 0.05



.

the BayesXII algorithm could provide about the same 
prediction accuracy as the conventional sampler for 
BayesCπ when the chain was of length 50,500.
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