
van Bergen et al. Genet Sel Evol (2020) 52:26
https://doi.org/10.1186/s12711-020-00544-8

RESEARCH ARTICLE

Bayesian neural networks with variable
selection for prediction of genotypic values
Giel H. H. van Bergen1* , Pascal Duenk2, Cornelis A. Albers3,4,5, Piter Bijma2, Mario P. L. Calus2,
Yvonne C. J. Wientjes2 and Hilbert J. Kappen1

Abstract

Background: Estimating the genetic component of a complex phenotype is a complicated problem, mainly
because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear
methods with variable selection have been able to give good predictions of additive effects of individuals. However,
prediction of non-additive genetic effects is challenging with the usual prediction methods. In machine learning, non-
additive relations between inputs can be modeled with neural networks. We developed a novel method (NetSparse)
that uses Bayesian neural networks with variable selection for the prediction of genotypic values of individuals, includ-
ing non-additive genetic effects.

Results: We simulated several populations with different phenotypic models and compared NetSparse to genomic
best linear unbiased prediction (GBLUP), BayesB, their dominance variants, and an additive by additive method. We
found that when the number of QTL was relatively small (10 or 100), NetSparse had 2 to 28 percentage points higher
accuracy than the reference methods. For scenarios that included dominance or epistatic effects, NetSparse had 0.0
to 3.9 percentage points higher accuracy for predicting phenotypes than the reference methods, except in scenarios
with extreme overdominance, for which reference methods that explicitly model dominance had 6 percentage points
higher accuracy than NetSparse.

Conclusions: Bayesian neural networks with variable selection are promising for prediction of the genetic compo-
nent of complex traits in animal breeding, and their performance is robust across different genetic models. However,
their large computational costs can hinder their use in practice.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The biochemical mechanisms that underlie phenotypes
work through non-linear interactions between molecules
and proteins. Nevertheless, in the practice of animal
breeding, additive prediction methods, which assume
that phenotypes depend on markers individually and
without interactions between them, have been successful.
The U-shaped allele frequency of causal loci explains why
these microscopic interactions give rise to traits mainly

due to additive genetic variance [1], and therefore the
success of additive methods. However, traits still have
an epistatic component and therefore methods that can
fit more than the additive genetic component have the
potential to better predict genotypic values and pheno-
types of animals.

In reality, the causal variants of a trait are not necessar-
ily among the markers that are used for genomic predic-
tion. Therefore, not all markers may aid in the prediction
of genetic values. Prediction methods may therefore be
optimized if they allow to model a proportion π of the
total number of markers as irrelevant for phenotype
prediction. Additive methods such as BayesB [2] and
BayesCπ [3] allow for this variable selection of markers

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence: g.vanbergen@science.ru.nl
1 SNN Machine Learning Group, Biophysics Department, Donders
Institute for Brain Cognition and Behavior, Radboud University, 6525
AJ Nijmegen, The Netherlands
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8596-5298
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-020-00544-8&domain=pdf

Page 2 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

(sparsity). Depending on the genetic architecture of the
trait, additive Bayesian variable selection methods may
have a small advantage over genomic best linear unbiased
prediction (GBLUP) [4–6].

Parametric methods assume a specific functional form.
Members of this family of methods are the additive and
dominance methods of quantitative genetics. In addition,
parametric methods assume that genetic variance can
be decomposed orthogonally into additive, dominance,
additive × additive, dominance × additive etc. variance
components. This orthogonal decomposition is valid only
under restricted assumptions such as linkage equilib-
rium, random mating and no inbreeding [7]. Since these
assumptions are invalid in practice, prediction methods
that do not make them have the potential to obtain better
predictive performance of traits than methods that do.

Non-parametric methods assume neither a particu-
lar form of the unknown relation from genetic material
to genotypic values, nor the aforementioned partition-
ing of genetic variance. Because these models do not
distinguish between the different variance components,
they predict genotypic values instead of breeding values,
where breeding values correspond only to the additive
component of genotypic values. In genetics, reproducing
kernel Hilbert space regression [8] and neural networks
have been studied as non-parametric methods for the
prediction of phenotypes. Neural networks, in particular,
are powerful and interesting non-parametric methods
because they can approximate any function, and current
software packages make them easy to use.

Neural network models that have been investigated in
animal breeding include Bayesian regularized artificial
neural network (BRANN) [9, 10], scaled conjugate gradi-
ent artificial neural network (SCGANN) [10] and approx-
imate Bayesian neural network [11] methods. BRANN
is a neural network method that avoids overfitting by
means of Bayesian regularization via Bayesian prior
distributions, and achieved higher accuracy than addi-
tive methods for prediction of milk production in Jersey
cows. For marbling score in Angus cattle, BRANN had a
higher predictive accuracy than both additive methods
and SCGANN, which is a neural network method with-
out Bayesian regularization. These results imply that
Bayesian regularization can have a benefit for prediction
of traits. BRANN has been used for the ranking of mark-
ers based on their impact on the network. [12] While
this approach can help to identify the most important
markers, it does not promote sparsity during inference
since the ranking is performed as a separate step after
inference.

There are several neural network methods that try to
achieve sparsity with different regularizations on the
weights (parameters of the neural network). For example,

ℓ1 (Lasso) regularization causes as many weights as pos-
sible to reach zero and has previously been studied in
animal breeding [13], and group Lasso, which allows
for pruning weights in groups instead of individually,
has been studied for image classification [14]. Sparsity
based on an ℓ0 regularization for individual weights has
also been studied for image classification [15]. These
approaches are based on Maximum a Posteriori infer-
ence, and typically focus on sparsity of all network nodes
or weights, rather than sparsity of inputs (markers)
specifically.

In summary, there are phenotype prediction methods
that allow for variable selection of markers and there are
non-parametric methods that allow for fitting non-addi-
tive effects of individuals. However, there are no methods
that allow for both. In this study, we introduce a method
called NetSparse to fill the previously unexplored combi-
nation of both Bayesian variable selection and Bayesian
neural networks for prediction of total genotypic values.

In the section Methods, the framework for Bayesian
phenotype prediction is set and we explain how both
additive Bayesian methods and NetSparse fit within this
framework. The section Simulations describes the simu-
lation of data used to compare NetSparse with other
methods. In the section Results, we compare NetSparse
to the reference methods GBLUP, BayesB, GBLUP-AD,
BayesB-AD and GBLUP-ADAA.

Methods
First, we set up a general Bayesian framework for pheno-
type prediction methods, then we will describe how the
different methods considered fit in this framework.

Bayesian phenotype prediction
We assume that N individuals (i = 1, . . . ,N) are pheno-
typed and genotyped, such that the observed phenotype
yi is the sum of a genotypic value gi and a residual ei . In
addition, we assume that the genotypic value of individu-
als can be computed from their marker genotypes by a
function f (·;u) , depending on unknown parameters u
(different for each method), and that the residuals ei fol-
low a normal distribution with mean 0 and variance σ 2

e ,
which we write as ei ∼ N

(

0, σ 2
e

)

 . These assumptions lead
to the following model:

where xi =
(

x1i x
2
i . . . xPi

)⊺ is the vector with marker
genotypes of individual i, the exact encoding of which
depends on the method. We gather the vectors in the
matrix X = (x1 x2 · · · xN) . Model (1) implies that the
likelihood of the data is:

(1)yi = f (xi;u)+ ei,

Page 3 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

The likelihood is combined with a prior distribution
p(u | η) , depending on hyperparameters η , which indi-
cates what a priori are considered to be plausible values
of u that could have generated our data.

In our terminology, we use the term “parameter” for u ,
these are variables which directly determine the model
predictions. The term “hyperparameter” is used for η ,
these are the parameters which only indirectly influence
the predictions of the model. The hyperparameters η and
σ 2
e can crucially influence the performance of a model.

There are roughly two approaches for these hyperpa-
rameters: they can be either estimated or integrated out.
For the GBLUP models in particular, where the hyper-
parameters are the variance components,1 this estima-
tion can be done for instance with restricted maximum
likelihood (REML) [16]. Alternatively, if estimation of
these hyperparameters is difficult, they can be given prior
distributions and integrated out together with the other
parameters via Markov chain Monte Carlo sampling
(“MCMC sampling” section).

The joint distribution of y and u conditioned on X is
the product of the likelihood and prior distribution:

The posterior distribution p
(

u | X, y
)

 via Bayes’ Theorem
is then:

This posterior distribution is the distribution over u
obtained by combining the information in the prior dis-
tribution and the information in the observed data.

Model (1) can be used to make phenotype predictions
y∗ for an individual with markers x∗ by computing the
posterior predictive distribution:

The expected value of y∗ with respect to the posterior
predictive distribution is:

p
(

y | X,u, σ 2
e

)

=
N
∏

i=1

N
(

yi | f (xi;u), σ 2
e

)

=
(

2πσ 2
e

)−N/2
exp

(

−
1

2σ 2
e

N
∑

i=1

(

yi − f (xi;u)
)2

)

.

p
(

y,u | X
)

= p
(

y | X,u
)

p(u).

(2)p
(

u | X, y
)

=
p
(

y | X,u
)

p(u)
∫

p
(

y | X,u′
)

p(u′) du′
.

p
(

y∗ | X, y, x∗
)

=
∫

N

(

y∗ | f (x∗;u), σ 2
e

)

p
(

u | X, y
)

du.

Bayesian inference
Using the previous framework, we will briefly describe
the five methods that we used for reference (GBLUP,
BayesB, GBLUP-AD, BayesB-AD and GBLUP-ADAA),
as well as our new method, NetSparse. Of these meth-
ods, GBLUP [17] was chosen because it is the most used
in practice. We chose BayesB [2] because it is a com-
mon method that includes variable selection, similar to
NetSparse.

GBLUP
The SNP-BLUP model is an additive model where each
marker p is assigned an additive effect ap with shared
prior variance σ 2

a . Specifically, in SNP-BLUP, f is chosen as
a linear function fSNP-BLUP(x;u) = x⊺a , with u = a . The
prior distribution over a is p

(

a | σ 2
a

)

= N
(

a | 0, σ 2
a1

)

 .
The hyperparameters σ 2

e , σ
2
a are estimated with REML.

The posterior distribution over a is:

where �−1 = σ 2
e 1+ σ 2

aX
⊺X . The matrix X⊺X is propor-

tional to the additive genomic relationship matrix G . The
posterior predictive distribution is also Gaussian:

This equivalent formulation of SNP-BLUP is called
GBLUP and uses the additive relationship matrix G
instead of allele effects, based on markers. For deriva-
tions of these formulas, see for instance [18]. We used the
GBLUP implementation of MTG2 [19].

BayesB
The BayesB model, like SNP-BLUP, is an additive model
where every marker is assigned an additive effect [2].
However, contrary to SNP-BLUP, BayesB also includes
marker selection, which we will indicate by a (binary)
marker selection vector s ∈ {0, 1}P . If an entry in this
marker selection vector has the value 1, the correspond-
ing marker is selected for inclusion in the model. If the
entry is equal to 0 the marker is not selected. If the pos-
terior distribution is concentrated at sp = 1 , then the p-th
marker contributes significantly to phenotype prediction,

(3)

E[y∗ = f (x∗;u)] =
∫

y∗ p
(

y∗ | X, y, x∗, σ 2
e

)

dy∗

=
∫

y∗N
(

y∗ | f (x∗;u), σ 2
e

)

p
(

u | X, y
)

du dy∗

=
∫

f (x∗;u)p
(

u | X, y
)

du.

p
(

a | X, y
)

= N

(

a | σ 2
a�Xy,�

)

,

(4)p
(

y∗ | X, y, x∗
)

= N

(

y∗ | σ−2
e x⊺∗�Xy, x⊺∗�x∗

)

.

1 Strictly speaking, in GBLUP the allele effects of SNP-BLUP are integrated
out, so the variance components in GBLUP should be called “parameters”. But
for consistency with the other methods, we refer to the variance components
as hyperparameters.

Page 4 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

while if most of the probability is concentrated at sp = 0
then the p-th marker does not contribute significantly to
phenotype prediction. In addition, there is a hyperparam-
eter π that is equal to the proportion of non-contributing
markers, i.e. π = 1−

∑

p s
p/P . SNP-BLUP, in contrast,

assumes that all additive effects come from the same nor-
mal distribution, making it similar, but not exactly equal,
to BayesB with π = 0 . If a dataset contains relatively few
quantitative trait loci (QTL), this mismatch should result
in BayesB having a better performance than GBLUP.

Specifically, in BayesB, the function f is
fBayesB(x;u) = a⊺(x ⊙ s) , with u = (a, s) and ⊙ the ele-
ment-wise (Hadamard) product (x ⊙ s)p = xpsp . For each
marker p, marker effect ap has prior distribution
p
(

ap | σ 2
ap

)

= N

(

ap | 0, σ 2
ap

)

 and hyperprior distribu-

tion p
(

σ 2
ap

)

= χ−2
(

σ 2
ap

| df = 5, S = 3
5

)

 , p
(

sp | π
)

=

π1−sp(1− π)s
p , and p(π) = Unif(π | 0, 1) . The expres-

sion for the posterior distribution over u is:

and the expected value of the posterior predictive distri-
bution is2:

The last line comes from the identity a⊺(x∗ ⊙ s) =
(a ⊙ s)⊺x∗ and means that prediction can be obtained
by averaging allele effects and then making predictions
using those, instead of averaging predictions directly. The
expectation value cannot be computed analytically, but
it can be approximated by sampling (“MCMC sampling”
section).

AD methods
The aforementioned additive methods can be adapted
to fit additive and dominance effects. For the additive
effects, markers were encoded as:

(5)

p
(

a, s | X, y, σ 2
e

)

∝
∫ exp

(

−�y−a⊺(X⊙s)�2
2σ 2

e

)

(

σ 2
e

)N/2

∏

p

exp

(

− a2p
2σ 2

ap

)

√

σ 2
ap

χ−2

(

σ 2
ap

| 5,
3

5

)

π
∑

p 1−sp
(1− π)

∑

p s
p

dπ dσ 2
ap

(6)

E[y∗] =
∑

s

∫

[a⊺(x∗ ⊙ s)]p
(

a, s | X, y, σ 2
e

)

da

=

(

∑

s

∫

(a ⊙ s)p
(

a, s | X, y, σ 2
e

)

da

)

⊺

x∗.

and for the dominance effects, markers were encoded as:

Note that for the GBLUP implementation and assuming
Hardy-Weinberg equilibrium (HWE), the use of these
encodings leads to additive and dominance relationship
matrices as described in [20]. For the BayesB implemen-
tation, the two encodings are appended, such that every
individual is represented by an array twice as long as for
the additive models. Using GBLUP and BayesB with these
longer arrays allows dominance to be fitted as well and
we call the resulting methods GBLUP-AD and BayesB-
AD [21, 22]. Because they explicitly model additive and
dominance effects, these methods should work best on
data where both additive variance and dominance vari-
ance are significant.

GBLUP‑ADAA
The AD construction for GBLUP can be extended further
to fit additive by additive epistasis (section Simulations),
in addition to additive and dominance effects, by adding
a third covariance matrix, given by G⊙G . We call this
method GBLUP-ADAA. As with GBLUP, the MTG2 soft-
ware was also used for GBLUP-AD and GBLUP-ADAA.

NetSparse
In our NetSparse model (Fig. 1), f is chosen as a neural
network with one hidden layer3:

with u =
(

W,w,bh, bo, s
)

 . fNetSparse is the output of the
entire network, which depends on h(x) , which is called
the hidden layer. The vector s is a marker selection vector,
like in BayesB. The parameters W ∈ R

H×P and w ∈ R
H

are called the weights, bh ∈ R
H and bo are called the

biases. Parameter H is the number of hidden units and
by increasing it, the neural network has more capacity
to fit non-additive effects. In this study, as is typical for

(7)







−(−pAa − 2paa)
−(1− pAa − 2paa)
−(2− pAa − 2paa)

for genotypes







AA
Aa
aa

,

(8)































2pAapaa

pAA + paa − (pAA − paa)
2

4pAApaa

pAA + paa − (pAA − paa)
2

2pAApAa

pAA + paa − (pAA − paa)
2

for genotypes







AA
Aa
aa

,

(9)
fNetSparse(x;u) = g

(

bo + w⊺ tanh (h(x))
)

, where

(10)h(x) = bh +W(x ⊙ s)

2 Because s is discrete it is summed instead of integrated over.
3 As activation functions were applied to layers, one in hidden and one in out-
put layer, this architecture is also called a two-layer neural network.

Page 5 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

prediction of continuous outcomes, the output activation
function g was chosen as the identity. For classification,

Fig. 1 NetSparse Schematic neural network representation of
NetSparse (9). The input x to the neural network is on the left, the
output g is on the right. s is the variable selection vector, W and w are
the weights, bh and bo are the biases. At the third layer of nodes, tanh
is applied to the sum of the incoming values

4 A complete list of prior distributions is given in appendix A.

a different transfer function, such as softmax, would be
more appropriate, but such analyses fall outside the scope
of this study. Given that the computational resources are
sufficient, one would determine H via a cross-validation
procedure. However, we did not have access to such
resources, thus we used H = 20 , such that the model was
able to fit complex non-linear interactions within reason-
able computation time. A value of H larger than 20 led to
an impractical increase in computation time.

A neural network can be interpreted as repeatedly tak-
ing linear combinations and elementwise application of
an activation function (tanh). Given x ⊙ s , the value of hi
depends linearly on the j-th column of W , and given each
tanh (hi) , the output of the network depends linearly on
w . The non-linearity from tanh makes sure that the neu-
ral network can fit more than additive relations; if tanh ,
as well as g, was replaced by the identity function the net-
work would only be able to fit linear functions.

Some of the prior distributions are:4

where
∣

∣N
(

0, 22
)
∣

∣ denotes the half-normal distribution
with scale parameter 22 , which is the same as a normal
distribution with standard deviation 2 restricted to posi-
tive values only, and β is the precision parameter in the
(Gaussian) likelihood. The prior distribution over s is the
same as that of BayesB. The posterior distribution over u
in NetSparse (2) is:

Wij | σh ∼ N

(

0, σ 2
h /P

)

,

w | σo ∼ N

(

0, σ 2
o /H1

)

,

sp | π ∼ Ber(1− π),

π ∼ Unif(0, 1), and

β , σh, σo ∼
∣

∣

∣
N

(

0, 22
)∣

∣

∣
,

(11)p
(

u | X, y
)

∝
∫

exp

(

−
β

∥

∥

∥
y−w⊺ tanh

(

W(X⊙s)+bh
)

−bo
∥

∥

∥

2

2 − P�W�2
2σ 2

h

− H�w�2
2σ 2

o
− σ 2

h+σ 2
o+β2

8 −
∥

∥

∥
bh−µbh

∥

∥

∥

2

2σ 2
bh

)

β−N/2
(

σ 2
h /P

)PH/2(
σ 2
o /H

)H/2

∏

p

π1−sp(1− π)s
p
dπ dσo dσh dβ .

As with BayesB, this expression can not be computed
analytically, but it can be approximated by sampling.

MCMC sampling
The integral in (3) can be computed analytically for
GBLUP, but not for BayesB (5) and NetSparse (11). To
obtain an approximation to E[y∗] for these models, we
do MCMC sampling to obtain samples from the joint
posterior distribution over (u, η) . Given such samples
((u1, η1), (u2, η2), . . . , (uT , ηT)) , the expectation value of
y∗ can be estimated as:

For BayesB, we implemented a Gibbs sampler in the
BGLR R package [23]. Instead of averaging predictions,
the sampler averages allele effects, but this is equivalent
(see (6)).

For NetSparse, we used the PyMC3 package [24]
to sample from the NetSparse posterior distribution,
p
(

u, η|X, y
)

 , which is the integrand of (11). The condi-
tional distributions cannot be sampled from, directly, so
a Gibbs sampler cannot be used, therefore PyMC3 uses

E[y∗] ≈
1

T

T
∑

t=1

f (x∗;ut).

Page 6 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

a composite sampler, which alternatively uses MCMC
samplers for the discrete (sp) and for the continuous
variables (the rest). To sample s , we used a Metropolis-
Hastings algorithm, where we iterate over the individual
components in a random order. For each sp , we evaluate
P1 = p

(

sp | rest
)

 and P2 = p
(

1− sp | rest
)

 , then we set
sp ← 1− sp with probability min(1,P2/P1).

For the continuous parameters, we have the condi-
tional posterior distribution p

(

θ | X, y, s
)

 , where we
write θ for the combination of all continuous vari-
ables: W,w,bh, bo, and η . This conditional posterior
distribution is the integrand of (11). To sample these
parameters, we used the Hamiltonian Monte Carlo
sampler (HMC) [25, 26]. HMC uses the same Metrop-
olis-Hastings procedure as for s , but with a more com-
plicated proposal. To generate a proposal, initialize
θ(0) ← θ , and for each θi draw a new variable ri(0)
from a normal distribution and compute the energy
E0 = H(θ(0), r(0)) = �r(0)�2/2− log p(θ(0) | rest) .
Given this initial state, generate a proposal state from
(θ(0), r(0)) by numerically evolving it for a time T accord-
ing to the Hamiltonian dynamics:

This new state (θ(T), r(T)) will have energy
ET = H(θ(T), r(T)) . This proposal is evaluated with a
Metropolis-Hastings acceptance criterion: set θ ← θ(T)
with probability min (1, exp (E0 − ET)) , otherwise
θ ← θ(0) . The ri are discarded. We note that only the gra-
dient of the posterior distribution is required, but not the
matrix of second derivatives.

We used the NUTS variant of HMC [27]. For high-
dimensional models with continuous variables, using
the gradient of the posterior distribution allows HMC to
explore the parameter space faster than either Metrop-
olis-Hastings or Gibbs [28] samplers [29], and therefore
requires fewer sampler steps.

Besides computing the posterior distribution, simula-
tion of the Hamiltonian dynamics also requires the gradi-
ent of the posterior distribution. PyMC3 calculates this
gradient by the automatic differentiation capabilities of
Theano [30].

We drew four independent chains of 1000 samples
each, where for each chain the first 500 samples were
used to tune the sampler and discarded, the last 500
samples of each chain were used for predictions. We
also ran a few longer chains, but this did not change the
results.

dθi

dt
= ri

dri

dt
=

∂ log p(θ | rest)
∂θi

.

Simulations
To compare the performance of these methods, we
evaluated them on populations in which the traits have
different phenotypic models (additive, dominance and
epistatic).

Population structure
Our aim was to simulate a population with a fam-
ily structure and linkage disequilibrium pattern that
roughly resemble those of livestock populations, using
QMSim [31]. The historical population was simulated
by mating 250 males with 250 females for 1900 genera-
tions to reach mutation-drift equilibrium. To mimick
breed formation, a bottleneck was introduced by grad-
ually decreasing the population size to 75 males and 75
females during the next five generations. This popula-
tion size was maintained for 95 generations, and, then,
population size was increased to 1050 (50 males and
1000 females) in the last historical generation. From the
last historical generation, all males and females were
randomly mated for 15 generations to create the cur-
rent population. Litter size in the current population
was 10, and at each generation all sires and dams were
replaced to create non-overlapping generations. For all
scenarios, the reference population consisted of 500
randomly sampled individuals from generation 14, and
the validation population consisted of 2000 randomly
sampled individuals from generation 15.

Genome
The genome consisted of 10 chromosomes, of 100 cM
each. For each chromosome, 40 000 biallelic loci were
simulated. Mutation rate in the historical generations
was 2.5 · 10−6 , and there was no mutation in the last 15
generations. From all loci segregating in generation 14, m
loci were selected to become QTL, which varied across
scenarios, and 5000 loci were selected to become mark-
ers. Although this density is lower than a typical com-
mercial livestock SNP chip (60K), we chose this lower
density to decrease computational demand. The markers
were selected based on their allele frequency; the allele
frequency distribution of markers was approximately
uniform. The QTL were randomly selected and the
allele frequency distribution of QTL was approximately
U-shaped.

QTL effects
Additive effects (a) of QTL were sampled from a normal
distribution with mean 0 and variance 1. Dominance
factors (δ) were also sampled from a normal distribu-
tion, with varying mean and variance across scenarios.

Page 7 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

Dominance effects (d) were computed as δ|a| [32, 33].
Similar to dominance effects, we assumed that the mag-
nitude of epistatic effects were proportional to the addi-
tive effects of the interacting QTL. For all m(m− 1)/2
pairwise combinations of QTL, epistatic factors (γ) were
sampled from a normal distribution with mean 0 and
variance 1. The epistatic effects (ǫ) between QTL k and l
were computed as γ

√
|akal |.

Breeding values, dominance deviations, epistatic
deviations, and phenotypes
Breeding values (A) and dominance deviations (D) were
simulated with genotype coefficient matrices that fol-
lowed the natural and orthogonal interactions (NOIA)
parameterization, as in [20]. With NOIA, the coefficient
matrices are constructed such that the genetic effects (A
and D) are statistically orthogonal, even in the absence
of HWE. However, the epistatic values were simulated
with epistatic coefficient matrices that followed one of
three biological models for epistasis (Fig 2). The result-
ing epistatic values are not orthogonal to A and D , which
means that A and D change when epistasis is simulated.
Thus, we begin by explaining the simulation of epistatic
deviations and subsequently discuss how A and D were
computed.

The first step was to compute epistatic values for all
nine possible combinations of genotypes at loci k and l as
ckl = tǫkl , where ǫkl is the epistatic effect between loci k
and l, and t is a vector containing 9 (3× 3) epistatic coef-
ficients, following one of three epistasis models (Fig. 2).
The coefficients in t were ordered from top-to-bottom
and left-to-right (AABB, AaBB, aaBB, ..., aabb). Then,
using the NOIA parameterization and the two-locus gen-
otype frequencies, epistatic values were partitioned into

nine statistically orthogonal effects following the proce-
dure described in [20]:

This procedure was repeated for all m(m− 1)/2 pairwise
interactions between QTL.

The epistatic deviation of individual i was computed as:

where hka,i (hla,i) is the additive genotype coefficient of
individual i at locus k (l), and hkd,i (h

l
d,i) is the dominance

genotype coefficient of individual i at locus k (l). Elements
of the additive genotype coefficients, hka,i , were encoded
as in (7), where pAA , pAa , and paa are the genotype fre-
quencies of marker k in the base generation (generation
14). Elements of the dominance genotype coefficients
were encoded as in (8). The breeding value of individual
i was computed as:

where αk is the average effect of locus k, which was com-
puted as:

bkl =
[

µ,αk
kl , d

k
kl ,α

l
kl , (αα)kl , (dα)kl , d

l
kl(αd)kl , (dd)kl

]

⊺

Ei =
m
∑

k ,l=1
k �=l

hka,ih
l
a,i(αα)kl

+ hka,ih
l
d,i(αd)kl + hkd,ih

l
a,i(dα)kl

+ hkd,ih
l
d,i(dd)kl ,

BVi =
m
∑

k=1

hka,iα
k ,

αk = ak +
(

1− 2pk
)

dk +
m
∑

l=1
l �=k

αk
kl ,

Fig. 2 Epistatic models Epistatic coefficients used for simulating the total genetic values in three epistatic scenarios: additive by additive,
complementary, and interaction

Page 8 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

where pk is the allele frequency of locus k in generation
14. The dominance deviation of individual i was com-
puted as:

where dk ′ was computed as:

Total genetic values were computed as
TGV = BV +D+ E . Phenotypes were computed as
y = TGV + e , where e is a vector of random residuals,
sampled from a normal distribution with mean zero and
variance σ 2

e = σ 2
TGV , such that the broad sense heritabil-

ity H2 is equal to 50%.

Di =
m
∑

k=1

hkd,id
k ′,

dk
′ = dk +

m
∑

l=1
l �=k

αk
kl .

Scenarios
As a base scenario, a purely additive trait with 300
QTL was simulated (Base). We varied the number of
QTL to be 1000 (S1000 , 100 (S100), or 10 (S10). Hereaf-
ter, we will call this characteristic of the trait “Sparsity”.
Dominance was varied by sampling dominance factors
δ from N

(

0.6, 0.32
)

 with the Dmedium scenario, or from
N (1.2, 0.32) with the Dextreme scenario, which is extreme
overdominance.

Following [1, 34], epistasis was varied by applying
the additive × additive model (EA), complementary
model (EC), or interaction model (EI). The relative vari-
ance components in the simulated scenarios are listed
in Table 1. The location and additive effects of QTL in
each scenario were not resampled for the dominance
and epistasis scenarios, so they were the same as in the
base scenario.

Table 1 Summary of the scenarios used in the simulations

The rightmost columns contain the average proportions of additive, dominance,
and epistatic variance in the replicate genotypes. In all scenarios, the broad
sense heritability is H2 = 50%

#QTL Explanation Var(A) Var(D) Var(E)

Base 300 Default scenario 1.0 0.0 0.0

S10 10 Very sparse 1.0 0.0 0.0

S100 100 Sparse 1.0 0.0 0.0

S1000 1000 Dense 1.0 0.0 0.0

Dmedium 300 Medium dominance 0.854 0.161 0.0

Dextreme 300 Extreme dominance 0.636 0.386 0.0

EA 300 Additive × additive epistasis 0.657 0.0 0.366

EC 300 Complementary epistasis 0.658 0.225 0.116

EI 300 Interaction epistasis 0.896 0.0 0.127

Table 2 Mean accuracy and standard error of the mean of each method, calculated over ten replicates each, times 100

Each row corresponds to a scenario, as summarized in Table 1. The different columns correspond to different methods, GBLUP and Bayes-B are additive methods,
GBLUP-AD and BayesB-AD are methods with additive and dominance features and GBLUP-ADAA has additive, dominance and additive × additive features

Scenario GBLUP BayesB NetSparse GBLUP‑AD BayesB‑AD GBLUP‑ADAA

Base 63.6± 1.2 63.8± 1.2 64.8± 1.4 62.5± 1.3 61.5± 1.5 62.2± 1.4

S10 63.6± 1.5 84.6± 1.5 91.3± 1.3 63.1± 1.3 82.0± 1.4 62.7± 1.4

S100 61.6± 0.7 64.4± 1.0 66.8± 1.3 61.0± 0.6 61.5± 1.1 60.7± 0.7

S1000 66.0± 1.8 64.9± 1.7 66.0± 1.8 65.7± 1.8 62.9± 2.1 65.5± 1.8

Dmedium 55.4± 2.0 55.6± 1.8 56.2± 2.1 56.1± 2.0 55.4± 2.2 55.8± 2.0

Dextreme 42.8± 1.7 42.8± 1.5 43.4± 1.8 49.7± 1.7 49.5± 1.7 49.2± 1.7

EA 43.9± 2.0 44.0± 1.8 44.6± 2.1 43.2± 2.2 41.4± 2.0 43.3± 2.4

EC 44.9± 2.1 44.5± 2.4 45.4± 2.4 44.5± 2.1 43.9± 2.4 44.4± 2.2

EI 56.5± 1.5 56.4± 1.7 58.0± 1.6 55.2± 1.5 54.0± 1.8 55.2± 1.5

Table 3 Mean accuracy increase of NetSparse relative
to each other method and its standard error on the mean
calculated over ten replicates each, times 100

Significant entries, determined with the Benjamini-Hochberg procedure for
α = 0.05 for the one-sided paired t-test corresponding to the hypotheses
E
(

ρNetSparse − ρMethod

)

= 0 , are marked in italic

Scenario GBLUP BayesB GBLUP‑AD BayesB‑AD GBLUP‑
ADAA

Base 1.2± 0.6 1.0± 0.5 2.2± 0.7 3.3± 0.6 2.5± 0.6

S10 27.7± 1.6 6.7± 0.8 28.1± 1.5 9.3± 1.1 28.5± 1.4

S100 5.2± 1.1 2.4± 0.7 5.8± 1.1 5.4± 0.7 6.1± 1.1

S1000 −0.0± 0.2 1.1± 0.3 0.3± 0.2 3.0± 0.7 0.4± 0.3

Dmedium 0.8± 0.3 0.6± 0.5 0.0± 0.5 0.8± 0.6 0.4± 0.5

Dextreme 0.6± 0.8 0.6± 0.6 −6.3± 0.6 −6.1± 0.7 −5.8± 0.7

EA 0.7± 0.2 0.6± 0.7 1.4± 0.4 3.2± 0.6 1.3± 0.5

EC 0.6± 0.4 0.9± 0.3 0.9± 1.0 1.5± 1.1 1.0± 1.0

EI 1.5± 0.5 1.5± 0.4 2.8± 0.6 3.9± 0.6 2.7± 0.6

Page 9 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

Comparison of methods
To evaluate the performance of the different methods,
each one was trained on the 500 animals in the training
population, and the accuracy was obtained by taking
the Pearson correlation coefficient between predictions

and the total genotypic values of the 2000 animals in
the validation population.

Direct comparison of the average accuracies per sce-
nario (Table 2) required many replicates, because the
accuracies fluctuated considerably between replicates.

Table 4 p-values of the one-sided paired t-test for the hypotheses E
(

ρNetSparse − ρMethod

)

= 0

Each row corresponds to a scenario, as summarized in Table 1. The cells containing negative values had p close to 1 and therefore we chose to put −(1− p) in those
cell instead. The minus serves to clearly identify those cases while the (1− p) represents the p-value for superiority of GBLUP-AD and BayesB-AD over NetSparse

Scenario GBLUP BayesB GBLUP‑AD BayesB‑AD GBLUP‑ADAA

Base 3.21× 10
−2

3.98× 10
−2

4.52× 10
−3 1.92× 10

−4
1.67× 10

−3

S10 2.05× 10
−8

6.96× 10
−6

7.45× 10
−9

9.36× 10
−6

4.48× 10
−9

S100 4.63× 10
−4

3.64× 10
−3 2.18× 10

−4
2.79× 10

−5
1.52× 10

−4

S1000 5.00× 10
−1

3.48× 10
−3 1.33× 10

−1
1.29× 10

−3
9.67× 10

−2

Dmedium 5.75× 10
−3 1.47× 10

−1
5.00× 10

−1
1.19× 10

−1
2.10× 10

−1

Dextreme 2.09× 10
−2 1.72× 10

−1 −1.85× 10
−6 −7.57× 10

−6 −5.45× 10
−6

EA 5.75× 10
−3 1.95× 10

−1
1.50× 10

−3 2.39× 10
−4

1.14× 10
−2

EC 8.92× 10
−2

9.61× 10
−3 1.98× 10

−1
1.04× 10

−1
1.60× 10

−1

EI 7.92× 10
−3

1.67× 10
−3 4.13× 10

−4
8.27× 10

−5
5.27× 10

−4

0.0
0.2
0.4
0.6
0.8
1.0

S
10

0.0
0.2
0.4
0.6
0.8
1.0

S
10

0

0.0
0.2
0.4
0.6
0.8
1.0

S
30

0

0.00.20.40.60.81.0
GBLUP

0.0
0.2
0.4
0.6
0.8
1.0

S
10

00

0.00.20.40.60.81.0
BayesB

0.00.20.40.60.81.0
GBLUP-AD

0.00.20.40.60.81.0
BayesB-AD

0.00.20.40.60.81.0
GBLUP-ADAA

N
et
Sp

ar
se

Fig. 3 Sparsity The accuracy of NetSparse versus other methods in scenarios with 10, 100, 300 and 1000 QTL. Each row corresponds to a
different amount of sparsity, the different columns correspond to different methods, GBLUP and Bayes-B are additive methods, GBLUP-AD and
BayesB-AD are methods with additive and dominance features and GBLUP-ADAA has additive, dominance and additive×additive features. The
line x = y is added in red for reference. A marker that is above the line means a replicate with higher accuracy for NetSparse than the method it is
compared to, and a marker that is below the line means a replicate with lower accuracy for NetSparse than the other method

Page 10 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

Therefore, instead of comparing the average accura-
cies of the methods, we used the mean and stand-
ard error of the difference in accuracy between
methods, ρNetSparse − ρMethod , which fluctuated much
less (Table 3). In addition, we calculated the p-values
corresponding to the one-sided paired t-test for the null
hypotheses H0 : E

(

ρNetSparse − ρMethod

)

= 0 for each
reference method. Significance of p-values with respect
to the treshold of 0.05 were corrected for multiple testing
via the Benjamini-Hochberg procedure (Table 4).

Results
First, we considered the effect of sparsity on the predic-
tion of genotypic values in the additive scenarios for all
methods (Fig. 3). In the sparse scenario with 10 QTL
(S10), the accuracy with Netsparse was about 0.28 higher
than with GBLUP(-AD,-ADAA), and about 0.08 higher
than with BayesB(-AD). In the scenario with 100 QTL
(S100), NetSparse had an increase in accuracy of 0.06
over the GBLUP(-AD,-ADAA) methods, of 0.02 over
BayesB and 0.05 over BayesB-AD. In the “Base” scenario
with 300 QTL, NetSparse was better than the methods
that fit dominance, but not significantly better than the
additive methods In the 1000 QTL scenario NetSparse

was significantly better than BayesB and BayesB-AD,
but not significantly better than the methods based on
GBLUP.

Now, we consider the simplest possible phenotypic
model after the additive one, the dominance model. In
the medium dominance scenario (Dmedium), all meth-
ods performed roughly the same (Fig. 4). Hence, meth-
ods that tried to fit dominance did not result in higher
accuracies than methods that did not. In the extreme
dominance scenario (Dextreme), GBLUP-AD, BayesB-
AD and GBLUP-ADAA methods had better perfor-
mance than the other methods, which matched our
prior expectation.

The epistatic scenarios (Fig. 5) contain components
which can be fitted only by NetSparse and GBLUP-
ADAA, thus we expected that in the additive × additive
scenario, GBLUP-ADAA would have the best fit and
that NetSparse would have the best fit among the other
two scenarios. In the additive × additive scenario (EA),
NetSparse had a significantly higher accuracy than the
other methods except BayesB. Surprisingly, GBLUP-
ADAA did not fit this scenario better than the other
methods. In the complementary (EC) scenario, Net-
Sparse had 0.6 to 1.5 percentage points higher accuracy

0.0

0.2

0.4

0.6

0.8

1.0

N
o
(B

as
e)

0.0

0.2

0.4

0.6

0.8

1.0

D
m
ed

iu
m

0.00.20.40.60.81.0
GBLUP

0.0

0.2

0.4

0.6

0.8

1.0

D
ex

tr
em

e

0.00.20.40.60.81.0
BayesB

0.00.20.40.60.81.0
GBLUP-AD

0.00.20.40.60.81.0
BayesB-AD

0.00.20.40.60.81.0
GBLUP-ADAA

N
et
Sp

ar
se

Fig. 4 Dominance Accuracy of NetSparse versus other methods for the base scenario, and the two (Medium and Extreme) dominance scenarios.
The line x = y is added in red for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the method it is
compared to, a marker below the line means a lower accuracy of NetSparse than the other method

Page 11 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

on average than the other methods, but these results
were not consistent across replicates. The accuracy
of NetSparse in the interaction scenario (EI) was on
average three or more standard errors above the other
methods.

Discussion
In this study, we compared methods that differed in flex-
ibility. For example, the GBLUP-AD method is more
flexible than the GBLUP method, because it allows for
dominance effects to be fitted. In theory, the more flex-
ible method should be able to give the same predictions
as simpler methods by setting the additional hyperpa-
rameters to zero. In reality, however, these additional
hyperparameters also have to be estimated from the data
because the genetic architecture of the trait is unknown.
In this study, we used the default prior distributions from
the BGLR package and estimated hyperparameters from
the training dataset. We chose not to fine-tune the prior
distributions on test performance, because in reality this
is not possible. As a result, when the actual genetic archi-
tecture of a trait is simple (e.g. additive and not sparse),
a more flexible method will perform worse than a sim-
pler method. Our results indeed showed that sometimes

more flexible methods performed worse than simpler
methods. For example, if we consider the scenario with
complementary epistatic effects and consider the GBLUP
and BayesB methods, BayesB with hyperparameter π
set to zero is equivalent to GBLUP, but when fitting the
value of π in BayesB to the data, a non-zero value of π is
estimated, which in this scenario gives worse test perfor-
mance than π = 0 . In [5], it also was seen that, in certain
cases, GBLUP can have higher accuracy than BayesC,
which is a sparse method similar to BayesB.

The particular observation that NetSparse has higher
accuracy than BayesB for the S10 and S100 scenarios was
unexpected because BayesB is a sparse additive method,
while NetSparse is a sparse non-additive method. Since
the underlying data generating process is sparse additive,
the expectation is that BayesB matches the simulated data
better than NetSparse. The difference in method between
NetSparse and BayesB is that NetSparse includes non-
additivity and that NetSparse and BayesB use differ-
ent priors for the variances. Therefore, we also made a
comparison with LinSparse (Fig. 6), which is NetSparse
without non-additive effects. The accuracy obtained with
LinSparse for these scenarios was higher than for BayesB,
which strongly suggests that the difference in accuracy

0.0

0.2

0.4

0.6

0.8

1.0

E
A

0.0

0.2

0.4

0.6

0.8

1.0

E
C

0.00.20.40.60.81.0
GBLUP

0.0

0.2

0.4

0.6

0.8

1.0

E
I

0.00.20.40.60.81.0
BayesB

0.00.20.40.60.81.0
GBLUP-AD

0.00.20.40.60.81.0
BayesB-AD

0.00.20.40.60.81.0
GBLUP-ADAA

N
et
Sp

ar
se

Fig. 5 Epistasis Accuracy of NetSparse versus other methods for the three epistatic scenarios: Additive × Additive, Complementary and
Interaction. The line x = y is added in red for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the
method it is compared to, a marker below the line means a lower accuracy of NetSparse than the other method

Page 12 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

between them originated from the different prior distri-
butions for the variances.

In BayesB, the prior distributions for the variances are
scaled inverse chi-squared distributions, which are con-
jugate priors for the likelihood function, which makes
Gibbs sampling possible. The NUTS sampler in PyMC3
does not require conjugate priors and, following the sug-
gestions of [35], we chose half-normal distributions for
the standard deviations. The main difference between the
scaled inverse chi-squared and half-normal distributions
is that the half-normal distribution decays faster than
exponentially for large values, which gives much lighter
tails than the scaled inverse chi-squared distribution,
which decays only polynomially.

The epistatic method GBLUP-ADAA did not seem to
give better fits than methods that did not fit epistasis. We
think this is due to a lack of data for estimating epistatic
effects accurately. Inaccurate estimates of these effects
will not improve predictive ability.

Given that neural networks are able to fit more than
additive relations, we expected that NetSparse would
also be able to fit dominance and epistatic effects. This
expectation was confirmed in scenarios with strong

dominance effects and scenarios with epistatic effects
because accuracy of NetSparse was higher than the accu-
racy of additive models. However, NetSparse may be at a
disadvantage with traits that have negligible non-additive
effects. Nevertheless this indicates a potential for Sparse
Bayesian Neural Networks for improving phenotype
prediction.

The main limitation of NetSparse is running time. On
our hardware, training NetSparse took around 4 h per
scenario with 500 animals and 5000 SNPs. The running
time of NetSparse scales approximately linearly with
both the number of animals and the number of SNPs,
and can therefore become prohibitive when applied to
larger datasets. The other methods have running times
that were less than 2 min on these datasets, making them
much more feasible for use on larger datasets. Consider-
ing the promising results of NetSparse, further studies
could try to increase the computational performance so
that larger datasets can be analyzed. As sampling of inde-
pendent MCMC chains can be done in parallel on differ-
ent machines, additional computational resources can
speed up the wall time of sampling by a factor equal to
the number of chains used. The MCMC sampling could

0.5

0.6

0.7

0.8

0.9

1.0

S
10

0.5 0.6 0.7 0.8 0.9 1.0
BayesB

0.5

0.6

0.7

0.8

0.9

1.0

S
10

0

0.5 0.6 0.7 0.8 0.9 1.0
LinSparse

N
et
Sp

ar
se

Fig. 6 Sparsity The accuracy of NetSparse versus BayesB and LinSparse on sparse scenarios with 10 or 100 QTL. The line x = y is added in red
for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the method it is compared to, a marker below the
line means a lower accuracy of NetSparse than the other model

Page 13 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

also be replaced by variational inference, where the real
posterior is approximated by a simpler variational pos-
terior from which samples can be drawn directly, which
would help NetSparse scale to larger datasets. The dis-
crete variable s could be handled, for instance, using the
Concrete Distribution. [36]

Conclusions
This study shows that in nearly all scenarios the accu-
racy of NetSparse is not significantly lower than that
of all other methods investigated. In particular, the Net-
Sparse method performed as well or better than GBLUP
and BayesB for all scenarios evaluated. On data gener-
ated from a sparse QTL simulation model, accuracies
obtained with NetSparse were significantly higher than
accuracies obtained with all the other methods inves-
tigated. In the medium dominance scenarios, accuracy
obtained with NetSparse was 0.0 to 0.8 percentage points
higher than that with the other methods investigated. In
the extreme dominance scenario, accuracy obtained with
Netsparse was 0.6 percentage points higher than that
with other methods that did not explicitly model domi-
nance. For methods that did explicitly model dominance,
the accuracy was 5.8 to 6.3 percentage points lower for
NetSparse. In the epistatic scenarios, accuracy obtained
with NetSparse was 0.6 to 3.9 percentage points higher
than that with the other methods. However, running time
can be limiting, as NetSparse inference took about 200
times as long as the other methods.

Acknowledgements
Not applicable.

Authors’ contributions
GvB designed and ran the analyses for NetSparse and LinSparse and wrote
the manuscript except for section “Simulations”. PD carried out the simula-
tions, wrote the section “Simulations” and ran the analyses with the reference
methods. CA, PB, MC, YW and HK supervised the study and assisted with the
interpretation of results and writing of the manuscript. All authors read and
approved the final manuscript.

Funding
This research is supported by the Netherlands Organisation of Scientific
Research (NWO) and the Breed4Food consortium partners Cobb Europe, CRV,
Hendrix Genetics, and Topigs Norsvin.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 SNN Machine Learning Group, Biophysics Department, Donders Institute
for Brain Cognition and Behavior, Radboud University, 6525 AJ Nijmegen,
The Netherlands. 2 Animal Breeding and Genomics, Wageningen Univer-
sity and Research, 6700 AH Wageningen, The Netherlands. 3 Department
of Molecular Developmental Biology, Radboud Institute for Molecular Life
Sciences, Radboud University, 6500 HB Nijmegen, The Netherlands. 4 Depart-
ment of Human Genetics, Donders Institute for Brain, Cognition and Behav-
iour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.
5 Present Address: Euretos B.V., Yalelaan 1, 3584 CL Utrecht, The Netherlands.

Appendix A: Prior distributions
The prior distributions for NetSparse are:

The prior distributions for LinSparse (f (x;u) = w⊺

(x ⊙ s)+ b) are:

The prior distributions of bhi each have a different mean
because equal priors would make the model invariant
under a relabeling of the hidden units and result in a
degenerate geometry of the sampling space where each
u is equivalent to at least H ! − 1 other configurations.
For 20 hidden units, there are over 1018 configurations,
which makes it completely infeasible to explore the entire
parameter space.

We could analytically marginalize out σo and σh ,
resulting in a probability density over w in terms of the
modified Bessel function of the second kind:

ei | β ∼ N

(

0,β−1
)

,

Wij | σh ∼ N

(

0, σ 2
h /P

)

,

w | σo ∼ N

(

0, σ 2
o /H1

)

,

bh ∼ N

(

µ
h, σ 2

bh
1
)

,

(

µ
h = [−2σh, . . . , 2σh],

σbh = 4σh/
√
H
)

bo ∼ Unif(−∞,∞),

β , σh, σo ∼
∣

∣

∣
N

(

0, 22
)∣

∣

∣
,

sp | π ∼ Ber(1− π), and

π ∼ Unif(0, 1).

ei | β ∼ N

(

0,β−1
)

,

w | σ ∼ N

(

0, σ 2/P1
)

,

b ∼ Unif(−∞,∞),

β , σ ∼
∣

∣

∣
N (0, 22)

∣

∣

∣
,

sp | π ∼ Ber(1− π) and

π ∼ Unif(0, 1).

Page 14 of 14van Bergen et al. Genet Sel Evol (2020) 52:26

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

and similarly for W . For simplicity, we kept the model
parameterization in terms of σh and σo.

Received: 27 September 2019 Accepted: 28 April 2020

References
 1. Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly addi-

tive genetic variance for complex traits. PLoS Genet. 2008;4:e1000008.
 2. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value

using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
 3. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the Bayesian

alphabet for genomic selection. BMC Bioinformatics. 2011;12:186.
 4. Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Dekkers JCM, et al.

Mixture models detect large effect QTL better than GBLUP and result in
more accurate and persistent predictions. J Anim Sci Biotechnol. 2016;7:7.

 5. Mehrban H, Lee DH, Moradi MH, IlCho C, Naserkheil M, Ibáñez-Escriche N.
Predictive performance of genomic selection methods for carcass traits
in Hanwoo beef cattle: impacts of the genetic architecture. Genet Sel
Evol. 2017;49:1.

 6. Daetwyler HD, Pong-Wong R, Villanueva B, Woolliams JA. The impact of
genetic architecture on genome-wide evaluation methods. Genetics.
2010;185:1021–31.

 7. Cockerham CC. An extension of the concept of partitioning hereditary
variance for analysis of covariances among relatives when epistasis is
present. Genetics. 1954;39:859–82.

 8. Gianola D, Fernando RL, Stella A. Genomic-assisted prediction of genetic
value with semiparametric procedures. Genetics. 2006;173:1761–76.

 9. Gianola D, Okut H, Weigel KA, Rosa GJ. Predicting complex quantitative
traits with Bayesian neural networks: a case study with Jersey cows and
wheat. BMC Genet. 2011;12:87.

 10. Okut H, Wu XL, Rosa GJ, Bauck S, Woodward BW, Schnabel RD, et al. Pre-
dicting expected progeny difference for marbling score in Angus cattle
using artificial neural networks and Bayesian regression models. Genet
Sel Evol. 2013;45:34.

 11. Waldman P. Approximate Bayesian neural networks in genomic predic-
tion. Genet Sel Evol. 2018;50:70.

 12. Okut H, Gianola D, Rosa GJM, Weigel KA. Prediction of body mass index in
mice using dense molecular markers and a regularized neural network.
Genet Res. 2011;93:189–201.

 13. Wang Y, Mi X, Rosa G, Chen Z, Lin P, Wang S, et al. Technical note: an R
package for fitting sparse neural networks with application in animal
breeding. J Anim Sci. 2018;96:2016–26.

 14. Scardapane S, Comminiello D, Hussain A, Uncini A. Group sparse regulari-
zation for deep neural networks. Neurocomputing. 2017;241:81–9.

 15. Louizos C, Welling M, P Kingma D. Learning sparse neural networks
through L0 regularization; 2018. arXiv :1712.01312 .

p(w) ∝ �w�(1−H)/2K(H−1)/2

(√
H

2
�w�

) 16. Patterson HD, Thompson R. Recovery of inter-block information when
block sizes are unequal. Biometrika. 1971;58:545–54.

 17. VanRaden PM. Efficient methods to compute genomic predictions. J
Dairy Sci. 2008;91:4414–23.

 18. Bishop CM. Pattern recognition and machine learning (Information Sci-
ence and Statistics). Berlin: Springer-Verlag; 2006.

 19. Lee SH, van der Werf JHJ. MTG2: an efficient algorithm for multivariate
linear mixed model analysis based on genomic information. Bioinformat-
ics. 2016;32:1420–2.

 20. Vitezica ZG, Legarra A, Toro MA, Varona L. Orthogonal estimates of
variances for additive, dominance, and epistatic effects in populations.
Genetics. 2017;206:1297–307.

 21. Wittenburg D, Melzer N, Reinsch N. Including non-additive genetic
effects in Bayesian methods for the prediction of genetic values based on
genome-wide markers. BMC Genet. 2011;12:74.

 22. Technow F, Riedelsheimer C, Schrag TA, Melchinger AE. Genomic
prediction of hybrid performance in maize with models incorporating
dominance and population specific marker effects. Theor Appl Genet.
2012;125:1181–94.

 23. Pérez P, de los Campos G. Genome-wide regression and prediction with
the BGLR statistical package. Genetics. 2014;198:483–95.

 24. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in Python
using PyMC3. PeerJ Comput Sci. 2016;2:e55.

 25. Duane S, Kennedy AD, Pendleton BJ, Roweth D. Hybrid Monte Carlo. Phys
Lett B. 1987;195:216–22.

 26. Neal RM. MCMC using Hamiltonian dynamics. In: Brooks S, Gelman A,
Jones GL, Meng XL, editors. Handbook of Markov Chain Monte Carlo, vol.
54. Boca Raton: Chapman & Hall/CRC; 2010. p. 113–62.

 27. Hoffman MD, Gelman A. The No-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15:1593–623.

 28. Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE T Pattern Anal. 1984;PAMI6:721–41.

 29. Beskos A, Pillai N, Roberts G, Sanz-Serna JM, Stuart A. Optimal tuning of
the hybrid Monte Carlo algorithm. Bernoulli. 2013;19:1501–34.

 30. Theano Development Team. Theano: a Python framework for fast compu-
tation of mathematical expressions. 2016; arXiv :1605.02688 .

 31. Sargolzaei M, Schenkel FS. QMSim. Bioinformatics. 2009;25:680–1.
 32. Wellmann R, Bennewitz J. The contribution of dominance to the under-

standing of quantitative genetic variation. Genet Res. 2011;93:139–54.
 33. Wellmann R, Bennewitz J. Bayesian models with dominance effects for

genomic evaluation of quantitative traits. Genet Res. 2012;94:21–37.
 34. Fuerst C, James JW, Sölkner J, Essl A. Impact of dominance and epistasis

on the genetic make-up of simulated populations under selection: a
model development. J Anim Breed Genet. 1997;114:163–75.

 35. Stan Development Team. Stan modeling language user’s guide and refer-
ence manual. Version 2.18.0; 2018. https ://mc-stan.org/.

 36. Maddison CJ, Mnih A, Teh YW. The concrete distribution: a continuous
relaxation of discrete random variables; 2016. arXiv :1611.00712 .

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1712.01312
http://arxiv.org/abs/1605.02688
https://mc-stan.org/
http://arxiv.org/abs/1611.00712

	Bayesian neural networks with variable selection for prediction of genotypic values
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Bayesian phenotype prediction
	Bayesian inference
	GBLUP
	BayesB

	AD methods
	GBLUP-ADAA
	NetSparse
	MCMC sampling

	Simulations
	Population structure
	Genome
	QTL effects

	Breeding values, dominance deviations, epistatic deviations, and phenotypes
	Scenarios
	Comparison of methods

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

