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Abstract 

Background:  The coupling of appropriate sequencing strategies and imputation methods is critical for assem‑
bling large whole-genome sequence datasets from livestock populations for research and breeding. In this paper, 
we describe and validate the coupling of a sequencing strategy with the imputation method hybrid peeling in real 
animal breeding settings.

Methods:  We used data from four pig populations of different size (18,349 to 107,815 individuals) that were widely 
genotyped at densities between 15,000 and 75,000 markers genome-wide. Around 2% of the individuals in each pop‑
ulation were sequenced (most of them at 1× or 2× and 37–92 individuals per population, totalling 284, at 15–30×). 
We imputed whole-genome sequence data with hybrid peeling. We evaluated the imputation accuracy by removing 
the sequence data of the 284 individuals with high coverage, using a leave-one-out design. We simulated data that 
mimicked the sequencing strategy used in the real populations to quantify the factors that affected the individual-
wise and variant-wise imputation accuracies using regression trees.

Results:  Imputation accuracy was high for the majority of individuals in all four populations (median individual-wise 
dosage correlation: 0.97). Imputation accuracy was lower for individuals in the earliest generations of each popula‑
tion than for the rest, due to the lack of marker array data for themselves and their ancestors. The main factors that 
determined the individual-wise imputation accuracy were the genotyping status, the availability of marker array data 
for immediate ancestors, and the degree of connectedness to the rest of the population, but sequencing coverage of 
the relatives had no effect. The main factors that determined variant-wise imputation accuracy were the minor allele 
frequency and the number of individuals with sequencing coverage at each variant site. Results were validated with 
the empirical observations.

Conclusions:  We demonstrate that the coupling of an appropriate sequencing strategy and hybrid peeling is a 
powerful strategy for generating whole-genome sequence data with high accuracy in large pedigreed populations 
where only a small fraction of individuals (2%) had been sequenced, mostly at low coverage. This is a critical step for 
the successful implementation of whole-genome sequence data for genomic prediction and fine-mapping of causal 
variants.
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Background
Sequence data has the potential to empower the identifi-
cation of causal variants that underlie quantitative traits 
or diseases [1–4], enhance livestock breeding [5–7], and 
increase the precision and scope of population genetic 
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studies [8, 9]. For sequence data to be used routinely in 
research and breeding, low-cost sequencing strategies 
must be deployed in order to assemble large datasets that 
capture most of the sequence diversity in a population 
and enable harnessing of its potential. One possible strat-
egy is to sequence a subset of the individuals in a popula-
tion at low coverage and then to perform imputation of 
whole-genome sequence data for the remaining individu-
als [10–12].

Such a strategy is likely to perform well in livestock 
breeding populations, in which individuals have a high 
degree of relatedness, allowing low-coverage sequence 
data to be pooled across individuals that share a haplo-
type and imputed to individuals who share that haplo-
type. Due to the implementation of genomic selection 
in livestock breeding populations, many individuals in 
breeding nucleus populations have already been geno-
typed with marker arrays. This genotype data can be used 
to identify the individuals that share haplotype segments 
and to select individuals for sequencing that will be more 
informative from an imputation perspective given a lim-
ited budget [13, 14].

We have recently proposed ‘hybrid peeling’ [15], a fast 
and accurate imputation method explicitly designed for 
jointly calling, phasing and imputing whole-genome 
sequence data in large and complex multi-generational 
pedigreed populations in which individuals can be 
sequenced at variable coverage or not sequenced at all. 
Hybrid peeling is a two-step process. In the first step, 
multi-locus iterative peeling is performed to estimate the 
segregation probabilities for a subset of segregating sites 
(e.g., the markers on a genotyping array). In the second 
step, the segregation probabilities are used to perform 
fast single-locus iterative peeling on every segregating 
site discovered in the genome. This two-step process 
allows the computationally demanding multi-locus peel-
ing step to be performed on only a subset of the variants, 
while still leveraging linkage information for the remain-
ing variants.

These properties make hybrid peeling a very appeal-
ing imputation method for the cost-effective genera-
tion of whole-genome sequence data for large pedigreed 
populations that have already been extensively genotyped 
using marker arrays and in which a small proportion of 
the individuals have been sequenced with variable cov-
erage. In the situations described, the sequence data will 
be sparsely distributed across the pedigree and there 
may be great variability in the amount of data to which 
each individual is exposed. Understanding which factors 
affect individual-wise and variant-wise imputation accu-
racy and how their effects are mediated is important for 
determining how this sequencing strategy, together with 
hybrid peeling, performs in real settings that are common 

in animal breeding and for enabling accuracy-aware 
quality control of the imputed data before downstream 
analyses. Such knowledge could be used in the future to 
design cost-effective routine whole-genome sequencing 
strategies.

The objectives of this study were to: (i) demonstrate 
whether whole-genome sequence data could be imputed 
with high accuracy in a variety of pig pedigrees when 
small subsets of individuals are sequenced, mostly at low 
coverage; (ii) quantify the factors that determine the indi-
vidual-wise and variant-wise imputation accuracy; and 
(iii) quantify the impact of data misassignment and pedi-
gree errors on imputation accuracy. Our results showed 
that high overall imputation accuracies can be achieved 
for whole-genome sequence data in large pedigreed pop-
ulations using hybrid peeling provided that the individu-
als are connected to a sufficient number of informative 
relatives with marker array or sequence data. Our results 
have implications for the practical implementation of 
sequencing and imputation strategies.

Methods
We structured the study in three tests. In Test 1, we 
evaluated the imputation accuracy of hybrid peeling in 
four populations of different sizes. In Test 2, we used 
regression trees and simulated data based on three real 
pedigrees to quantify which factors determined the 
individual-wise and variant-wise imputation accuracy of 
hybrid peeling. Then, we used the observations in the real 
data to validate the findings and to predict individuals 
with low imputation accuracy. In Test 3, we evaluated the 
potential impact that data misassignment and pedigree 
errors could have on the imputation accuracy. In the fol-
lowing sections, we first describe how the data was gen-
erated and then how the different tests were performed.

Real data
Populations and sequencing strategy
We performed whole-genome sequencing of 4427 indi-
viduals from four commercial pig breeding lines (Genus 
PIC, Hendersonville, TN) using a total coverage of 
approximately 18,514×. To account for a range of popu-
lation sizes, the number of individuals in each population 
was 18,349 (20 k), 34,425 (35 k), 68,777 (70 k), or 107,815 
(110 k). Approximately 2% (1.7–2.5%) of the individuals 
in each population were sequenced, mostly at low cover-
age. The number of individuals sequenced and the cov-
erage at which they were sequenced are summarized for 
each population in Table 1.

We selected the individuals and the coverage at which 
they were sequenced using a three-step strategy: (1) first, 
we selected sires and dams that contributed most geno-
typed progeny in the pedigree (referred to as ‘top sires 
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and dams’) to be respectively sequenced at 2× and 1×; 
(2) then, we used AlphaSeqOpt part 1 [13] to identify 
the individuals whose haplotypes represented the great-
est proportion of the population haplotypes (referred to 
as ‘focal individuals’) and to determine an optimal level 
of sequencing coverage between 0× and 30× for these 
individuals and their immediate ancestors (i.e., parents 
and grandparents) under a total cost constraint; and (3) 
finally, we used the AlphaSeqOpt part 2 [14] to identify 
individuals that carried haplotypes whith a low cumula-
tive coverage (i.e., lower than, 10×) and distributed 1× 
sequencing amongst those individuals so that the cumu-
lative coverage on the haplotypes could be increased (i.e., 
at or above 10×). AlphaSeqOpt used haplotypes inferred 
from marker array genotypes (GGP-Porcine HD Bead-
Chip; GeneSeek, Lincoln, NE), which were phased with 
AlphaPhase [16] and imputed with AlphaImpute [17]. 
The sequencing resources were split so that approxi-
mately 30% of the sequencing resources were used for 
sequencing the top sires at 2×, 15% for the top dams at 
1×, 25% for the focal individuals and their immediate 
ancestors at variable coverage [13], and the remaining 
30% for individuals that carried under-sequenced hap-
lotypes at 1× [14]. In step 2, we identified 284 individu-
als across the four populations who were sequenced at 
high coverage (15× or 30×). Many of these individuals 
sequenced at high coverage belonged to early genera-
tions of the pedigree of each population. The rest of the 
sequenced individuals were sequenced at low coverage 
(1×, 2× or 5×).

We sorted the pedigrees of each population so that 
parents appeared before their progeny. Thus, relative 
position in the pedigree was used as a proxy for the gen-
eration to which an individual belonged.

Sequencing and data processing
Tissue samples were collected from ear punches or tail 
clippings. Genomic DNA was extracted using Qiagen 
DNeasy 96 Blood & Tissue kits (Qiagen Ltd., Missis-
sauga, ON, Canada). Paired-end library preparation was 
conducted using the TruSeq DNA PCR-free protocol 
(Illumina, San Diego, CA). Libraries for sequencing at 

low coverage (1× to 5×) were produced with an aver-
age insert size of 350 base pairs and sequenced on a 
HiSeq  4000 instrument (Illumina, San Diego, CA). 
Libraries for sequencing at high coverage (15× or 30×) 
were produced with an average insert size of 550 base 
pairs and sequenced on a HiSeq X instrument (Illumina, 
San Diego, CA). All libraries were sequenced at Edin-
burgh Genomics (Edinburgh Genomics, University of 
Edinburgh, Edinburgh, UK). Most pigs were also geno-
typed either at low density (LD; 15,000 markers) using 
the GGP-Porcine LD BeadChip (GeneSeek, Lincoln, NE) 
or at high density (HD; 75,000 markers) using the GGP-
Porcine HD BeadChip (GeneSeek, Lincoln, NE).

DNA sequence reads were pre-processed using 
Trimmomatic [18] to remove adapter sequences from 
the reads. The reads were then aligned to the ref-
erence genome Sscrofa11.1 (GenBank accession: 
GCA_000003025.6; [19]) using the BWA-MEM algo-
rithm [20]. Duplicates were marked with Picard (http://
broad​insti​tute.githu​b.io/picar​d). Single nucleotide poly-
morphisms (SNPs) were identified with the variant caller 
GATK HaplotypeCaller (GATK 3.8.0; [21, 22]) using 
default settings. Between 20 and 30 million SNPs were 
discovered in each population.

To avoid biases towards the reference allele introduced 
by GATK when applied on low-coverage sequence data, 
we extracted the read counts supporting each allele at 
each variant site with a pile-up function using the pipe-
line described in [23]. This pipeline uses the tool pysam 
(version 0.13.0; https​://githu​b.com/pysam​-devel​opers​/
pysam​), which is a wrapper around htslib and the sam-
tools package [24]. We extracted the read counts for all 
biallelic SNP positions, after filtering out variants with a 
mean coverage 3 times greater than the average realized 
coverage (considered as indicative of potential repetitive 
regions) with VCFtools [25].

We performed additional quality control on the pedi-
gree by determining the number of Mendelian inconsist-
encies (percentage of opposing homozygous) between 
each parent-progeny pair. We applied the following cri-
teria: (1) we removed marker array or sequence data of 
an individual, when the genotype data was incompatible 

Table 1  Distribution of sequencing coverages by population

Population Individuals sequenced Individuals sequenced by coverage Total coverage

1x 2x 5x 15–30x

20 k 445 217 176 15 37 1852x

35 k 760 394 274 27 65 3192x

70 k 1366 685 545 44 92 5280x

110 k 1856 1044 649 73 90 8190x

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
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with that of all its available parents and progeny (this was 
done because it could indicate data misassignment for 
that individual); (2) we removed parent-progeny pedigree 
links when the genotype data available was incompat-
ible for only a pair of individuals but not for their other 
parents and progeny; and (3) we created a dummy parent 
with no genotype data when the genotype data of a group 
of littermates was incompatible with one of its parents 
but both the parent and the littermates were not incom-
patible with the rest of their parents and progeny (this 
was done to preserve the full-sib relationship between 
those individuals).

Simulated data
In order to test the factors that influenced imputation 
accuracy, we simulated genetic data for three popula-
tions of different sizes: 15,187 (15 k), 29,974 (30 k), and 
64,598 (65 k) individuals. The pedigrees of these popula-
tions were a subset of the real pedigrees of the 20 k, 35 k, 
and 110 k populations used for the analyses of real data. 
As in the analyses of real data, the pedigrees were sorted 
so that parents appeared before their progeny. Genomic 
data for each population were simulated using the soft-
ware AlphaSim [26]. Each simulation was repeated twice 
and results were averaged across repetitions. Below, we 
present only a brief description of the simulation strat-
egy. The full details of the simulation are described in a 
companion paper [27].

Genomic data were simulated for 20 chromosomes, 
each 100  cM long. In total, 150,000 SNPs per chromo-
some (3 million SNPs genome-wide) were simulated in 
order to represent whole-genome sequence. A subset 
of 3000 SNPs per chromosome (60,000 SNPs genome-
wide) was used as a high-density marker array (HD). A 
smaller subset of 300 SNPs per chromosome (6000 SNPs 
genome-wide) nested within the HD marker array was 
used as a low-density marker array (LD). Each individual 
was assigned HD or LD marker array data based on the 
density at which they were genotyped in real data. The 
sequence read counts for each individual and SNP were 
simulated by sampling sequence reads using a Poisson-
gamma model that gave variable sequenceability at each 
SNP and variable number of reads for each individual at 
each SNP [10, 28].

The individuals to be sequenced and their sequenc-
ing coverage were selected using a combination of pedi-
gree- and haplotype-based methods that mimicked the 
sequencing strategy that was used for the real data. The 
total level of investment for sequencing was equivalent to 
the cost of sequencing 2% of the population at 2×, and 
thus resulted in a similar number of sequenced individu-
als as in the real data.

Imputation using hybrid peeling
Imputation was performed in each population sepa-
rately using hybrid peeling, as implemented in AlphaP-
eel [15], with the default settings. Hybrid peeling extends 
the methods of Kerr and Kinghorn [29] for single-locus 
iterative peeling and of Meuwissen and Goddard [30] for 
multi-locus iterative peeling to efficiently call, phase and 
impute whole-genome sequence data in complex multi-
generational pedigrees. Multi-locus iterative peeling was 
performed on all available marker array data to estimate 
the segregation probabilities for each individual. The 
individuals genotyped with LD marker arrays were not 
imputed to HD prior to this step. The segregation prob-
abilities were used for segregation-aware single-locus 
iterative peeling for the variant sites genome-wide.

Imputation accuracy tests
Test 1: Imputation accuracy in populations of different size
The imputation accuracy in the real data was estimated 
using a leave-one-out design. In each leave-one-out 
round, hybrid peeling was performed after removing the 
sequence data of one of the 284 individuals that were 
sequenced at high coverage (either 15 or 30×) in the 
four populations. We used the genotypes imputed for 
these individuals using the full data as the true geno-
types. To reduce computational requirements, accuracy 
was assessed on a random subset of 50,000 non-con-
secutive SNPs from chromosome 5, which included all 
the markers from the arrays that map to this chromo-
some (~ 3000). Tests in other chromosomes gave similar 
results.

We measured individual-wise and variant-wise impu-
tation accuracy with the correlation between the true 
genotypes and imputed dosages. The dosage correla-
tion was calculated after correcting for minor allele fre-
quency (MAF), as recommended by Calus et al. [31]. To 
facilitate comparison with other studies that report the 
uncorrected (raw) allele dosage correlations, in the con-
text of this study we found that MAF-corrected correla-
tions of 0.75, 0.80, 0.85, 0.90, and 0.95 were respectively 
equivalent to the raw correlations of 0.89, 0.91, 0.93, 0.96, 
and 0.98. For the variant-wise imputation accuracy, we 
excluded the individuals that had the lowest imputation 
accuracy, predicted as described in Test 2.

Test 2: Factors that affect individual‑wise and variant‑wise 
imputation accuracy
We assessed the factors that influenced imputa-
tion accuracy in the simulated data. We used simu-
lated data to provide a much larger sample size where 
the true genotypes were known. We ran single-locus 
peeling on a random subset of 5000 non-consecutive 
SNPs taken from across three chromosomes to reduce 
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computational requirements, although the full set of 
20 chromosomes were simulated to represent realis-
tic genetic architecture and haplotype diversity for the 
haplotype-based method AlphaSeqOpt. We assessed 
the factors that influenced imputation accuracy by 
building regression trees. The regression trees were 
built using the data from 219,518 simulated individu-
als and 30,000 variants (5000 variants from each pop-
ulation and replicate). The regression trees were built 
using the ‘rpart’ R package [32], allowing partitions that 
increased the R2 of the model by 0.005 at each step. 
Consecutive binary partitions based on the same vari-
able were considered as multi-part.

The regression tree for the individual-wise imputa-
tion accuracy was based on the amount of information 
that was available for the individual itself and its close 
relatives (4 relationship levels: grandparents, parents, 
progeny, and grandprogeny). The factors included: (i) 
population size; (ii) marker array density of the indi-
vidual (3 genotyping statuses: not genotyped, geno-
typed at LD, or genotyped at HD); (iii) number of close 
relatives that were genotyped at each genotyping den-
sity (12 variables; 4 relationship levels and 3 genotyp-
ing statuses); (iv) number of close relatives that were 
sequenced and their cumulative sequencing coverage 
(8 variables; 2 variables for each of the 4 relationship 
levels); and (v) connectedness to the population, which 
was measured as the sum of coefficients of relationship 
between an individual and the rest of individuals in the 
pedigree.

We tested the predictive capacity of the partitioning 
factors for identifying individuals with low imputation 
accuracy, defined as those below 0.95. For that purpose, 
we performed a tenfold cross-validation on the simulated 
data. We validated the results of the regression trees in 
the real data against the imputation accuracy observed 
in the 284 high-coverage individuals. For the analysis of 
the variant-wise imputation accuracy we used only the 
individuals that were predicted to have imputation accu-
racy above 0.95 based on the partitioning factors of the 
regression tree. To further assess which factors affected 
the individual-wise imputation accuracy in the real data, 
we fitted a linear model predicting imputation accuracy 
against each of the factors used for the regression tree.

The factors in the regression tree for the variant-wise 
imputation accuracy included: (i) population size; (ii) 
MAF; (iii) relative position of the variant within a chro-
mosome; (iv) distance of a variant to the nearest vari-
ant from the marker array (this distance was 0 if that 
variant was present on the marker array); (v) cumula-
tive sequencing coverage across individuals at that vari-
ant site; and (vi) number of individuals with at least one 
sequencing read covering that variant site.

Test 3: Impact of data misassignment and pedigree errors
We tested the impact that data misassignment and pedi-
gree errors could have on the imputation results by intro-
ducing deliberate errors to the real data. We considered 
three types of errors: sequence data misassignment, 
marker array data misassignment, and pedigree errors. 
For each type of error, we created 284 scenarios, in which 
we altered the data of each of the individuals that were 
sequenced at high coverage in each population, one at a 
time. The three types of errors were defined as follows, to 
represent some worst-case scenarios:

Sequence data misassignment
We replaced the sequence data of the target individual 
by that of a random individual from the same population 
that had been sequenced at high coverage.

Marker array data misassignment
We replaced the marker array data of the target individ-
ual by that of a random individual from the same popula-
tion that had been genotyped at HD, regardless of its own 
genotyping status or density.

Pedigree errors
We assigned random progeny from one of the individuals 
sequenced at high coverage from the same population to 
the target individual.

The impact of the data misassignment and pedigree 
errors on imputation accuracy was measured as the cor-
relation between the allele dosages using the correct data 
and the erroneous data. The impact of these errors was 
assessed on the target individual where the error was 
introduced but also on its grandparents, parents, prog-
eny, and grandprogeny to evaluate how the errors could 
propagate to relatives of the target individual. In the case 
of the pedigree errors, we also assessed the impact of the 
pedigree error on the misassigned progeny and grand-
progeny. As a control, we also assessed the allele dosage 
correlation on the target individual and its relatives when 
the data of the target individual was removed, as done in 
Test 1.

Results
Individual‑wise imputation accuracy in populations 
of different size
The imputation accuracy in the real data was high for 
most of the tested individuals. The average individual-
wise dosage correlation was 0.94 but there was sub-
stantial variation with an asymmetrical distribution 
(median: 0.97; min: 0.11; max: 1; interquartile range: 
0.94–0.98). Many of the individuals in the earliest gen-
erations of the pedigree (some of the 106 individuals 
located in the first 20% of the pedigree) had a lower 
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imputation accuracy than individuals in the remainder 
of pedigree. This pattern was observed for all four pop-
ulations. Figure 1 shows the imputation accuracy plot-
ted against relative position in the pedigree, the marker 
array density of the individual, or size of the population 
to which they belonged. The imputation accuracy of 
the individuals in later generations (the 178 individu-
als after the first 20% of the pedigree) was higher than 
that of individuals in the earliest generations, with an 
average dosage correlation of 0.97 and with much lower 
variability (median: 0.98; min: 0.69; max: 1; interquar-
tile range: 0.96–0.99).

The marker array density of the individuals was con-
founded with the number of ancestors that were geno-
typed with marker arrays. The non-genotyped individuals 
(n = 19) and approximately half of the individuals geno-
typed at HD (n = 87 out of 157) belonged to early gen-
erations of the pedigree (Fig.  1a), which reduced their 
chances of having ancestors with genotype data and 
penalized the imputation accuracy for these two groups 
of individuals (Fig. 1b). On the contrary, most individu-
als genotyped at LD belonged to later generations (n = 91 
out of 108), ensuring that there was enough data for their 
ancestors to enable high imputation accuracies for the 
LD individuals. The average imputation accuracy corre-
lation was 0.81 for the non-genotyped individuals, 0.94 
for the HD individuals, and 0.96 for the LD individuals. 
The average imputation accuracy for the HD individuals 
in the earliest generations was lower (0.91) than for the 
HD individuals in later generations (0.97). For individu-
als in the later generations, there were no significant dif-
ferences between marker array densities and the average 
imputation accuracy of both the HD and LD individuals 
was 0.97.

There was no clear trend that population size affected 
imputation accuracy (Fig. 1c), especially for individuals in 
the later generations. The population with 35 k individu-
als had higher imputation accuracy than the other three 
populations but this was more likely due to population-
specific characteristics, related to unbalanced distribu-
tions of the tested individuals across generations and 
genotyping statuses or potentially to pedigree structure, 
rather than population size. The 35 k population had only 
5 out of 65 high-coverage individuals in the first 20% of 
the pedigree, compared to a much greater proportion in 
the other populations (from 15 out of 37 in the 15 k pop-
ulation to 56 out of 92 in the 65 k population).

Factors that affect individual‑wise imputation accuracy
The main factors that determined individual-wise impu-
tation accuracy were whether the individual itself was 
genotyped with a marker array, the number of close 
relatives of that individual that were genotyped with a 
marker array (primarily parents and grandparents), and 
the connectedness of that individual to the rest of the 
population. The number of close relatives of an indi-
vidual that were sequenced was a significant factor for 
the imputation accuracy of the 284 tested individuals in 
a linear model, but only the number of sequenced par-
ents or progeny were influential partitioning factors in 
the regression trees based on the simulated data. The 
sequencing coverage of the relatives were not influential 
partitioning factors in the regression trees. The results 
were consistent between simulated and real data.

The regression tree for the factors that affect individ-
ual-wise imputation accuracy in the simulated data is 
shown in Fig.  2a. The first partitioning factor was the 
availability of marker array data of the grandparents. On 
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average, individuals without genotyped grandparents 
had a much lower imputation accuracy (0.47, n = 10,794) 
than individuals with at least one genotyped grandparent 
(0.96, n = 208,724). For individuals without genotyped 
grandparents, other sources of information from the 
ancestors, such as availability of any sequenced parents, 
increased their imputation accuracy from 0.40 (n = 7516) 
to 0.63 (n = 3278).

After these initial partitions, the next partitioning fac-
tor was whether or not the individual itself was geno-
typed with a marker array, regardless of marker array 
density. For non-genotyped individuals, having some 
genotyped or sequenced progeny and grandprogeny 
improved their imputation accuracy. For genotyped indi-
viduals, regardless of the genotyping density, connect-
edness to the rest of the population was the main factor 
that determined imputation accuracy, with the dosage 
correlation increasing with connectedness from 0.89 
(n = 9446) to 0.98 (n = 184,658). The imputation accuracy 
observed in the real data was consistent with the parti-
tions of the regression tree based on the simulated data 
(Fig. 2b).

These partitioning factors predicted the simulated 
individuals with low imputation accuracy (lower than 
0.95) with a sensitivity of 0.66 and a specificity of 0.95. In 

the real data, the correlation between the predicted and 
observed individual-wise imputation accuracy was 0.55 
and the partitioning factors predicted the individuals 
with low imputation accuracy with a sensitivity of 0.42 
and a specificity of 0.95. These partitioning factors were 
sensitive for predicting the individuals with the lowest 
imputation accuracy but their sensitivity decreased for 
predicting individuals with imputation accuracy closer to 
the desired level of 0.95 (Table 2). In total, 237 individuals 
were predicted to have imputation accuracy higher than 
0.95 and were later used for the analyses of variant-wise 
imputation accuracy.

The analysis of the factors that affected the individual-
wise imputation accuracy observed in the real data with a 
linear model largely supported the results of the regres-
sion trees. Table 3 summarises the factors that were sig-
nificantly associated with individual-wise imputation 
accuracy. The significant factors included the number of 
genotyped ancestors (at HD; p ≤ 0.016) but not the num-
ber of genotyped descendants (p = 0.062–0.996), and the 
number of sequenced relatives (p ≤ 0.016) but generally 
not their cumulative sequencing coverage (p = 0.044–
0.456). The factors that referred to the amount of infor-
mation available for the individuals themselves were 
also significant, including both their genotyping status 

Fig. 2  Regression tree of the factors that affected individual-wise dosage correlation in a simulated data and b comparison to real data. Variables 
include genotyping status, number of grandparents genotyped with marker array (nGParChip), number of progeny genotyped with marker array 
(nProgChip), number of sequenced progeny (nProgSeq), connectedness to the rest of the population (Connect), and population size (PopSize)
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(p ≤ 0.001) and their connectedness to the rest of the 
population (p = 0.031). However, the marker array den-
sity was confounded with the generation to which the 
individuals belonged and, therefore, with the number 
of ancestors that were genotyped with marker arrays 
(Fig.  1). Population size was also a significant factor 
(p ≤ 0.001), but likely confounded with population-spe-
cific factors (Fig. 1).

Variant‑wise imputation accuracy
The variant-wise imputation accuracy was also high. 
After removing the individuals with a low predicted 
imputation accuracy, the average variant-wise dosage 

correlation was 0.91 (median: 0.98; min: − 0.37; max: 1; 
interquartile range: 0.94–0.99). We removed the individ-
uals with a low predicted imputation accuracy to provide 
estimates of variant-wise imputation accuracy for the 
data that would pass such an initial quality control before 
any additional filtering steps or downstream analyses. 
Although removing such individuals resulted in slightly 
higher variant-wise imputation accuracy estimates than 
using all data (0.88 and 0.91 before and after filtering, 
respectively; correlation: 0.93), the results did not change.

Variant-wise imputation accuracy was lower for low-
frequency variants, compared to more common vari-
ants. Figure  3 shows the distribution of the imputation 
accuracy for variants across the MAF spectrum. The 
mean imputation accuracy increased from 0.60 for 
MAF ≤ 0.001 to 0.95 for MAF ≥ 0.2, but the median 
imputation accuracy was > 0.98 for MAF ≥ 0.005.

Factors that affect variant‑wise imputation accuracy
The main factors that determined the variant-wise 
imputation accuracy were the MAF of the variants and 
the number of sequenced individuals at the variant site. 
Whether a marker was present in the marker array or not 
and the distance of a variant to the nearest variant from 
the marker array were not influential partitioning fac-
tors in the regression trees. The results were consistent 
between simulated and real data.

The regression tree for the factors that affect variant-
wise imputation accuracy on the simulated data is shown 
in Fig.  4a. The first factor that determined variant-wise 
imputation accuracy was MAF. The imputation accu-
racy was limited for very rare variants: 0.31 for MAF 
below 0.001 (n = 395), 0.57 for MAF between 0.001 and 
0.005 (n = 810), 0.85 for MAF between 0.005 and 0.023 
(n = 1810), and 0.97 for MAF above 0.023 (n = 26,268). 
The other partition factor was the number of individu-
als that had at least one sequencing read that covered a 
given position. The imputation accuracy observed in 
the real data within each partition of the regression tree 
followed the same trends as for the simulated data, but 
ranged from 0.55 (n = 7642) to 0.95 (n = 91,236) and were 
greater than those from the simulated data at low MAF 
(Fig. 4b).

Table 2  Prediction of  individuals with  low imputation accuracy (below 0.95) using the  partitioning factors 
from the regression tree

Data Sensitivity Specificity Sensitivity by observed imputation accuracy

0–0.5 0.5–0.75 0.75–0.85 0.85–0.9 0.9–0.95

Simulated 0.66 0.97 1.00 0.99 0.94 0.68 0.27

Real 0.42 0.95 1.00 0.58 0.31 0.61 0.29

Table 3  Factors that  affect individual-wise imputation 
accuracy on the real data

LD low density, HD high density

Factor p-value

Population size < 0.001

Individual data

 Genotyping status < 0.001

 Connectedness to the rest of population 0.031

Number of relatives genotyped with marker array

 Grandparents at LD 0.707

 Grandparents at HD 0.016

 Parents at LD 0.059

 Parents at HD < 0.001

 Progeny at LD 0.062

 Progeny at HD 0.553

 Grandprogeny at LD 0.926

 Grandprogeny at HD 0.996

Number of relatives sequenced

 Grandparents 0.003

 Parents < 0.001

 Progeny 0.002

 Grandprogeny 0.016

Cumulative sequencing coverage of relatives

 Grandparents 0.456

 Parents 0.245

 Progeny 0.100

 Grandprogeny 0.044
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Impact of data misassignment and pedigree errors
Data misassignment and pedigree errors can have dras-
tic consequences on the imputation results. The impact 
of data misassignment and pedigree errors, measured 
as the dosage correlation between the results with and 
without the deliberate error, is presented in Fig.  5 for 
the target individual (‘ind’) and its immediate relatives. 
We report here the average dosage correlation but note 
that there was large case-by-case variability due to the 

stochasticity of the data misassignment and pedigree 
errors.

When we removed the high-coverage sequence data of 
the target individual, as in Test 1 (Fig. 5a), the dosage cor-
relation with complete data imputation was 0.94 for the 
target individual. The impact of removing the sequence 
data of the target individual had a limited impact on 
imputing its relatives, which had dosage correlations of 
0.97 to 0.99 compared to the case with complete data.

Fig. 3  Variant-wise dosage correlation in real data with respect to minor allele frequency. Results are after removing individuals with low predicted 
imputation accuracy

Fig. 4  Regression tree of the factors that affected variant-wise dosage correlation in a simulated data and b comparison to real data. Variables 
include minor allele frequency (MAF) and number of individuals sequenced at a position (nIndSeq)
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When the sequence data was misassigned (Fig.  5b), 
the dosage correlation of the target individual drastically 
decreased to 0.13, as did (in order of magnitude) that of 
its progeny (0.68), then its grandprogeny (0.86) and par-
ents (0.86), and finally its grandparents (0.95).

When the marker array data was misassigned (Fig. 5c), 
the dosage correlation of the target individual remained 
very high (0.99), probably because the high-coverage 
sequence data provided high certainty about its true gen-
otypes. In spite of this, potential errors in the segregation 
probabilities resulted in dosage correlations for the rela-
tives of the target individual that were slightly lower (0.97 
to 0.98) and showed a greater dispersion.

Finally, when the pedigree was misassigned (Fig.  5d), 
the impact of such errors depended on the number of 
true and misassigned relatives that the target individual 
had. In our test, the target individual was misassigned 
progeny from one of the individuals sequenced at high 
coverage. The dosage correlation of the target individ-
ual greatly decreased (0.65). The greatest impact of the 
pedigree errors was on the misassigned progeny (0.74), 
but the impact on the true progeny was also large (0.83). 
The impact was smaller on the misassigned grandprog-
eny (0.89) and the true grandprogeny (0.90). The dos-
age correlation of the parents and grandparents of the 
target individual were largely unchanged (0.99 and 0.98, 
respectively), probably because they had other correctly 

Fig. 5  Impact of data misassignment and pedigree errors on imputation accuracy. The dashed line separates the individual directly affected by the 
data modification (ind) and its relatives (gpar: grandparents, par: parents, prog: progeny, gprog: grandprogeny, misass prog: misassigned progeny, 
misass gprog: misassigned grandprogeny). The y-axis measures the individual-wise dosage correlation between the imputed genotypes based on 
complete correct data and either missing or misassigned data for the individual itself and its relatives. In panel a we provide the case where the 
sequence data of the target individual was masked as in Test 1; in panel b where the sequence data of another individual was misassigned to the 
target one; in panel c where the marker array data was misassigned; and in panel d where we assigned the progeny from one of the individuals 
sequenced at high coverage to the target individual
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assigned relatives (like their own parents) that contrib-
uted more accurate data.

Discussion
In this paper, we present the results of a large-scale 
sequencing study that aimed at generating accurately 
imputed whole-genome sequence information on hun-
dreds of thousands of individuals. Our results show that 
we were able to obtain highly accurate sequence infor-
mation for approximately 230,000 individuals from four 
different populations that were genotyped at a maximum 
of 75,000 markers genome-wide, by sequencing only 2% 
of the individuals in each population, mostly at low cov-
erage. We found that imputation accuracy was high for 
most individuals, especially for descendants of the first 
few generations of a pedigree. The same approach was 
applied to five additional populations (results not shown), 
providing high-quality whole-genome sequence data for 
more than 350,000 individuals. To our knowledge, this 
is the largest set of whole-genome sequence information 
assembled to date in pigs [33] or in any other livestock 
species (e.g., [7, 34]).

Our results give rise to five major points of discussion: 
(i) the overall performance of the sequencing strategy and 
the approach that we used for imputing whole-genome 
sequence data; (ii) the individual-wise imputation accu-
racy; (iii) the variant-wise imputation accuracy; (iv) the 
comparison to other imputation methods; and (v) the 
implications for population-wide sequencing studies.

Overall performance of the sequencing strategy 
and hybrid peeling
The overall performance of our sequencing strategy 
coupled with hybrid peeling was high. We were able to 
impute whole-genome sequence data for hundreds of 
thousands of individuals with a median dosage corre-
lation of 0.97 by sequencing only about 2% of the indi-
viduals in each of our pedigreed populations. Most of 
the sequenced individuals were sequenced at low cover-
age, with 90% of the sequenced individuals at either 1× 
or 2× and only 6.4% of the sequenced individuals being 
sequenced at a high coverage of 15× to 30×. Sequenc-
ing a subset of individuals at high coverage may improve 
the variant discovery rates as well as provide a validation 
set for variants discovered with low-coverage sequence 
data. It is difficult to separate the contributions of the 
sequencing strategy and of the imputation method to 
the imputation accuracy. We have assessed the contribu-
tion of the sequencing strategy on imputation accuracy 
in a companion paper [27]. Overall, sequencing cover-
age does not seem a very influential factor if a sufficiently 
large number of individuals is sequenced and, therefore, 
the sequencing strategy based primarily on low-coverage 

sequencing that we have described enabled high imputa-
tion accuracy in real livestock populations regardless of 
the size of the population.

Our sequencing strategy and imputation method 
enabled high imputation accuracy of whole-genome 
sequence data from marker arrays with relatively low 
densities, of approximately 15,000 and 75,000 markers 
genome-wide. The low dependence on marker arrays 
with higher densities contrasts with the findings of pre-
vious studies on imputation of whole-genome sequence 
data, which reported that marker array genotyping den-
sity was critical when using other sequencing strategies 
and imputation methods. For example, van Binsbergen 
et al. [35] found that imputing from marker arrays with 
a density similar to ours (50,000 markers genome-wide) 
resulted in low accuracies (dosage correlations of up to 
0.80) when using the Beagle imputation software (ver-
sion 3; [36]) in cattle. Van den Berg et al. [33] found simi-
larly low accuracies in pigs (dosage correlations of ~ 0.70), 
probably because the number of sequenced individuals 
was small. In order to achieve higher imputation accura-
cies, an intermediate step of imputation to a much higher 
density (700,000 markers genome-wide or similar) was 
previously proposed [35]. This intermediate step has 
been used in several studies and with other imputation 
methods [33, 34, 37, 38], but this may be a drawback for 
populations where marker array data at such high den-
sities are not available. We found that a combination of 
an appropriate sequencing strategy and hybrid peeling 
achieved high imputation accuracies without any inter-
mediate imputation steps being required for the LD indi-
viduals. This was likely due to the ability of both methods 
to exploit pedigree and existing marker array information 
to maximise the value of the generated whole-genome 
sequence data for the whole population.

Individual‑wise imputation accuracy
Although most of the individuals had high imputation 
accuracy, a small portion of individuals had much lower 
imputation accuracies than the rest. These individu-
als mostly belonged to the earliest generations of each 
pedigree. This reduction of imputation accuracy in the 
earliest generations of the pedigree was consistent with 
observations in previous simulation studies [15, 27]. The 
individuals in these generations tend to have very little 
information available for themselves and for their ances-
tors, i.e., many of these individuals were not genotyped 
with marker arrays or their parents and grandparents 
were not genotyped either. Availability of marker array 
data from ancestors is critical for phasing and the accu-
rate estimation of the segregation probabilities in the 
multi-locus step of hybrid peeling and it greatly affects 
the resulting accuracy of imputation accuracy.
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In a similar way, the marker array density at which the 
ancestors were genotyped affected imputation accuracy 
of an individual, regardless of the marker array density 
at which the individual itself was genotyped. This can 
be explained by the fact that parental and grandparental 
genotypes are needed for accurately phasing the indi-
vidual’s genotype and even a small number of markers is 
sufficient to capture the small number of recombinations 
between the individual and its parents [16]. Thus, strate-
gies that target parents that contribute large numbers of 
progeny for genotyping at high density, such as current 
genotyping practices of breeding programs with genomic 
selection [39, 40], seem appropriate.

Provided that the segregation probabilities were accu-
rately estimated, high connectedness of an individual to 
the rest of the population enhanced its imputation accu-
racy by favouring the transmission of information from 
many relatives and by increasing the likelihood that a 
closely connected individual has sequence data. In live-
stock breeding populations, it is usual that pedigrees are 
deep and individuals have a high degree of relatedness. 
The connectedness of the imputed individuals to a suffi-
cient number of informative relatives with marker array 
or sequence data allows for high imputation accuracy 
(after the initial generations) even when only a small sub-
set of individuals was sequenced at low levels of coverage.

It is possible to predict individuals with low imputa-
tion accuracy based on the availability of data for them-
selves and their relatives. This approach works especially 
well for filtering out those individuals with the lowest 
imputation accuracies as a first conservative data qual-
ity control step before downstream analyses. However, 
it is critical to perform quality controls of the data also 
before performing imputation to avoid any data misas-
signment or pedigree errors. In this study, we attempted 
to set an upper threshold for the impact that these errors 
could have on the individual-wise imputation accuracy 
of the affected individuals as well as how these errors 
propagate to the relatives of the affected individuals in 
a pedigree-based method. We found that the most seri-
ous errors occurred due to pedigree errors or assigning 
sequence data to a wrong individual. However, this may 
be distorted by the fact that all the target individuals had 
high-coverage sequence data. Therefore, misassignment 
of marker array data must not be ignored as it could also 
have a strong impact on imputation accuracy when it 
affects individuals that are not sequenced, sequenced at 
low coverage, or whose relatives are genotyped with low-
density marker arrays. Fortunately, frameworks to detect 
data misassignment [41] and pedigree errors [42] have 
been developed and we have described an approach to 
correct such errors with little disruption of the pedigree 
structure. We did not test the impact that map errors 

could have on the imputation accuracy, but it is obvious 
that they would hamper the estimation of the segregation 
probabilities and thus imputation accuracy.

Variant‑wise imputation accuracy
We obtained high variant-wise imputation accuracy after 
filtering out individuals that were predicted to have low 
imputation accuracy. The primary factor for variant-wise 
imputation accuracy was MAF. This was expected, as 
MAF is widely known to be one of the main factors that 
determine imputation accuracy regardless of the imputa-
tion method, and we found, similar to other studies, that 
imputation accuracy was lower for variants with very low 
MAF [4, 35, 37, 43].

The next most important factor was the number of 
individuals that had sequence data at that variant site. 
Low-coverage sequencing results in a sparse distribution 
of reads along the genome, and it is likely that only a sub-
set of the sequenced individuals will have any reads that 
map to a given variant site and that the cumulative cov-
erage across variant sites will also vary. In our study, the 
number of individuals with some coverage and the cumu-
lative coverage may be confounded because most indi-
viduals were sequenced at 1× or 2×, but in general this 
indicates the importance of having as many sequenced 
individuals as possible with some coverage at each vari-
ant site [27], a situation that is favoured by sequencing 
strategies based on low coverage.

The importance of the number of individuals that had 
sequence data at a variant site also suggests that impu-
tation accuracy could be lower in regions with extreme 
base compositions or particular sequence motifs that 
hamper read alignment [44, 45]. While the complexity 
of a given region, namely the presence of large repeats, 
is another factor that could affect local imputation accu-
racy along a chromosome [37, 46], it was not considered 
in our study.

Inferring the segregation probabilities from the flank-
ing markers that are included in the marker array did 
not result in noticeably lower imputation accuracy for 
those variants that were not included in the marker 
array. Moreover, variant-wise imputation accuracy was 
found to be independent of the distance between the 
variant and the flanking markers at which the segrega-
tion probabilities were estimated. These findings differed 
from those of previous studies using methods based on 
linkage disequilibrium (Beagle, version 3; [36]), where 
variant-wise imputation accuracy decreased as the dis-
tance between each variant and the nearest variant in the 
marker array (from which imputation to whole-genome 
sequence data was performed) increased [35].
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Comparison to other imputation methods
We did not intend to make a direct comparison of the 
performance of hybrid peeling with other available 
imputation methods because there are fundamental dif-
ferences in how they exploit information (pedigree and 
linkage vs. linkage disequilibrium) and because sequenc-
ing strategies and imputation methods are confounded 
across studies. However, we have previously compared 
the performance of our hybrid peeling with findhap (ver-
sion 4; [43]) [15] and other studies have compared other 
available imputation tools [37, 38, 43, 47], including tools 
such as Beagle (versions 3 and 4; [36, 48]), IMPUTE2 
[49], findhap [43], FImpute [50], or Minimac3 [51]. 
Many of these methods are population-based imputation 
methods that use an already phased haplotype reference 
panel to impute genotyped individuals to whole-genome 
sequence data. As a consequence, previous studies of the 
factors that influence imputation accuracy have been 
primarily concerned with the design of the reference 
panel. Some of these concerns involve the convenience 
of using single-breed or multi-breed reference panels 
[38, 47], population-specific reference panels [38, 52], the 
availability of marker array data for the sequenced indi-
viduals or not (it removes the genotype uncertainty that 
otherwise would arise from sequencing at low coverage 
at some pre-established positions) [43], or the trade-off 
between number of individuals sequenced and sequenc-
ing coverage [43]. In contrast, in this paper, we used a 
purely pedigree-based imputation algorithm. This allows 
us to exploit the large amount of linkage between the 
haplotypes of an individual and their relatives.

Implications for population‑wide sequencing studies
The coupling of an appropriate sequencing strategy [13, 
14, 27] and an appropriate imputation method, such as 
hybrid peeling [15], enabled the generation of large data-
sets of sequenced individuals at a low cost and with high 
accuracy. This is a critical step for the successful imple-
mentation of whole-genome sequence data for genomic 
prediction, within and across breeds, as well as for fine-
mapping of causal variants underlying quantitative traits, 
which could guide the promotion and removal of alleles 
by gene editing [53, 54].

In this paper, we focused on individual-wise imputa-
tion accuracy as an indicator of the value of this data for 
applications such as genomic prediction. Previous stud-
ies on imputation accuracy of whole-genome sequence 
data focused on variant-wise imputation accuracy 
rather than individual-wise [35, 37, 43]. In the context 
of genomic prediction, the estimate of the realized rela-
tionship between two individuals will correlate strongly 
with the individual-wise, but not the variant-wise, impu-
tation accuracy [31, 55]. Understanding which factors 

determine the variability of individual-wise, as well as 
variant-wise [35, 37], imputation accuracy would ena-
ble accuracy-aware filtering of the imputed data prior 
to downstream analyses. With that purpose, we used 
regression trees on simulated data designed to mimic the 
real data for identifying a small set of partitioning factors 
that may be used as predictors to filter out individuals 
with expected low imputation accuracy.

Conclusions
We demonstrate the high accuracy of hybrid peeling for 
imputing whole-genome sequence data of hundreds of 
thousands of individuals from real livestock populations 
in which only a small fraction of the individuals (2%) 
had been sequenced, mostly at low coverage. Using data 
from pig populations, we show that imputation accu-
racy was very high for individuals that were genotyped 
with marker arrays with densities that ranged between 
15,000 and 75,000 markers genome-wide. The coupling 
of an appropriate sequencing strategy and hybrid peel-
ing is a powerful method for generating whole-genome 
sequence data in large pedigreed populations, as long 
as the individuals are connected to enough informa-
tive relatives with marker array or sequence data, and 
regardless of population size. The characterization of 
the factors that affect the individual-wise and variant-
wise imputation accuracy of hybrid peeling can inform 
genotyping and sequencing strategies as well as pro-
vide accuracy-aware quality control guidelines for the 
imputed data before downstream analyses. The success 
of this sequencing strategy demonstrates the possibility 
of obtaining low-cost whole-genome sequence data on 
large pedigreed livestock populations, which is a criti-
cal step for the successful implementation of whole-
genome sequence data for genomic prediction and 
fine-mapping of causal variants.
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