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Abstract 

Background:  Production and health traits are central in cattle breeding. Advances in next-generation sequencing 
technologies and genotype imputation have increased the resolution of gene mapping based on genome-wide 
association studies (GWAS). Thus, numerous candidate genes that affect milk yield, milk composition, and mastitis 
resistance in dairy cattle are reported in the literature. Effect-bearing variants often affect multiple traits. Because the 
detection of overlapping quantitative trait loci (QTL) regions from single-trait GWAS is too inaccurate and subjective, 
multi-trait analysis is a better approach to detect pleiotropic effects of variants in candidate genes. However, large 
sample sizes are required to achieve sufficient power. Multi-trait meta-analysis is one approach to deal with this prob-
lem. Thus, we performed two multi-trait meta-analyses, one for three milk production traits (milk yield, protein yield 
and fat yield), and one for milk yield and mastitis resistance.

Results:  For highly correlated traits, the power to detect pleiotropy was increased by multi-trait meta-analysis com-
pared with the subjective assessment of overlapping of single-trait QTL confidence intervals. Pleiotropic effects of 
lead single nucleotide polymorphisms (SNPs) that were detected from the multi-trait meta-analysis were confirmed 
by bivariate association analysis. The previously reported pleiotropic effects of variants within the DGAT1 and MGST1 
genes on three milk production traits, and pleiotropic effects of variants in GHR on milk yield and fat yield were con-
firmed. Furthermore, our results suggested that variants in KCTD16, KCNK18 and ENSBTAG00000023629 had pleiotropic 
effects on milk production traits. For milk yield and mastitis resistance, we identified possible pleiotropic effects of 
variants in two genes, GC and DGAT1.

Conclusions:  Multi-trait meta-analysis improves our ability to detect pleiotropic interactions between milk produc-
tion traits and identifies variants with pleiotropic effects on milk production traits and mastitis resistance. In particular, 
this should contribute to better understand the biological mechanisms that underlie the unfavorable genetic correla-
tion between milk yield and mastitis.
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Background
Holstein is an important cattle breed in the Danish dairy 
production and much effort has gone in the genetic 
improvement of its milk production and functional traits. 

Intense selection for increased milk yield has negative 
consequences on the udder health of cows [1]. Unfavora-
ble genetic correlations between milk production and 
clinical mastitis (from 0.21 to 0.55) have been reported 
[2]. A genetic correlation between two traits could be due 
to the pleiotropic action of genetic variants or the corre-
lation (i.e., linkage disequilibrium (LD)) between causal 
variants. The identification of a quantitative trait locus 
(QTL) that affects simultaneously milk yield and udder 
health can help reveal some of the genetic basis of the 
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genetic connection between milk production and masti-
tis resistance. In combination with specific genetic tests, 
this information can contribute to reduce the unfavora-
ble correlated response on mastitis due to selection that 
focused on improving milk production traits by differen-
tially weighting variants based on their favorable or unfa-
vorable effects on the two traits.

One application of genome-wide association studies 
(GWAS) is to detect pleiotropic effects for the QTL iden-
tified from single-trait analysis. If a genomic region is sig-
nificant for two or more traits, it may be due to causal 
variants that are in LD and affect individual traits (link-
age), or that these traits are affected by the same vari-
ant (pleiotropy). The number of segregating variants in 
a population is large, but finite. The proportion of the 
segregating variants that are associated with the genetic 
variation of complex traits is unknown. However, traits 
often appear to be associated with the same or closely-
linked variants in the genome [3, 4], which strongly sug-
gests that, at least some of the underlying causal variants, 
affect several traits. Therefore, the primary aim of this 
analysis was to determine whether QTL associated with 
more than one trait were indeed pleiotropic. We used our 
previous GWAS results (summary statistics) of milk pro-
duction traits [3] and mastitis resistance [4] to perform a 
multi-trait meta-analysis for scanning lead SNPs associ-
ated with three milk production traits or with milk yield 
and mastitis resistance for pleiotropy. In combination 
with a bivariate analysis, we examined the possible pleio-
tropic nature of the QTL identified.

Methods
Animals and phenotypes
We used de-regressed proofs (DRP) based on estimated 
breeding values (EBV) [5, 6] for milk, fat, protein yields 
and mastitis resistance (udder health index, which is an 
index for clinical mastitis from first to third lactation) for 
about 5000 Nordic Holstein (HOL) bulls. Nordic Cattle 
Genetic Evaluation (https​://www.nordi​cebv.info/) pro-
vided the EBV.

Genotype and sequence data
We performed an association analysis using imputed 
whole-genome sequence (WGS) data. All bulls (~ 5000) 
were genotyped with the BovineSNP50 BeadChip SNP 
array (54  k) versions 1 or 2 (Illumina Inc., San Diego, 
CA). Imputation to WGS variants was described ear-
lier by Iso-Touru et  al. [7]. Briefly, 54k genotypes were 
imputed to WGS variants by a 2-step approach. First, 
using a multi-breed reference of 3383 animals (1222 
Holstein (HOL), 1326 Nordic Red cattle (RDC) and 835 
Jersey (JER)) that had been genotyped with the Illumina 
Bovine HD SNP array (Illumina Inc., San Diego, CA), all 

the animals were imputed to the high-density (HD) level. 
Next, the imputed HD genotypes were imputed to the 
WGS level using a multi-breed reference of 1228 animals: 
1148 WGS from Run4 of the 1000 Bull Genomes Pro-
ject (288 Holstein, 56 Red, and 61 Jersey, as well as 743 
individuals from various breeds) [8] and 80 animals from 
Aarhus University (23 HOL, 30 RDC, and 27 JER). Impu-
tation to HD genotypes was done with the IMPUTE2 
v2.3.1 software [9], and imputation to the whole-genome 
level with the Minimac2 software [10]. The average accu-
racy (r2-values from Minimac2) was 0.85 for across-
breed imputation. Imputation accuracy was previously 
reported by Wu et al. [11].

Before phasing and imputation, we filtered the 54 k and 
HD genotypes based on an SNP call rate higher than 85% 
and an animal call rate higher than 90%. The imputed 
sequence data included 22,751,039 bi-allelic variants. For 
each breed, SNPs with a minor allele frequency (MAF) 
lower than 1% or with a highly significant deviation from 
Hardy–Weinberg proportions (p < 1.0−6) were excluded. 
After quality filtering, 16,503,508 SNPs remained for 
analysis.

Single‑SNP association analysis for a trait
The GWAS summary statistics were from two previous 
association analyses [3, 4] and, here, we provide a brief 
description of the GWAS method used. The genetic rela-
tionship matrix (GRM) was estimated using imputed HD 
genotypes by the GCTA software [12]. We followed the 
leave-one-chromosome-out approach [13] to build a kin-
ship matrix that was specific to the analysis of each chro-
mosome by leaving out markers on that chromosome to 
avoid loss of power due to double-counting (fitting the 
SNP as a fixed effect for testing associations and as a ran-
dom effect as part of the GRM) [14].

First, we performed a single-SNP GWAS analysis using 
GCTA [12] for each chromosome. A Bonferroni mul-
tiple-testing correction was applied to control for false-
positive associations: a SNP was significant if its test 
probability p-value, pM , was less than 0.05/ M , where M 
is the number of SNPs. This corresponds to a trait-wise 
nominal type 1 error-rate of 5%. Here, the significance 
threshold value was − log10(pM = 8.5 ) with M ≈ 15.36 
million SNPs. We identified the lead SNPs for each inde-
pendent QTL signal on a chromosome by iteratively fit-
ting the allele dosages of the lead SNPs identified in the 
previous runs as covariate (for details see [3, 4]).

Genetic variance explained by the identified QTL
We used GCTA [12] to estimate the genetic variance 
explained by all the identified QTL together for each trait. 
First, we extracted the genotype for all lead SNPs identi-
fied from the GWAS and generated the first GRM. Next, 

https://www.nordicebv.info/
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we excluded all SNPs within the 2.5-Mb region around 
each lead SNP and estimated the second GRM with the 
remaining SNPs. Finally, we estimated the genetic vari-
ance explained by each of these two groups of variants 
for each trait by fitting two GRM in a linear mixed model.

Defining a QTL region
QTL regions were defined as continuous regions that 
include a lead SNP with a − log10(p) > 8.50. The start 
and the end of the QTL region were determined based 
on the following considerations: (1) the value of 3 was 
subtracted from the -log10(p) value of the lead SNP; (2) 
from the remaining SNPs, we identified those that were 
located furthest to the left and right with a− log10(p) 
value no less than 3 units below the − log10(p) of the lead 
SNP of the region; the positions of these SNPs were taken 
as boundaries of the QTL region, but if they were further 
than 0.25 Mb (left or right from the lead SNP), then the 
size of the QTL region was limited by 0.25 Mb.

Estimation of genetic correlations
We used a linkage disequilibrium score regression 
approach as implemented in the LDSC software [15] to 
estimate the genetic correlation between traits using 
GWAS summary statistics. For polygenic traits, the more 
a SNP is in LD with other genetic variants, the greater 
is its chance of being correlated with causal variants, 
and the higher is its expected association test statistic. 
Exploiting this relationship allows the estimation of SNP-
based heritability when using association test statistics 
for a single trait or the estimation of SNP-based co-her-
itability when combining association test statistics from 
two traits. The LD score of a SNP is the sum of the LD (r2) 
of the SNP with other SNPs and, thus, can be regarded as 
a measure of the genetic variation that is ‘tagged’ by the 
SNP. First, we calculated the LD scores for each variant 
using WGS data of Holstein animals from Run6 in the 
1000 Bull Genome Project [8] and of additional Holstein 
individuals from Aarhus University. Then, GWAS sum-
mary statistics from our previous studies [3, 4] were con-
verted to the input format of the LDSC software using the 
accompanying script munge_sumstats.py (part of LDSC 
software). The reformatted summary statistics were used 
to calculate genetic correlations between traits.

Multi‑trait meta‑analysis
A multi-trait meta-analysis was performed using the 
approximate multi-trait test statistic described by Bolor-
maa et  al. [16]. Effects of a SNP across all traits were 
calculated and combined with the genomic correlation 
matrix between traits to perform a multi-trait χ2 test 
with a number of degrees of freedom equal to the num-
ber of traits. The formula to compute the multi-trait 

statistic for SNP i was χ2
MT ,i = t

′

iV
−1ti , where ti is a vec-

tor of signed t test statistics for the association of lead 
SNP i with each trait obtained by single trait GWAS, and 
V−1 is the inverse of the genomic correlation matrix for 
all traits. The same Bonferroni-corrected significance 
threshold as in the single trait association analyses (i.e., 
− log10(pM) > 8.5) was applied in the multi-trait analyses.

Single‑SNP bivariate association analysis
A single-SNP bivariate association analysis was carried 
out for each lead SNP from the multi-trait meta-analysis. 
The bivariate model used for a SNP is as follows

where subscripts 1 and 2 indicate traits 1 and 2 in the 
analysis, yi are the vectors of phenotypes for trait i , µi is 
the general mean for trait i , m is a vector of genotype 
doses for the lead SNP, βi is the allele substitution effect 
of the lead SNP for trait i , Zi is a design matrix relating 
phenotypic observations to polygenic effects for trait i , 

u =

(

u1
u2

)

 is a vector of the random polygenic effects 

with a multivariate normal distribution u ∼ N (0,G⊗ A) , 
where A is the additive relationship matrix and G is the 

polygenic covariance matrix, and e =

(

e1
e2

)

 is a vector of 

mutually independent residual terms with a multivariate 

normal distribution e ∼ N

(

0,

(

σ 2
e1 0

0 σ 2
e2

)

⊗ I

)

 , where 

σ 2
ei is the residual variance for trait i , and I is an identity 

matrix of appropriate dimensions. The model was fit by 
AI-REML using DMU [17].

Pleiotropy vs. variants in linkage disequilibrium
A bivariate model might help to distinguish between a 
variant that affects both traits (via different paths), and 
a variant that has an effect on one trait that is mediated 
through another trait. In a bivariate model, the effects of 
SNPs are expected to be significant for both traits in the 
first scenario, but only for one of the traits in the second 
scenario. To distinguish between pleiotropic effects and 
effects of distinct variants in LD, we conducted bivariate 
analyses (as described above) for the lead SNPs that were 
detected in the multi-trait meta-analysis. The lead SNPs 
that showed genome-wide significance for at least one 
of the traits in the bivariate analyses and a significance 
p < 1.18e−4 ( pN=0.05/ N  , where N  is equal to number of 
traits (i.e. 4) times the number of unique lead SNPs (i.e. 
106) identified across all traits) for the other trait were 
considered to have a pleiotropic effect on both traits.
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Candidate genes underlying the associated genomic 
regions
Annotations for the lead SNPs for each QTL region from 
the single-trait analyses and the meta-analysis along with 
the genes that harbor the lead SNP were determined via 
the cow (Bos taurus) genome assembly UMD3.1 [18]. 
We used the variant effect predictor (VEP) software (ver. 
92.0) [19] to predict the functional consequences of the 
lead SNPs and identify the closest gene.

Results
Single‑variant association analysis and genetic correlation
Previously, we published the results of a GWAS for milk 
production traits and mastitis resistance [3, 4], which 
are summarized in Fig.  1 and Table  1. We identified 27 
independent association signals on 18 chromosomes for 
fat yield (FY), 34 association signals on 22 chromosomes 
for protein yield (PY), 26 association signals on 20 chro-
mosomes for milk yield (MY), and 22 association signals 
on 18 chromosomes for mastitis resistance (MR). Several 
QTL detected for different traits were located in close 
proximity. Table 2 lists the genetic correlations between 
MY, FY, PY and MR as estimated by LDSC. Moderate to 
strong genetic correlations between MY, FY and PY were 
observed but unfavorable genetic correlations between 
each of the three milk production traits and MR were 
found, as reported previously [2, 20].

Three‑trait meta‑analysis for fat, protein, and milk yields
We examined the overlap between QTL regions for FY, 
PY, and MY (Table  3). Some of the overlapping QTL 
regions did not contain any genes, such as the two 
regions 20,035,379–20,534,779  bp and 93,703,737–
93,762,020  bp on Bos taurus autosome (BTA)5, and 
2044,412–2049,435  bp on BTA14 (Table  3). In contrast, 
the QTL intervals on BTA14 and 19 included several 
overlapping regions that included many genes.

We performed a multi-trait meta-analysis for FY, PY 
and MY to examine if the lead SNP affected multiple milk 
production traits (Fig. 2). In total, we identified 59 associ-
ation signals across 27 chromosomes (Table 4). One peak 
on BTA5, two peaks on BTA6, two peaks on BTA14 and 
one peak on BTA20 showed strong association signals 
in the meta-analysis. The strongest signal was located 
on BTA14 and resulted from the well-known and previ-
ously described SNPs BTA14:1802,265 (rs109234250) 
and BTA14:1802,266 (rs109326954) in the DGAT1 gene 
[21, 22]. These two SNPs were also the lead SNPs in the 
single-trait analyses for FY and MY with a –log10(p) value 
greater than 240 and 178, respectively. These two SNPs 
were in complete LD and had identical p values for both 
traits. The single-trait analysis for PY did not identify 
these two causal variants as the ‘lead’ SNP. Instead, the 

strongest associated SNP in this region for PY was SNP 
BTA14:1835,440 (rs208567981) with –log10(p) = 48.66. 
This variant was located within the BOP1 gene, but 
very close to DGAT1 [3], whereas the two causal vari-
ants (BTA14:1802,265 and BTA14:1802,266) had –
log10(p) = 47.99 in the analysis for PY [3].

The multi-trait meta-analysis can help to deal with 
accuracy of the single-trait analysis. The causal variant 
known in GHR (F279Y) [23] was the lead SNP on BTA20 
from the meta-analysis (Table 4). However, in the single-
trait analysis for FY and MY, the causative variant did 
not emerge as the lead SNP [3]. In addition, on BTA5, 
we detected the second lead SNP at BTA5:31,335,325 
(rs447206924, Table 4). The nearest gene to this lead SNP 
is LALBA, which encodes α-lactalbumin. The multi-trait 
meta-analysis helped to pinpoint this known causal gene 
whereas both the single-trait analysis for MY [3] and the 
overlapping QTL regions between milk production traits 
(Table 3) failed to do so.

The lead SNPs detected in the meta-analysis were 
either lead SNPs from the single-trait analyses (18 lead 
SNPs) or those the most closely located to the lead SNPs 
identified by the single-trait analyses (Table  4). Moreo-
ver, the meta-analysis identified 16 additional association 
signals that were not genome-wide significant in the sin-
gle-trait analyses (Table 4). We searched the mammalian 
phenotype database [24] to verify the candidate genes 
that were suggested by the multi-trait meta-analysis. In 
addition to DGAT1, MGST1, ABCG2 and GHR, we iden-
tified one more gene with biological support, GPAT4. The 
term in the mammalian phenotype database showed that 
certain alleles of the GPAT4 gene cause “abnormal milk 
composition” in mouse [25].

Two‑trait meta‑analysis for milk yield and mastitis 
resistance
Two overlapping QTL regions for MY and MR were 
detected in this study on BTA5 and 6 (Table 5). The QTL 
region on BTA5 harbors several genes and that on BTA6 
(88.6 to 89.1  Mb) harbors the GC and NPFFR2 genes, 
which have been reported to be associated with clinical 
mastitis in cows [26].

The most significant signal in the meta-analysis was 
located on BTA14:1793,616 (Table  6 and Fig.  3) and 
1735  bp upstream of DGAT1. We believe that this sig-
nal was caused by the two known causal mutations in 
DGAT1. However, this lead SNP was significant only in 
the single-trait analysis for MY, but not for MR (Table 6). 
The second strongest association signal was located 
on BTA6:88,729,872 in the GC gene. The third strong-
est association signal was on BTA5:93,953,487, close to 
MGST1 but this lead SNP was significant only in the sin-
gle-trait analysis for MY, and not in that for MR (Table 6).
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Fig. 1  Manhattan plots for single-trait GWAS for fat yield (FY), protein yield (PY), milk yield (MY) and mastitis resistance (MR). Each color corresponds 
to an autosome. The horizontal red dotted line shows the genome-wide Bonferroni corrected significance threshold [− log10(p) = 8.5]. Base 
positions refer to the UMD 3.1.1 [18] bovine genome assembly
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Seventeen of the 64 lead SNPs from the meta-analysis 
were also lead SNPs for either MY or MR. Most of the 
remaining lead SNPs were close to the lead SNP in the 

single-trait analysis [3, 4]. In addition to DGAT1 and 
LALBA, we found one more candidate gene, ZFPM2, 
with biological support in the mammalian phenotype 
database [24]. LALBA encodes one of the major milk pro-
tein, α-lactalbumin. Both LALBA and ZFPM2 are related 
to the term “abnormal mammary gland morphology”.

Pleiotropy vs. closely linked variants
To examine if there was evidence for pleiotropic effects of 
the associated variants, we conducted bivariate analyses 
for the lead SNPs detected in the multi-trait meta-analy-
sis. The lead SNPs that were genome-wide significant for 
at least one of the traits from the bivariate analyses are in 
Table 7. We concluded that a SNP might have pleiotropic 
effects if it also showed significance (p < 1.18e−4) for the 
second trait.

For MY and FY, as expected, we found that the two 
consecutive missense mutations in DGAT1 had pleio-
tropic effects. In addition, we found six other QTL with 
evidence of pleiotropic effects. On BTA1, we detected 
the SNP BTA1:120,470,021 with pleiotropic effects on 
MY and FY. This SNP is located in an intergenic region, 
close to AGTR1 (they are 67,012  bp apart). The lead 
SNPs, BTA5:93,945,991 and BTA7:57,287,990, were each 
located in an intron of MGST1 and KCTD16, respec-
tively (Table  5). On BTA20, we found that the lead 
SNP BTA20:31,909,478 located in the GHR gene had 

Table 1  Summary of the GWAS results for milk production 
traits and mastitis resistance

a  Percentage of genetic variance explained by the identified QTL, V(lead SNP) 
is the variance explained by the lead SNPs, whereas V(DRP) is the variance of 
de-regressed breeding values (DRP)

Traits Number of QTL V (lead 
SNP)/V 
(DRP)a (%)

Fat yield 27 28.57

Protein yield 34 16.76

Milk yield 26 21.50

Mastitis resistance 22 14.54

Table 2  Genetic correlations between  milk yield (MY), fat 
yield (FY), protein yield (PY) and  mastitis resistance (MR) 
estimated from GWAS summary statistics

Numbers in parentheses are standard errors of genetic correlation estimates

Traits MY FY PY MR

MY 0.40 (0.14) 0.78 (0.03) − 0.35 (0.04)

FY 0.56 (0.17) − 0.20 (0.05)

PY − 0.27 (0.04)

Table 3  Overlapping QTL intervals identified based on single-trait GWAS for milk yield (MY), fat yield (FY) and protein 
yield (PY)

Chr. Region Traits Genes

2 85393563–86241732 FY, MY ENSBTAG00000047452, GTF3C3, CCDC150, PGAP1, ANKRD44

5 20035379–20534779 FY, PY –

5 93703737–93762020 FY, PY, MY –

5 93762020–94198670 FY,PY MGST1, SLC15A5

5 93698481–93703737 FY, MY LMO3

14 1545264–1583427 FY, PY, MY bta-mir-2308, ARHGAP39

14 1448510–1545264 FY, MY ZNF16, C14H8orf33, ZNF34, ZNF7, COMMD5, RPL8

14 1549272–2044412 FY, PY, MY bta-mir-2308, C14H8orf82, LRRC14, RECQL4, GPT, PPP1R16A, KIFC2, VPS28, SLC52A2, TMEM249, SCX, ENS-
BTAG00000044406, ENSBTAG00000039978, HGH1, MAF1, SHARPIN, CYC1, GPAA1, EXOSC4, ENSBTAG00000015040, 
GRINA, PARP10, LRRC24, MFSD3, FOXH1, CYHR1, TONSL, SLC39A4, CPSF1, ADCK5, FBXL6, SCRT1, DGAT1, HSF1, 
MROH1, WDR97, SPATC1, ARHGAP39, BOP1, OPLAH

14 2044412–2049435 FY, MY –

14 67731848–68231920 FY, MY KCNS2, STK3, ENSBTAG00000046739

16 31268349–31746789 FY, MY ENSBTAG00000044816, H3F3C, ENSBTAG00000021109, ENSBTAG00000042363, SCCPDH, TFB2M, SMYD3, CNST

19 27156952–27692965 FY, PY, MY PSMB6, GLTPD2, VMO1, CXCL16, MED11, ARRB2, bta-mir-2338, ALOX15, ALOX12E, ENSBTAG00000047925, RNASEK, 
C19H17orf49, bta-mir-497, bta-mir-195, BCL6B, SLC16A13, CLEC10A, ASGR1, ENSBTAG00000042630, ACADVL, 
bta-mir-324, PHF23, GABARAP, ELP5, CLDN7, SLC2A4, EIF5A, GPS2, NEURL4, ENSBTAG00000045892, ACAP1, 
KCTD11, PLD2, TM4SF5, ZMYND15, PELP1, ALOX12, SLC16A11, ASGR2, DLG4, DVL2, CTDNEP1, YBX2, MINK1

19 26625240–27156952 FY, PY ENSBTAG00000025126, MIS12, C1QBP, RPAIN, bta-mir-199c, ENSBTAG00000013906, SPAG7, ENO3, ENS-
BTAG00000004913, SLC25A11, GP1BA, CHRNE, C19H17orf107, NLRP1, DERL2, DHX33, SCIMP, ZFP3, KIF1C, INCA1, 
CAMTA2, PFN1, NUP88, RABEP1, MINK1

19 27692965–27773922 FY, MY PLSCR3, TMEM256, NLGN2, SPEM1, TMEM102, CHRNB1, TNK1, FGF11, ZBTB4
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pleiotropic effects on MY and FY, as previously described 
[23]. On BTA26, there were two SNPS, BTA26:20,527,926 
and BTA26:37,869,471 that were located respectively 
near ENSBTAG00000023629 and in KCNK18 (synony-
mous variant).

In addition to DGAT1 and MGST1, variants in KCTD16 
and KCNK18 and an intergenic variant BTA1:120,470,021 
were associated with MY and PY. Since these SNPs were 
also associated with MY and FY, this was the indica-
tion that the above-mentioned four genes and one SNP 
have pleiotropic effects on MY, FY and PY. Meanwhile, 
BTA1:63,177,947 also showed possible pleiotropic effects 
for MY, FY and PY, located in an intergenic region close 
to the gene ENSBTAG00000046854.

Apart from the variants in DGAT1, only one SNP 
had significant effects on both MY and MR, i.e. 
BTA6:88,729,872 (Table 7), which is located in an intron 
of the GC gene.

Discussion
Overlapping QTL for three milk production traits
The bivariate analyses showed that the QTL for three 
milk production traits detected in the single-trait analy-
ses and located on BTA5, 14, 20, and 26 might have 
pleiotropic effects. The univariate analysis identified 
overlapping QTL regions for all three milk production 
traits MY, FY and PY on BTA5, 14, 19, 18, and 26, for MY 
and FY on BTA2, 5, 14, 16, and 19, and for FY and PY 
on BTA5 and 19. However, without a joint analysis of two 
traits, it is not possible to determine whether the causal 
variants in the overlapping regions are the same ones or 
not.

BTA14 has been widely explored for genes and QTL 
related to economically important traits (e.g., [27, 28]), 

including MY, FY and PY. Recently, Nayeri et  al. [29] 
reported that the region between 1.4 and 2.9  Mb on 
BTA14 was significantly associated with milk, fat and 
protein production, and with protein and fat deviation in 
Canadian Holstein cattle. Our findings support their con-
clusion that this region on BTA14 is strongly associated 
with milk production traits.

Segregation of QTL that affect milk production traits 
on BTA5 has already been reported [30, 31]. Based on an 
association analysis of a large outbred population, Little-
john et al. [32] reported that a region on BTA5 at 93.9 Mb 
had pleiotropic effects on milk protein, fat, and lactose 
yield, milk volume and milk protein and lactose percent-
age. A 50-kbp interval that contained 632 variants was 
centered on the SNP with the most significant p value 
(g.93945738C > T) in the MGST1 gene. The C allele asso-
ciated with high milk fat percentage was also associated 
with increased FY and protein percentage and decreased 
PY and milk volume. Kemper et  al. [33] obtained simi-
lar results for the same region with impacts on a subset 
of the same milk composition traits. These results are 
consistent with our study that revealed that the QTL on 
BTA5 at 93.9 Mb had pleiotropic effects on FY, MY and 
PY (Table 3).

Overlapping QTL between milk yield and mastitis 
resistance
The univariate analysis identified two overlapping QTL 
regions (30.2–31.3  Mb on BTA5 and 88.6–89.1  Mb on 
BTA6) for MY and MR. However, the bivariate analy-
sis showed that only the QTL on BTA6 was signifi-
cantly associated with both traits. As shown in Table 3, 
effects for these traits had opposite directions—an unfa-
vorable effect on MY and a favorable effect on MR. An 

Fig. 2  Manhattan plot of the multi-trait meta-analysis for milk, fat and protein yields. The red horizontal line indicates the genome-wide 
significance level [− log10(p) = 8.5]. Base positions refer to the UMD 3.1.1 [18] bovine genome assembly
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Table 4  The lead SNP and its nearest genes in the multi-trait meta-analysis of milk yield (MY), fat yield (FY) and protein 
yield (PY)

Chr Lead SNP (bp) rsid − log10(p) Nearest gene (distance) Annotation Single trait 
significanta

1 63177947 rs42409534 12.19 ENSBTAG00000046854 (7850,66 bp) Intergenic FY, PY

1 71250238 rs210007164 9.51 TFRC (9830 bp) Intergenic FY

1 120470021 rs109519395 13.92 AGTR1 (67,012 bp) Intergenic FY, MY, PY

1 148567669 rs108957710 9.97 ENSBTAG00000046447 Upstream Novel

2 86095020 rs110457337 10.76 ANKRD44 Intron FY, PY

2 124837669 – 13.34 PTPRU Intron FY, PY

3 15459025 rs132797166 23.45 GBA Intron Novel

4 101547644 – 11.18 CHRM2 Upstream MY

5 31335325 rs447206924 23.61 LALBA (12,536 bp) Intergenic MY

5 93945991 rs208248675 126.98 MGST1 Intron FY, MY

6 38031954 rs454966322 72.75 ABCG2 (1371 bp) Downstream FY, MY

6 88442678 rs211069111 76.92 SLC4A4 Intron PY

7 57287990 – 21.70 KCTD16 Intron FY, MY, PY

8 40627140 rs381636155 9.38 bta-mir-2471 (64,540 bp) Intergenic MY

8 73877814 rs381189656 10.50 ENSBTAG00000010829 (171 bp) Upstream MY, PY

8 93065787 rs211543235 8.88 GRIN3A Intron PY

9 33179984 rs211241852 11.33 SLC35F1 (83,834 bp) intergenic MY, PY

10 1989907 rs109274615 9.01 ENSBTAG00000047622 (109,990 bp) Intergenic MY

10 46591115 rs211044009 19.41 USP3 (20,126 bp) Intergenic Novel

10 93933304 – 8.73 SEL1L Intron PY

11 15339847 rs110446044 12.01 TTC27 Intron FY, PY

11 35270918 rs109956079 13.52 ENSBTAG00000027786 (241,298 bp) Intergenic PY

11 55692712 rs208208268 11.86 CTNNA2 Intron FY, PY

11 63203084 rs110286816 9.96 ENSBTAG00000046117 (87,338 bp) intergenic Novel

11 88771449 rs109730673 9.41 ENSBTAG00000047976 (150,709 bp) Intergenic FY

11 103301805 rs110788821 15.43 PAEP Intron Novel

12 75309869 rs43128997 8.78 ENSBTAG00000026070 (148,028 bp) Intergenic Novel

13 20194953 rs41602070 9.06 ITGB1 (53,992 bp) Intergenic PY

13 37208793 rs385962673 10.43 MKX (10,635 bp) Intergenic MY, PY

13 46391099 rs42442665 10.03 ADARB2 Intron MY

13 60701113 rs108986421 8.61 RSPO4 (9143 bp) Intergenic PY

14 1802265 rs109234250 705.26 DGAT1 Missense FY, MY, PY

14 1802266 rs109326954 705.26 DGAT1 Missense FY, MY, PY

14 66649826 rs445616049 59.08 MGC148714 (2105 bp) Downstream Novel

15 28357864 rs208325660 17.79 RNF214 Missense Novel

15 53640417 rs380720492 25.33 ARHGEF17 Synonymous MY

15 66103726 rs41775109 16.64 EHF (72,762 bp) Intergenic FY

16 32262983 rs384531912 12.03 SMYD3 Intron PY

16 49798794 rs380930173 9.40 AJAP1 (33,340 bp) intergenic PY

16 67736535 rs385935762 9.64 SWT1 intron Novel

17 62543160 rs211016475 11.60 TBX5 Intron FY

18 15058306 rs211386971 10.04 VPS35 Intron PY

18 46583596 rs110398208 11.19 UPK1A (662 bp) Upstream MY, PY

18 57064406 rs433130247 18.74 MYBPC2 Intron PY

19 27522927 rs210334173 13.09 ASGR1 (6170 bp) Intergenic FY, PY

19 51383847 rs136067046 19.23 FASN (1075 bp) Upstream Novel

20 9608408 rs519502268 10.57 CARTPT (183,253 bp) Intergenic MY, PY

20 31909478 rs385640152 112.79 GHR Missense FY, MY
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unfavorable genetic correlation between milk production 
and clinical mastitis has been reported [20, 34] and the 
88.6-89.1  Mb region on BTA6 contributes to this cor-
relation. The QTL for mastitis resistance on BTA6 in 
this region is consistent with previous reports. In Nor-
dic Holstein cattle, the region most significantly associ-
ated with mastitis was on BTA6 at 88.97  Mb [26]. The 
same region was also associated with mastitis in Nordic 
Red Cattle, but not in Danish Jersey Cattle [26]. This 
region includes two genes, GC and NPFFR2 that encode 
the vitamin D-binding protein precursor (88,695,940 
to 88,739,180  bp) and the neuropeptide FF receptor 2 
(89,052,210 to 89,059,348 bp), respectively, which can be 
involved in mastitis.

Sodeland et al. [35] identified a QTL for clinical mastitis 
on BTA6 in Norwegian Red Cattle with the most signifi-
cant SNP, BTA-119376, being located at 90,670,190  bp. 
Klungland et  al. [36] also reported a QTL for clinical 
mastitis on BTA6 and Ogorevc et  al. [37] showed that 
BTA6 harbors several QTL for mastitis resistance. More-
over, the results by Nielsen et al. [38] point to a region on 
BTA6 near 90 Mb (containing the cluster of casein genes 

that encode around 80% of the proteins in cow milk) that 
is associated with milk production traits and mastitis in 
Norwegian Red cattle.

Estimation of genetic correlations using GWAS summary 
statistics
In this study, we estimated the genetic correlations 
based on GWAS summary statistics using LDSC 
regression [15]. There are several advantages for using 
this approach in cattle: (1) LDSC can estimate a genetic 
correlation based on GWAS summary statistics, which 
bypasses the limitation of sharing primary data that are 
the property of industrial partners; and (2) the genetic 
parameter estimates obtained by using LDSC in human 
populations are close to the estimates available from 
quantitative genetic analyses from previous reports. 
LDSC regression was first applied on human data 
[15]. LDSC functions well with the LD structure of the 
human genome. However, the LD structure in cattle is 
quite different, i.e. LD is much more extensive in cat-
tle than in humans [39]. Using a linear animal test-day 
model, Hinrichs et al. estimated genetic correlations of 

Table 4  (continued)

Chr Lead SNP (bp) rsid − log10(p) Nearest gene (distance) Annotation Single trait 
significanta

20 69006609 rs134612291 10.41 IRX1 (466,030 bp) Intergenic PY

22 60087443 rs462776871 8.51 EEFSEC Intron Novel

23 10974968 rs136158431 9.29 FGD2 (56,619 bp) Intergenic PY

23 25076739 rs210864958 8.70 GCM Downstream MY

25 6984796 rs110991040 8.71 RBFOX1 (298,008 bp) Intergenic Novel

25 36299420 rs210351939 10.92 ACHE (1112 bp) Upstream Novel

26 20527926 rs453802222 20.87 ENSBTAG00000023629 (175 bp) Downstream FY

26 37869471 rs458256022 14.61 KCNK18 Synonymous FY, MY, PY

27 36212352 rs208675276 20.10 GPAT4 5_prime_UTR​ Novel

28 34972377 rs137526033 9.90 ZMIZ1 (60,078 bp) Intergenic MY

29 21075705 rs382642281 10.42 ENSBTAG00000000853 (161,330 bp) Intergenic FY, PY

29 41825511 – 16.32 STX5 Intron Novel

The distance in base pairs from the nearest gene is in brackets
a  Novel hit from multi-trait meta-analysis, not identified by any of the single trait analysis

Table 5  Genes located within  the  overlapping QTL regions detected in  the  single-trait GWAS between  milk yield 
and mastitis resistance

Chr Region Genes

5 30202453–31258920 bta-mir-2425, DNAJC22, TROAP, PRPH, TUBA1C, TUBA1A, DHH, RHEBL1, 
bta-mir-2426, PRKAG1, DDN, WNT1, WNT10B, FKBP11, CCDC65, CACNB3, 
ENSBTAG00000047525, BCDIN3D, NCKAP5L, TMBIM6, FMNL3, PRPF40B, 
MCRS1, KCNH3, C1QL4, ENSBTAG00000037775, TUBA1B, LMBR1L, RND1, 
DDX23, ADCY6, CCNT1, SPATS2, KMT2D, FAM186B

6 88598011–89097608 NPFFR2, GC
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Table 6  The lead SNP and its nearest genes in the multi-trait meta-analysis of milk yield (MY) and mastitis resistance (MR)

Chr Lead SNP (bp) rsid − log10(p) Nearest gene (distance) Annotation Single-trait 
significanta

1 62876378 – 11.43 ENSBTAG00000046854 (483,497 bp) Intergenic Novel

2 81179721 rs110121625 10.92 TMEFF2 Intron MY

2 96376739 – 8.92 RF00001 (13,015 bp) Intergenic Novel

3 47643148 rs378327566 12.42 PTBP2 (732,492 bp) Intergenic MY

3 91848036 – 11.21 USP24 Intron Novel

4 10938389 rs211526380 11.12 TFPI2 (97,090 bp) Intergenic MR

4 59012300 rs136891032 10.53 ENSBTAG00000020620 (287,400 bp) Intergenic Novel

4 101547644 – 12.03 CHRM2 (4968 bp) Upstream MY

5 31352419 – 13.58 LALBA (2537 bp) Downstream MR, MY

5 93953487 rs210234664 28.36 MGST1 (3325 bp) Upstream MY

6 23474516 rs109255104 16.50 MANBA Intron MR

6 88729872 rs109803407 44.04 GC Intron MR, MY

7 18085661 rs133896398 8.98 FBN3 (9071 bp) Intergenic Novel

7 41607423 rs208385619 13.33 ENSBTAG00000039706 (16,819 bp) Intergenic MR, MY

7 65370850 rs109644389 12.99 GLRA1 (258,214 bp) Intergenic MY

8 25684799 – 11.38 ADAMTSL1 Intron MR

8 41148951 – 10.90 ENSBTAG00000014467 (197,503 bp) Intergenic MY

8 61253437 rs43552270 10.23 MELK (22,888 bp) Intergenic Novel

8 73877814 rs381189656 12.11 ENSBTAG00000010829 (171 bp) Upstream MY

9 86108587 rs209751747 10.90 SAMD5 (87,968 bp) Intergenic MR

10 2752616 rs209970861 9.26 YTHDC2 (318,445 bp) Intergenic Novel

10 39050124 – 8.56 ENSBTAG00000004692 (137,772 bp) Intergenic Novel

10 49633928 rs43587750 10.44 RORA Intron Novel

10 67479321 rs109694327 12.49 SAMD4A Intron MR

10 74236917 rs380306966 12.27 SNAPC1 (58,791 bp) Intergenic Novel

10 90272296 rs381454149 9.06 ADCK1 (137,647 bp) Intergenic Novel

11 13025259 – 9.43 DYSF Intron Novel

11 58017848 rs380589113 8.64 LRRTM4 (415,739 bp) Intergenic Novel

11 88743727 rs380133715 8.53 ID2 (156,561 bp) Intergenic MR

12 25763482 rs210185748 11.55 NBEA (29,504 bp) Intergenic Novel

13 21477118 rs135125951 8.87 RF00026 (80,513 bp) Intergenic Novel

13 36822330 rs379020207 10.39 MPP7 Intron MY

13 46391099 rs42442665 10.13 ADARB2 intron MY

13 62017506 rs211080099 20.20 PDRG1 (2545 bp) Upstream MR

13 76532010 rs42057265 10.31 ZMYND8 Intron Novel

14 1793616 rs384957047 183.77 DGAT1 (1735 bp) Upstream MY

14 36478894 rs43757971 9.46 XKR9 (1379 bp) Upstream Novel

14 61344981 rs42484846 12.22 ZFPM2 Intron MR

15 27475189 rs208648732 18.08 RF00285 (140,736 bp) Intergenic Novel

15 45384070 rs43100874 19.84 ENSBTAG00000048176 (4269 bp) Upstream MY

15 84666672 rs382250433 9.54 MS4A13 (102 bp) Upstream Novel

16 30309951 rs384258494 11.26 STUM Intron MR

16 47836093 rs207941573 11.92 ACOT7 Intron MR

16 59908679 rs451830006 10.94 BRINP2 (45,408 bp) Intergenic MR

17 66530413 rs209525123 11.00 CORO1C Intron MY

18 13625299 rs209154036 9.53 ZNF469 (115,323 bp) Intergenic Novel

18 43909571 rs464881101 17.12 ENSBTAG00000004994 (17,651 bp) Intergenic MR

18 57501622 – 10.88 KLK14 (2325 bp) upstream Novel

19 7941510 rs209798151 9.51 TRIM25 Intron Novel
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0.29, 0.30 and 0.34 between mastitis resistance and MY, 
FY, and PY, respectively [40]. In Norwegian Red cat-
tle, a genetic correlation of 0.25 was reported between 
clinical mastitis and PY [41], whereas in Danish Hol-
stein cattle, it was equal to 0.33 [42]. In another study 
on Norwegian cattle, Simianer et  al. [43] estimated a 
genetic correlation of 0.472 between mastitis and MY. 
In our study, we estimated genetic correlations rang-
ing from moderate to high between the milk produc-
tion traits. Likewise, Hoekstra et  al. [44] reported 

genetic correlations of 0.39 between MY and FY, 0.86 
between MY and PY, and 0.56 between FY and PY in 
Dutch Black and White cows. Another study from the 
UK Holstein found genetic correlations of 0.69 between 
MY and FY, 0.88 between MY and PY, and 0.80 between 
FY and PY [45]. Based on the comparison of our esti-
mates (MY and FY: 0.40, MY and PY: 0.78, FY and PY: 
0.56) with those from these previous studies, we con-
clude that the LDSC approach with summary statistics 
from GWAS is reliable for the estimation of genetic 
parameters in cattle.

The distance in base pairs from the nearest gene is in brackets
a  Novel hit from multi-trait meta-analysis, not identified by single trait analysis

Table 6  (continued)

Chr Lead SNP (bp) rsid − log10(p) Nearest gene (distance) Annotation Single-trait 
significanta

19 27442452 rs483221509 9.52 bta-mir-497 (689 bp) Upstream MY

19 41169414 rs134338592 16.40 WIPF2 Intron MR

20 10123208 rs207633790 11.45 GTF2H2 (4035 bp) Downstream MY

20 29996719 – 30.18 MRPS30 (75,496 bp) Intergenic MY

20 63369153 rs133899283 10.93 FAM173B (241,983 bp) Intergenic MY

22 25185357 rs110721487 9.50 CNTN6 Intron Novel

23 11294868 – 16.92 CMTR1 (8638 bp) Intergenic MR

23 32139475 rs477621057 12.23 CARMIL1 Intron Novel

25 3655364 rs379765871 11.68 CDIP1 Intron Novel

25 35354412 rs383829107 8.62 CUX1 Intron MR

26 24938054 rs460832137 11.68 SFR1 (7550 bp) Intergenic MY

26 37716420 rs381336935 11.55 SHTN1 (26,088 bp) Intergenic MY

28 1921500 rs383708617 8.69 RF00001 (26,734 bp) Intergenic Novel

28 34972377 rs137526033 16.36 ZMIZ1 (60,078 bp) Intergenic MY

29 45895253 rs209161829 10.19 POLD4 (4347 bp) Downstream Novel

Fig. 3  Manhattan plot for the multi-trait analysis of milk yield and mastitis resistance of Nordic Holstein cattle. The red horizontal line indicates the 
genome-wide significance level [− log10(p) = 8.5]. Base positions refer to the UMD 3.1.1 [18] bovine genome assembly
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Table 7  Results of the bivariate analyses with genome-wide significance for at least one trait

a  SNPs showing genome-wide significance for at least one of the traits and significance (p < 1.18e-4) for the second trait

Chr BP rsid Trait1 Trait2 P1 P2 Indication 
of pleiotropya

1 120470021 rs109519395 MY FY 4.36E−06 7.66E−11 Yes

5 93945991 rs208248675 MY FY 3.58E−21 1.33E−38 Yes

7 57287990 rs380779883 MY FY 4.47E−12 1.63E−17 Yes

14 1802265 rs109234250 MY FY 3.97E−124 6.43E−200 Yes

14 1802266 rs109326954 MY FY 3.88E−124 6.69E−200 Yes

15 66103726 rs41775109 MY FY 0.67E−01 1.85E−09 No

20 31909478 rs385640152 MY FY 2.65E−13 4.06E−08 Yes

26 20527926 rs453802222 MY FY 6.44E−08 8.67E−16 Yes

26 37869471 rs458256022 MY FY 2.33E−09 4.55E−08 Yes

1 63177947 rs42409534 MY PY 5.55E−07 4.94E−11 Yes

1 120470021 rs109519395 MY PY 2.57E−06 2.12E−10 Yes

5 93945991 rs208248675 MY PY 1.90E−21 1.82E−06 Yes

6 88442678 rs211069111 MY PY 2.09E−01 1.10E−13 No

7 57287990 rs380779883 MY PY 2.05E−12 9.62E−19 Yes

14 1802265 rs109234250 MY PY 2.31E−125 1.30E−28 Yes

14 1802266 rs109326954 MY PY 2.26E−125 1.28E−28 Yes

18 57064406 rs433130247 MY PY 5.44E−06 1.36E−11 Yes

20 31909478 rs385640152 MY PY 3.02E−13 1.30E−04 No

26 37869471 rs458256022 MY PY 2.63E−09 3.75E−11 Yes

1 63177947 rs42409534 FY PY 2.94E−08 3.06E−11 Yes

1 120470021 rs109519395 FY PY 7.12E−11 2.62E−10 Yes

5 93945991 rs208248675 FY PY 1.43E−38 1.08E−06 Yes

6 88442678 rs211069111 FY PY 4.24E−01 1.37E−13 No

7 57287990 rs380779883 FY PY 1.52E−17 2.56E−18 Yes

14 1802265 rs109234250 FY PY 4.65E−201 3.93E−29 Yes

14 1802266 rs109326954 FY PY 4.85E−201 3.88E−29 Yes

15 66103726 rs41775109 FY PY 1.59E−09 6.91E−01 No

18 57064406 rs433130247 FY PY 5.93E−01 1.10E−11 No

26 20527926 rs453802222 FY PY 1.49E−15 1.85E−06 Yes

26 37869471 rs458256022 FY PY 5.38E−08 3.29E−11 Yes

5 93953487 rs210234664 MY MR 1.07E−21 1.60E−03 No

6 88729872 rs109803407 MY MR 5.65E−14 5.04E−33 Yes

11 88743727 rs380133715 MY MR 1.33E−01 7.37E−10 No

13 62017506 rs211080099 MY MR 8.25E−01 4.38E−15 No

14 1793616 rs384957047 MY MR 1.61E−123 8.06E−06 Yes

14 1802667 – MY MR 3.41E−123 8.16E−06 Yes

14 1804647 rs109162116 MY MR 1.97E−123 8.15E−06 Yes

14 1805963 rs211282745 MY MR 1.89E−123 8.14E−06 Yes

14 1808145 rs135258919 MY MR 1.97E−123 8.33E−06 Yes

14 1817975 rs135805021 MY MR 1.97E−123 9.08E−06 Yes

14 1818125 rs383356863 MY MR 1.96E−123 9.09E−06 Yes

14 1819475 rs208211113 MY MR 1.89E−123 9.23E−06 Yes

14 1825125 rs208113678 MY MR 2.58E−123 1.05E−05 Yes

16 47836093 rs207941573 MY MR 1.19E−01 5.69E−11 No

16 59908679 rs451830006 MY MR 4.85E−02 2.93E−10 No

18 43909571 rs464881101 MY MR 4.84E−01 8.09E−11 No

20 29996719 rs43116343 MY MR 6.08E−13 2.41E−02 No

26 3771642 – MY MR 1.24E−10 4.07E−02 No



Page 13 of 15Cai et al. Genet Sel Evol           (2020) 52:19 	

The most significant genes (candidate genes)
DGAT1
In our study, the QTL around 1.6 and 2.1 Mb on BTA14 
had the strongest association with milk production traits 
(MY, PY and FY). The previously reported two missense 
SNPs (rs109326954 at 1802,266  bp and rs109234250 at 
1802,265 bp) resulting in an amino acid change (K232A) 
were among the top associated variants in the QTL inter-
val on BTA14. However, these two causal variants were 
not the lead SNPs for MY and PY in the single-trait asso-
ciation study. Imperfect imputation was mentioned as 
one possible reason by Iso-Touru et al. [7], who obtained 
similar results (the causal variant at 1802,266  bp not 
being the most significantly associated SNP) in Nordic 
Red Cattle. Both the multi-trait meta-analysis and the 
bivariate analysis indicated these two SNPs as the top 
associated variants (Tables  4 and 7). This was consist-
ent with previously reported results on the contribution 
of these DGAT1 polymorphisms to variation in milk 
production traits in cattle [21, 22]. The bivariate analy-
sis confirmed the pleiotropic effect of DGAT1 on FY, PY 
and MY. In addition, we detected pleiotropic effects of 
DGAT1 on MR, which was also reported previously [46].

MGST1
Raven et  al. [47] identified a highly significant QTL 
on BTA5 at 85–110  Mb for milk production traits, 
where one of the lead SNPs was located within 3000 bp 
from MGST1. Previously, a GWAS in Nordic Red Cat-
tle [7] reported a region associated with FY around 
93,945,694  bp on BTA5 and MGST1 was proposed as 
candidate gene. Another study [48] found a QTL for MY 
in the same region i.e. between 92.1 and 93 Mb on BTA5. 
Although MGST1 is known to bind fatty acids directly, 
this activity appears to be related to its role as a detoxi-
fication enzyme [49], thus the mechanism that would 
explain an association with milk lipid synthesis/secretion 
on MY remains unknown. In our study, we observed plei-
otropic effects of this QTL on FY and MY.

Novel candidate genes
Several genes showed large pleiotropic effects on mul-
tiple milk production traits. For a few other genes iden-
tified in our study, data in the mammalian phenotype 
database [24] provided strong support for a possible 
biological effect on the traits analyzed. For example, a 
mutation in GPAT4 is responsible for “abnormal milk 
composition” in mouse. ZFPM2 is related to the term 
“abnormal mammary gland morphology”. In the bivari-
ate analysis, we found that KCTD16, which is associated 
with residual feed intake in pigs and meat quality in cattle 
[48], had pleiotropic effects on FY, PY and MY. Finally, 

KCNK18 showed pleiotropic effects on PY and MY but 
no obvious biological mechanism linking KCNK18 to 
milk production traits was found in the literature.

Conclusions
In this study, we performed a multi-trait meta-analysis 
and detected several SNPs that affect both milk produc-
tion traits and mastitis resistance in dairy cattle, which 
shows the high power of this approach to detect poten-
tial pleiotropy effects compared with the subjective 
assessment of overlapping single-trait QTL regions. Fur-
ther confirmation of the lead SNPs from the multi-trait 
meta-analysis shortened the list of those with possible 
pleiotropic effects. Bivariate analysis can indicate the 
pleiotropic effect of a variant. We observed that DGAT1 
and MGST1 had pleiotropic effects on milk production 
traits, and GC had pleiotropic effects on MY and MR. In 
addition, our results suggest that KCTD16 and KCNK18 
might have pleiotropic effects on all three milk produc-
tion traits analyzed. Our findings add to the knowledge 
about the genetic determination of milk production traits 
and mastitis resistance in cattle.
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