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Abstract 

Background: Estimating the genetic component of a complex phenotype is a complicated problem, mainly 
because there are many allele effects to estimate from a limited number of phenotypes. In spite of this difficulty, linear 
methods with variable selection have been able to give good predictions of additive effects of individuals. However, 
prediction of non-additive genetic effects is challenging with the usual prediction methods. In machine learning, non-
additive relations between inputs can be modeled with neural networks. We developed a novel method (NetSparse) 
that uses Bayesian neural networks with variable selection for the prediction of genotypic values of individuals, includ-
ing non-additive genetic effects.

Results: We simulated several populations with different phenotypic models and compared NetSparse to genomic 
best linear unbiased prediction (GBLUP), BayesB, their dominance variants, and an additive by additive method. We 
found that when the number of QTL was relatively small (10 or 100), NetSparse had 2 to 28 percentage points higher 
accuracy than the reference methods. For scenarios that included dominance or epistatic effects, NetSparse had 0.0 
to 3.9 percentage points higher accuracy for predicting phenotypes than the reference methods, except in scenarios 
with extreme overdominance, for which reference methods that explicitly model dominance had 6 percentage points 
higher accuracy than NetSparse.

Conclusions: Bayesian neural networks with variable selection are promising for prediction of the genetic compo-
nent of complex traits in animal breeding, and their performance is robust across different genetic models. However, 
their large computational costs can hinder their use in practice.
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Background
The biochemical mechanisms that underlie phenotypes 
work through non-linear interactions between molecules 
and proteins. Nevertheless, in the practice of animal 
breeding, additive prediction methods, which assume 
that phenotypes depend on markers individually and 
without interactions between them, have been successful. 
The U-shaped allele frequency of causal loci explains why 
these microscopic interactions give rise to traits mainly 

due to additive genetic variance [1], and therefore the 
success of additive methods. However, traits still have 
an epistatic component and therefore methods that can 
fit more than the additive genetic component have the 
potential to better predict genotypic values and pheno-
types of animals.

In reality, the causal variants of a trait are not necessar-
ily among the markers that are used for genomic predic-
tion. Therefore, not all markers may aid in the prediction 
of genetic values. Prediction methods may therefore be 
optimized if they allow to model a proportion π of the 
total number of markers as irrelevant for phenotype 
prediction. Additive methods such as BayesB [2] and 
BayesCπ [3] allow for this variable selection of markers 
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(sparsity). Depending on the genetic architecture of the 
trait, additive Bayesian variable selection methods may 
have a small advantage over genomic best linear unbiased 
prediction (GBLUP) [4–6].

Parametric methods assume a specific functional form. 
Members of this family of methods are the additive and 
dominance methods of quantitative genetics. In addition, 
parametric methods assume that genetic variance can 
be decomposed orthogonally into additive, dominance, 
additive × additive, dominance × additive etc. variance 
components. This orthogonal decomposition is valid only 
under restricted assumptions such as linkage equilib-
rium, random mating and no inbreeding [7]. Since these 
assumptions are invalid in practice, prediction methods 
that do not make them have the potential to obtain better 
predictive performance of traits than methods that do.

Non-parametric methods assume neither a particu-
lar form of the unknown relation from genetic material 
to genotypic values, nor the aforementioned partition-
ing of genetic variance. Because these models do not 
distinguish between the different variance components, 
they predict genotypic values instead of breeding values, 
where breeding values correspond only to the additive 
component of genotypic values. In genetics, reproducing 
kernel Hilbert space regression [8] and neural networks 
have been studied as non-parametric methods for the 
prediction of phenotypes. Neural networks, in particular, 
are powerful and interesting non-parametric methods 
because they can approximate any function, and current 
software packages make them easy to use.

Neural network models that have been investigated in 
animal breeding include Bayesian regularized artificial 
neural network (BRANN) [9, 10], scaled conjugate gradi-
ent artificial neural network (SCGANN) [10] and approx-
imate Bayesian neural network [11] methods. BRANN 
is a neural network method that avoids overfitting by 
means of Bayesian regularization via Bayesian prior 
distributions, and achieved higher accuracy than addi-
tive methods for prediction of milk production in Jersey 
cows. For marbling score in Angus cattle, BRANN had a 
higher predictive accuracy than both additive methods 
and SCGANN, which is a neural network method with-
out Bayesian regularization. These results imply that 
Bayesian regularization can have a benefit for prediction 
of traits. BRANN has been used for the ranking of mark-
ers based on their impact on the network. [12] While 
this approach can help to identify the most important 
markers, it does not promote sparsity during inference 
since the ranking is performed as a separate step after 
inference.

There are several neural network methods that try to 
achieve sparsity with different regularizations on the 
weights (parameters of the neural network). For example, 

ℓ1 (Lasso) regularization causes as many weights as pos-
sible to reach zero and has previously been studied in 
animal breeding [13], and group Lasso, which allows 
for pruning weights in groups instead of individually, 
has been studied for image classification [14]. Sparsity 
based on an ℓ0 regularization for individual weights has 
also been studied for image classification [15]. These 
approaches are based on Maximum a Posteriori infer-
ence, and typically focus on sparsity of all network nodes 
or weights, rather than sparsity of inputs (markers) 
specifically.

In summary, there are phenotype prediction methods 
that allow for variable selection of markers and there are 
non-parametric methods that allow for fitting non-addi-
tive effects of individuals. However, there are no methods 
that allow for both. In this study, we introduce a method 
called NetSparse to fill the previously unexplored combi-
nation of both Bayesian variable selection and Bayesian 
neural networks for prediction of total genotypic values.

In the section Methods, the framework for Bayesian 
phenotype prediction is set and we explain how both 
additive Bayesian methods and NetSparse fit within this 
framework. The section Simulations describes the simu-
lation of data used to compare NetSparse with other 
methods. In the section Results, we compare NetSparse 
to the reference methods GBLUP, BayesB, GBLUP-AD, 
BayesB-AD and GBLUP-ADAA.

Methods
First, we set up a general Bayesian framework for pheno-
type prediction methods, then we will describe how the 
different methods considered fit in this framework.

Bayesian phenotype prediction
We assume that N individuals (i = 1, . . . ,N ) are pheno-
typed and genotyped, such that the observed phenotype 
yi is the sum of a genotypic value gi and a residual ei . In 
addition, we assume that the genotypic value of individu-
als can be computed from their marker genotypes by a 
function f (·;u) , depending on unknown parameters u 
(different for each method), and that the residuals ei fol-
low a normal distribution with mean 0 and variance σ 2

e  , 
which we write as ei ∼ N

(

0, σ 2
e

)

 . These assumptions lead 
to the following model:

where xi =
(

x1i x
2
i . . . xPi

)⊺ is the vector with marker 
genotypes of individual i, the exact encoding of which 
depends on the method. We gather the vectors in the 
matrix X = (x1 x2 · · · xN ) . Model (1) implies that the 
likelihood of the data is:

(1)yi = f (xi;u)+ ei,
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The likelihood is combined with a prior distribution 
p(u | η) , depending on hyperparameters η , which indi-
cates what a priori are considered to be plausible values 
of u that could have generated our data.

In our terminology, we use the term “parameter” for u , 
these are variables which directly determine the model 
predictions. The term “hyperparameter” is used for η , 
these are the parameters which only indirectly influence 
the predictions of the model. The hyperparameters η and 
σ 2
e  can crucially influence the performance of a model. 

There are roughly two approaches for these hyperpa-
rameters: they can be either estimated or integrated out. 
For the GBLUP models in particular, where the hyper-
parameters are the variance components,1 this estima-
tion can be done for instance with restricted maximum 
likelihood (REML) [16]. Alternatively, if estimation of 
these hyperparameters is difficult, they can be given prior 
distributions and integrated out together with the other 
parameters via Markov chain Monte Carlo sampling 
(“MCMC sampling” section).

The joint distribution of y and u conditioned on X is 
the product of the likelihood and prior distribution:

The posterior distribution p
(

u | X, y
)

 via Bayes’ Theorem 
is then:

This posterior distribution is the distribution over u 
obtained by combining the information in the prior dis-
tribution and the information in the observed data.

Model (1) can be used to make phenotype predictions 
y∗ for an individual with markers x∗ by computing the 
posterior predictive distribution:

The expected value of y∗ with respect to the posterior 
predictive distribution is:

p
(

y | X,u, σ 2
e

)

=
N
∏

i=1

N
(

yi | f (xi;u), σ 2
e

)

=
(

2πσ 2
e

)−N/2
exp

(

−
1

2σ 2
e

N
∑

i=1

(

yi − f (xi;u)
)2

)

.

p
(

y,u | X
)

= p
(

y | X,u
)

p(u).

(2)p
(

u | X, y
)

=
p
(

y | X,u
)

p(u)
∫

p
(

y | X,u′
)

p(u′) du′
.

p
(

y∗ | X, y, x∗
)

=
∫

N

(

y∗ | f (x∗;u), σ 2
e

)

p
(

u | X, y
)

du.

Bayesian inference
Using the previous framework, we will briefly describe 
the five methods that we used for reference (GBLUP, 
BayesB, GBLUP-AD, BayesB-AD and GBLUP-ADAA), 
as well as our new method, NetSparse. Of these meth-
ods, GBLUP [17] was chosen because it is the most used 
in practice. We chose BayesB [2] because it is a com-
mon method that includes variable selection, similar to 
NetSparse.

GBLUP
The SNP-BLUP model is an additive model where each 
marker p is assigned an additive effect ap with shared 
prior variance σ 2

a  . Specifically, in SNP-BLUP, f is chosen as 
a linear function fSNP-BLUP(x;u) = x⊺a , with u = a . The 
prior distribution over a is p

(

a | σ 2
a

)

= N
(

a | 0, σ 2
a1

)

 . 
The hyperparameters σ 2

e , σ
2
a  are estimated with REML.

The posterior distribution over a is:

where �−1 = σ 2
e 1+ σ 2

aX
⊺X . The matrix X⊺X is propor-

tional to the additive genomic relationship matrix G . The 
posterior predictive distribution is also Gaussian:

This equivalent formulation of SNP-BLUP is called 
GBLUP and uses the additive relationship matrix G 
instead of allele effects, based on markers. For deriva-
tions of these formulas, see for instance [18]. We used the 
GBLUP implementation of MTG2 [19].

BayesB
The BayesB model, like SNP-BLUP, is an additive model 
where every marker is assigned an additive effect [2]. 
However, contrary to SNP-BLUP, BayesB also includes 
marker selection, which we will indicate by a (binary) 
marker selection vector s ∈ {0, 1}P . If an entry in this 
marker selection vector has the value 1, the correspond-
ing marker is selected for inclusion in the model. If the 
entry is equal to 0 the marker is not selected. If the pos-
terior distribution is concentrated at sp = 1 , then the p-th 
marker contributes significantly to phenotype prediction, 

(3)

E[y∗ = f (x∗;u)] =
∫

y∗ p
(

y∗ | X, y, x∗, σ 2
e

)

dy∗

=
∫

y∗N
(

y∗ | f (x∗;u), σ 2
e

)

p
(

u | X, y
)

du dy∗

=
∫

f (x∗;u)p
(

u | X, y
)

du.

p
(

a | X, y
)

= N

(

a | σ 2
a�Xy,�

)

,

(4)p
(

y∗ | X, y, x∗
)

= N

(

y∗ | σ−2
e x⊺∗�Xy, x⊺∗�x∗

)

.

1 Strictly speaking, in GBLUP the allele effects of SNP-BLUP are integrated 
out, so the variance components in GBLUP should be called “parameters”. But 
for consistency with the other methods, we refer to the variance components 
as hyperparameters.
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while if most of the probability is concentrated at sp = 0 
then the p-th marker does not contribute significantly to 
phenotype prediction. In addition, there is a hyperparam-
eter π that is equal to the proportion of non-contributing 
markers, i.e. π = 1−

∑

p s
p/P . SNP-BLUP, in contrast, 

assumes that all additive effects come from the same nor-
mal distribution, making it similar, but not exactly equal, 
to BayesB with π = 0 . If a dataset contains relatively few 
quantitative trait loci (QTL), this mismatch should result 
in BayesB having a better performance than GBLUP.

Specifically, in BayesB, the function f is 
fBayesB(x;u) = a⊺(x ⊙ s) , with u = (a, s) and ⊙ the ele-
ment-wise (Hadamard) product (x ⊙ s)p = xpsp . For each 
marker p, marker effect ap has prior distribution 
p
(

ap | σ 2
ap

)

= N

(

ap | 0, σ 2
ap

)

 and hyperprior distribu-

tion p
(

σ 2
ap

)

= χ−2
(

σ 2
ap

| df = 5, S = 3
5

)

 , p
(

sp | π
)

=

π1−sp(1− π)s
p , and p(π) = Unif(π | 0, 1) . The expres-

sion for the posterior distribution over u is:

and the expected value of the posterior predictive distri-
bution is2:

The last line comes from the identity a⊺(x∗ ⊙ s) =
(a ⊙ s)⊺x∗ and means that prediction can be obtained 
by averaging allele effects and then making predictions 
using those, instead of averaging predictions directly. The 
expectation value cannot be computed analytically, but 
it can be approximated by sampling (“MCMC sampling” 
section).

AD methods
The aforementioned additive methods can be adapted 
to fit additive and dominance effects. For the additive 
effects, markers were encoded as:

(5)

p
(

a, s | X, y, σ 2
e

)

∝
∫ exp

(

−�y−a⊺(X⊙s)�2
2σ 2

e

)

(

σ 2
e

)N/2

∏

p

exp

(

− a2p
2σ 2

ap

)

√

σ 2
ap

χ−2

(

σ 2
ap

| 5,
3

5

)

π
∑

p 1−sp
(1− π)

∑

p s
p

dπ dσ 2
ap

(6)

E[y∗] =
∑

s

∫

[a⊺(x∗ ⊙ s)]p
(

a, s | X, y, σ 2
e

)

da

=

(

∑

s

∫

(a ⊙ s)p
(

a, s | X, y, σ 2
e

)

da

)

⊺

x∗.

and for the dominance effects, markers were encoded as:

Note that for the GBLUP implementation and assuming 
Hardy-Weinberg equilibrium (HWE), the use of these 
encodings leads to additive and dominance relationship 
matrices as described in [20]. For the BayesB implemen-
tation, the two encodings are appended, such that every 
individual is represented by an array twice as long as for 
the additive models. Using GBLUP and BayesB with these 
longer arrays allows dominance to be fitted as well and 
we call the resulting methods GBLUP-AD and BayesB-
AD [21, 22]. Because they explicitly model additive and 
dominance effects, these methods should work best on 
data where both additive variance and dominance vari-
ance are significant.

GBLUP‑ADAA
The AD construction for GBLUP can be extended further 
to fit additive by additive epistasis (section Simulations), 
in addition to additive and dominance effects, by adding 
a third covariance matrix, given by G⊙G . We call this 
method GBLUP-ADAA. As with GBLUP, the MTG2 soft-
ware was also used for GBLUP-AD and GBLUP-ADAA.

NetSparse
In our NetSparse model (Fig.  1), f is chosen as a neural 
network with one hidden layer3:

with u =
(

W,w,bh, bo, s
)

 . fNetSparse is the output of the 
entire network, which depends on h(x) , which is called 
the hidden layer. The vector s is a marker selection vector, 
like in BayesB. The parameters W ∈ R

H×P and w ∈ R
H 

are called the weights, bh ∈ R
H and bo are called the 

biases. Parameter H is the number of hidden units and 
by increasing it, the neural network has more capacity 
to fit non-additive effects. In this study, as is typical for 

(7)







−(−pAa − 2paa)
−(1− pAa − 2paa)
−(2− pAa − 2paa)

for genotypes







AA
Aa
aa

,

(8)































2pAapaa

pAA + paa − (pAA − paa)
2

4pAApaa

pAA + paa − (pAA − paa)
2

2pAApAa

pAA + paa − (pAA − paa)
2

for genotypes







AA
Aa
aa

,

(9)
fNetSparse(x;u) = g

(

bo + w⊺ tanh (h(x))
)

, where

(10)h(x) = bh +W(x ⊙ s)

2 Because s is discrete it is summed instead of integrated over.
3 As activation functions were applied to layers, one in hidden and one in out-
put layer, this architecture is also called a two-layer neural network.
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prediction of continuous outcomes, the output activation 
function g was chosen as the identity. For classification, 

Fig. 1 NetSparse Schematic neural network representation of 
NetSparse (9). The input x to the neural network is on the left, the 
output g is on the right. s is the variable selection vector, W and w are 
the weights, bh and bo are the biases. At the third layer of nodes, tanh 
is applied to the sum of the incoming values

4 A complete list of prior distributions is given in appendix A.

a different transfer function, such as softmax, would be 
more appropriate, but such analyses fall outside the scope 
of this study. Given that the computational resources are 
sufficient, one would determine H via a cross-validation 
procedure. However, we did not have access to such 
resources, thus we used H = 20 , such that the model was 
able to fit complex non-linear interactions within reason-
able computation time. A value of H larger than 20 led to 
an impractical increase in computation time.

A neural network can be interpreted as repeatedly tak-
ing linear combinations and elementwise application of 
an activation function ( tanh ). Given x ⊙ s , the value of hi 
depends linearly on the j-th column of W , and given each 
tanh (hi) , the output of the network depends linearly on 
w . The non-linearity from tanh makes sure that the neu-
ral network can fit more than additive relations; if tanh , 
as well as g, was replaced by the identity function the net-
work would only be able to fit linear functions.

Some of the prior distributions are:4

where 
∣

∣N
(

0, 22
)
∣

∣ denotes the half-normal distribution 
with scale parameter 22 , which is the same as a normal 
distribution with standard deviation 2 restricted to posi-
tive values only, and β is the precision parameter in the 
(Gaussian) likelihood. The prior distribution over s is the 
same as that of BayesB. The posterior distribution over u 
in NetSparse (2) is:

Wij | σh ∼ N

(

0, σ 2
h /P

)

,

w | σo ∼ N

(

0, σ 2
o /H1

)

,

sp | π ∼ Ber(1− π),

π ∼ Unif(0, 1), and

β , σh, σo ∼
∣

∣

∣
N

(

0, 22
)∣

∣

∣
,

(11)p
(

u | X, y
)

∝
∫

exp

(

−
β

∥

∥

∥
y−w⊺ tanh

(

W(X⊙s)+bh
)

−bo
∥

∥

∥

2

2 − P�W�2
2σ 2

h

− H�w�2
2σ 2

o
− σ 2

h+σ 2
o+β2

8 −
∥

∥

∥
bh−µbh

∥

∥

∥

2

2σ 2
bh

)

β−N/2
(

σ 2
h /P

)PH/2(
σ 2
o /H

)H/2

∏

p

π1−sp(1− π)s
p
dπ dσo dσh dβ .

As with BayesB, this expression can not be computed 
analytically, but it can be approximated by sampling.

MCMC sampling
The integral in (3) can be computed analytically for 
GBLUP, but not for BayesB (5) and NetSparse (11). To 
obtain an approximation to E[y∗] for these models, we 
do MCMC sampling to obtain samples from the joint 
posterior distribution over (u, η) . Given such samples 
((u1, η1), (u2, η2), . . . , (uT , ηT )) , the expectation value of 
y∗ can be estimated as:

For BayesB, we implemented a Gibbs sampler in the 
BGLR R package [23]. Instead of averaging predictions, 
the sampler averages allele effects, but this is equivalent 
(see (6)).

For NetSparse, we used the PyMC3 package [24] 
to sample from the NetSparse posterior distribution, 
p
(

u, η|X, y
)

 , which is the integrand of (11). The condi-
tional distributions cannot be sampled from, directly, so 
a Gibbs sampler cannot be used, therefore PyMC3 uses 

E[y∗] ≈
1

T

T
∑

t=1

f (x∗;ut).
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a composite sampler, which alternatively uses MCMC 
samplers for the discrete ( sp ) and for the continuous 
variables (the rest). To sample s , we used a Metropolis-
Hastings algorithm, where we iterate over the individual 
components in a random order. For each sp , we evaluate 
P1 = p

(

sp | rest
)

 and P2 = p
(

1− sp | rest
)

 , then we set 
sp ← 1− sp with probability min(1,P2/P1).

For the continuous parameters, we have the condi-
tional posterior distribution p

(

θ | X, y, s
)

 , where we 
write θ for the combination of all continuous vari-
ables: W,w,bh, bo, and η . This conditional posterior 
distribution is the integrand of (11). To sample these 
parameters, we used the Hamiltonian Monte Carlo 
sampler (HMC) [25, 26]. HMC uses the same Metrop-
olis-Hastings procedure as for s , but with a more com-
plicated proposal. To generate a proposal, initialize 
θ(0) ← θ , and for each θi draw a new variable ri(0) 
from a normal distribution and compute the energy 
E0 = H(θ(0), r(0)) = �r(0)�2/2− log p(θ(0) | rest)  . 
Given this initial state, generate a proposal state from 
(θ(0), r(0)) by numerically evolving it for a time T accord-
ing to the Hamiltonian dynamics:

This new state (θ(T ), r(T )) will have energy 
ET = H(θ(T ), r(T )) . This proposal is evaluated with a 
Metropolis-Hastings acceptance criterion: set θ ← θ(T ) 
with probability min (1, exp (E0 − ET )) , otherwise 
θ ← θ(0) . The ri are discarded. We note that only the gra-
dient of the posterior distribution is required, but not the 
matrix of second derivatives.

We used the NUTS variant of HMC [27]. For high-
dimensional models with continuous variables, using 
the gradient of the posterior distribution allows HMC to 
explore the parameter space faster than either Metrop-
olis-Hastings or Gibbs [28] samplers [29], and therefore 
requires fewer sampler steps.

Besides computing the posterior distribution, simula-
tion of the Hamiltonian dynamics also requires the gradi-
ent of the posterior distribution. PyMC3 calculates this 
gradient by the automatic differentiation capabilities of 
Theano [30].

We drew four independent chains of 1000 samples 
each, where for each chain the first 500 samples were 
used to tune the sampler and discarded, the last 500 
samples of each chain were used for predictions. We 
also ran a few longer chains, but this did not change the 
results.

dθi

dt
= ri

dri

dt
=

∂ log p(θ | rest)
∂θi

.

Simulations
To compare the performance of these methods, we 
evaluated them on populations in which the traits have 
different phenotypic models (additive, dominance and 
epistatic).

Population structure
Our aim was to simulate a population with a  fam-
ily structure and linkage disequilibrium pattern that 
roughly resemble those of livestock populations, using 
QMSim [31]. The historical population was simulated 
by mating 250 males with 250 females for 1900 genera-
tions to reach mutation-drift equilibrium. To mimick 
breed formation, a bottleneck was introduced by grad-
ually decreasing the population size to 75 males and 75 
females during the next five generations. This popula-
tion size was maintained for 95 generations, and, then, 
population size was increased to 1050 (50 males and 
1000 females) in the last historical generation. From the 
last historical generation, all males and females were 
randomly mated for 15 generations to create the cur-
rent population. Litter size in the current population 
was 10, and at each generation all sires and dams were 
replaced to create non-overlapping generations. For all 
scenarios, the reference population consisted of 500 
randomly sampled individuals from generation 14, and 
the validation population consisted of 2000 randomly 
sampled individuals from generation 15.

Genome
The genome consisted of 10 chromosomes, of 100 cM 
each. For each chromosome, 40  000 biallelic loci were 
simulated. Mutation rate in the historical generations 
was 2.5 · 10−6 , and there was no mutation in the last 15 
generations. From all loci segregating in generation 14, m 
loci were selected to become QTL, which varied across 
scenarios, and 5000 loci were selected to become mark-
ers. Although this density is lower than a typical com-
mercial livestock SNP chip (60K), we chose this lower 
density to decrease computational demand. The markers 
were selected based on their allele frequency; the allele 
frequency distribution of markers was approximately 
uniform. The QTL were randomly selected and the 
allele frequency distribution of QTL was approximately 
U-shaped.

QTL effects
Additive effects (a) of QTL were sampled from a normal 
distribution with mean 0 and variance 1. Dominance 
factors ( δ ) were also sampled from a normal distribu-
tion, with varying mean and variance across scenarios. 
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Dominance effects (d) were computed as δ|a| [32, 33]. 
Similar to dominance effects, we assumed that the mag-
nitude of epistatic effects were proportional to the addi-
tive effects of the interacting QTL. For all m(m− 1)/2 
pairwise combinations of QTL, epistatic factors ( γ ) were 
sampled from a normal distribution with mean 0 and 
variance 1. The epistatic effects ( ǫ ) between QTL k and l 
were computed as γ

√
|akal |.

Breeding values, dominance deviations, epistatic 
deviations, and phenotypes
Breeding values ( A ) and dominance deviations ( D ) were 
simulated with genotype coefficient matrices that fol-
lowed the natural and orthogonal interactions (NOIA) 
parameterization, as in [20]. With NOIA, the coefficient 
matrices are constructed such that the genetic effects ( A 
and D ) are statistically orthogonal, even in the absence 
of HWE. However, the epistatic values were simulated 
with epistatic coefficient matrices that followed one of 
three biological models for epistasis (Fig  2). The result-
ing epistatic values are not orthogonal to A and D , which 
means that A and D change when epistasis is simulated. 
Thus, we begin by explaining the simulation of epistatic 
deviations and subsequently discuss how A and D were 
computed.

The first step was to compute epistatic values for all 
nine possible combinations of genotypes at loci k and l as 
ckl = tǫkl , where ǫkl is the epistatic effect between loci k 
and l, and t is a vector containing 9 ( 3× 3 ) epistatic coef-
ficients, following one of three epistasis models (Fig. 2). 
The coefficients in t were ordered from top-to-bottom 
and left-to-right (AABB, AaBB, aaBB, ..., aabb). Then, 
using the NOIA parameterization and the two-locus gen-
otype frequencies, epistatic values were partitioned into 

nine statistically orthogonal effects following the proce-
dure described in [20]:

This procedure was repeated for all m(m− 1)/2 pairwise 
interactions between QTL.

The epistatic deviation of individual i was computed as:

where hka,i ( hla,i ) is the additive genotype coefficient of 
individual i at locus k (l), and hkd,i ( h

l
d,i ) is the dominance 

genotype coefficient of individual i at locus k (l). Elements 
of the additive genotype coefficients, hka,i , were encoded 
as in (7), where pAA , pAa , and paa are the genotype fre-
quencies of marker k in the base generation (generation 
14). Elements of the dominance genotype coefficients 
were encoded as in (8). The breeding value of individual 
i was computed as:

where αk is the average effect of locus k, which was com-
puted as:

bkl =
[

µ,αk
kl , d

k
kl ,α

l
kl , (αα)kl , (dα)kl , d

l
kl(αd)kl , (dd)kl

]

⊺

Ei =
m
∑

k ,l=1
k �=l

hka,ih
l
a,i(αα)kl

+ hka,ih
l
d,i(αd)kl + hkd,ih

l
a,i(dα)kl

+ hkd,ih
l
d,i(dd)kl ,

BVi =
m
∑

k=1

hka,iα
k ,

αk = ak +
(

1− 2pk
)

dk +
m
∑

l=1
l �=k

αk
kl ,

Fig. 2 Epistatic models Epistatic coefficients used for simulating the total genetic values in three epistatic scenarios: additive by additive, 
complementary, and interaction
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where pk is the allele frequency of locus k in generation 
14. The dominance deviation of individual i was com-
puted as:

where dk ′ was computed as:

Total genetic values were computed as 
TGV = BV +D+ E . Phenotypes were computed as 
y = TGV + e , where e is a vector of random residuals, 
sampled from a normal distribution with mean zero and 
variance σ 2

e = σ 2
TGV  , such that the broad sense heritabil-

ity H2 is equal to 50%.

Di =
m
∑

k=1

hkd,id
k ′,

dk
′ = dk +

m
∑

l=1
l �=k

αk
kl .

Scenarios
As a base scenario, a purely additive trait with 300 
QTL was simulated (Base). We varied the number of 
QTL to be 1000 ( S1000 , 100 ( S100 ), or 10 (S10 ). Hereaf-
ter, we will call this characteristic of the trait “Sparsity”. 
Dominance was varied by sampling dominance factors 
δ from N

(

0.6, 0.32
)

 with the Dmedium scenario, or from 
N (1.2, 0.32) with the Dextreme scenario, which is extreme 
overdominance.

Following [1, 34], epistasis was varied by applying 
the additive × additive model ( EA ), complementary 
model ( EC ), or interaction model ( EI ). The relative vari-
ance components in the simulated scenarios are listed 
in Table 1. The location and additive effects of QTL in 
each scenario were not resampled for the dominance 
and epistasis scenarios, so they were the same as in the 
base scenario.

Table 1 Summary of the scenarios used in the simulations

The rightmost columns contain the average proportions of additive, dominance, 
and epistatic variance in the replicate genotypes. In all scenarios, the broad 
sense heritability is H2 = 50%

#QTL Explanation Var(A) Var(D) Var(E)

Base 300 Default scenario 1.0 0.0 0.0

S10 10 Very sparse 1.0 0.0 0.0

S100 100 Sparse 1.0 0.0 0.0

S1000 1000 Dense 1.0 0.0 0.0

Dmedium 300 Medium dominance 0.854 0.161 0.0

Dextreme 300 Extreme dominance 0.636 0.386 0.0

EA 300 Additive × additive epistasis 0.657 0.0 0.366

EC 300 Complementary epistasis 0.658 0.225 0.116

EI 300 Interaction epistasis 0.896 0.0 0.127

Table 2 Mean accuracy and standard error of the mean of each method, calculated over ten replicates each, times 100

Each row corresponds to a scenario, as summarized in Table 1. The different columns correspond to different methods, GBLUP and Bayes-B are additive methods, 
GBLUP-AD and BayesB-AD are methods with additive and dominance features and GBLUP-ADAA has additive, dominance and additive × additive features

Scenario GBLUP BayesB NetSparse GBLUP‑AD BayesB‑AD GBLUP‑ADAA

Base 63.6± 1.2 63.8± 1.2 64.8± 1.4 62.5± 1.3 61.5± 1.5 62.2± 1.4

S10 63.6± 1.5 84.6± 1.5 91.3± 1.3 63.1± 1.3 82.0± 1.4 62.7± 1.4

S100 61.6± 0.7 64.4± 1.0 66.8± 1.3 61.0± 0.6 61.5± 1.1 60.7± 0.7

S1000 66.0± 1.8 64.9± 1.7 66.0± 1.8 65.7± 1.8 62.9± 2.1 65.5± 1.8

Dmedium 55.4± 2.0 55.6± 1.8 56.2± 2.1 56.1± 2.0 55.4± 2.2 55.8± 2.0

Dextreme 42.8± 1.7 42.8± 1.5 43.4± 1.8 49.7± 1.7 49.5± 1.7 49.2± 1.7

EA 43.9± 2.0 44.0± 1.8 44.6± 2.1 43.2± 2.2 41.4± 2.0 43.3± 2.4

EC 44.9± 2.1 44.5± 2.4 45.4± 2.4 44.5± 2.1 43.9± 2.4 44.4± 2.2

EI 56.5± 1.5 56.4± 1.7 58.0± 1.6 55.2± 1.5 54.0± 1.8 55.2± 1.5

Table 3 Mean accuracy increase of  NetSparse relative 
to each other method and its standard error on the mean 
calculated over ten replicates each, times 100

Significant entries, determined with the Benjamini-Hochberg procedure for 
α = 0.05 for the one-sided paired t-test corresponding to the hypotheses 
E
(

ρNetSparse − ρMethod

)

= 0 , are marked in italic

Scenario GBLUP BayesB GBLUP‑AD BayesB‑AD GBLUP‑
ADAA

Base 1.2± 0.6 1.0± 0.5 2.2± 0.7 3.3± 0.6 2.5± 0.6

S10 27.7± 1.6 6.7± 0.8 28.1± 1.5 9.3± 1.1 28.5± 1.4

S100 5.2± 1.1 2.4± 0.7 5.8± 1.1 5.4± 0.7 6.1± 1.1

S1000 −0.0± 0.2 1.1± 0.3 0.3± 0.2 3.0± 0.7 0.4± 0.3

Dmedium 0.8± 0.3 0.6± 0.5 0.0± 0.5 0.8± 0.6 0.4± 0.5

Dextreme 0.6± 0.8 0.6± 0.6 −6.3± 0.6 −6.1± 0.7 −5.8± 0.7

EA 0.7± 0.2 0.6± 0.7 1.4± 0.4 3.2± 0.6 1.3± 0.5

EC 0.6± 0.4 0.9± 0.3 0.9± 1.0 1.5± 1.1 1.0± 1.0

EI 1.5± 0.5 1.5± 0.4 2.8± 0.6 3.9± 0.6 2.7± 0.6
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Comparison of methods
To evaluate the performance of the different methods, 
each one was trained on the 500 animals in the training 
population, and the accuracy was obtained by taking 
the Pearson correlation coefficient between predictions 

and the total genotypic values of the 2000 animals in 
the validation population.

Direct comparison of the average accuracies per sce-
nario (Table  2) required many replicates, because the 
accuracies fluctuated considerably between replicates. 

Table 4 p-values of the one-sided paired t-test for the hypotheses E
(

ρNetSparse − ρMethod

)

= 0

Each row corresponds to a scenario, as summarized in Table 1. The cells containing negative values had p close to 1 and therefore we chose to put −(1− p) in those 
cell instead. The minus serves to clearly identify those cases while the (1− p) represents the p-value for superiority of GBLUP-AD and BayesB-AD over NetSparse

Scenario GBLUP BayesB GBLUP‑AD BayesB‑AD GBLUP‑ADAA

Base 3.21× 10
−2

3.98× 10
−2

4.52× 10
−3 1.92× 10

−4
1.67× 10

−3

S10 2.05× 10
−8

6.96× 10
−6

7.45× 10
−9

9.36× 10
−6

4.48× 10
−9

S100 4.63× 10
−4

3.64× 10
−3 2.18× 10

−4
2.79× 10

−5
1.52× 10

−4

S1000 5.00× 10
−1

3.48× 10
−3 1.33× 10

−1
1.29× 10

−3
9.67× 10

−2

Dmedium 5.75× 10
−3 1.47× 10

−1
5.00× 10

−1
1.19× 10

−1
2.10× 10

−1

Dextreme 2.09× 10
−2 1.72× 10

−1 −1.85× 10
−6 −7.57× 10

−6 −5.45× 10
−6

EA 5.75× 10
−3 1.95× 10

−1
1.50× 10

−3 2.39× 10
−4

1.14× 10
−2

EC 8.92× 10
−2

9.61× 10
−3 1.98× 10

−1
1.04× 10

−1
1.60× 10

−1

EI 7.92× 10
−3

1.67× 10
−3 4.13× 10

−4
8.27× 10

−5
5.27× 10

−4
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Fig. 3 Sparsity The accuracy of NetSparse versus other methods in scenarios with 10, 100, 300 and 1000 QTL. Each row corresponds to a 
different amount of sparsity, the different columns correspond to different methods, GBLUP and Bayes-B are additive methods, GBLUP-AD and 
BayesB-AD are methods with additive and dominance features and GBLUP-ADAA has additive, dominance and additive×additive features. The 
line x = y is added in red for reference. A marker that is above the line means a replicate with higher accuracy for NetSparse than the method it is 
compared to, and a marker that is below the line means a replicate with lower accuracy for NetSparse than the other method
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Therefore, instead of comparing the average accura-
cies of the methods, we used the mean and stand-
ard error of the difference in accuracy between 
methods, ρNetSparse − ρMethod , which fluctuated much 
less (Table  3). In addition, we calculated the p-values 
corresponding to the one-sided paired t-test for the null 
hypotheses H0 : E

(

ρNetSparse − ρMethod

)

= 0 for each 
reference method. Significance of p-values with respect 
to the treshold of 0.05 were corrected for multiple testing 
via the Benjamini-Hochberg procedure (Table 4).

Results
First, we considered the effect of sparsity on the predic-
tion of genotypic values in the additive scenarios for all 
methods (Fig.  3). In the sparse scenario with 10 QTL 
( S10 ), the accuracy with Netsparse was about 0.28 higher 
than with GBLUP(-AD,-ADAA), and about 0.08 higher 
than with BayesB(-AD). In the scenario with 100 QTL 
( S100 ), NetSparse had an increase in accuracy of   0.06 
over the GBLUP(-AD,-ADAA) methods, of   0.02 over 
BayesB and 0.05 over BayesB-AD. In the “Base” scenario 
with 300 QTL, NetSparse was better than the methods 
that fit dominance, but not significantly better than the 
additive methods In the 1000 QTL scenario NetSparse 

was significantly better than BayesB and BayesB-AD, 
but not significantly better than the methods based on 
GBLUP.

Now, we consider the simplest possible phenotypic 
model after the additive one, the dominance model. In 
the medium dominance scenario ( Dmedium ), all meth-
ods performed roughly the same (Fig. 4). Hence, meth-
ods that tried to fit dominance did not result in higher 
accuracies than methods that did not. In the extreme 
dominance scenario ( Dextreme ), GBLUP-AD, BayesB-
AD and GBLUP-ADAA methods had better perfor-
mance than the other methods, which matched our 
prior expectation.

The epistatic scenarios (Fig.  5) contain components 
which can be fitted only by NetSparse and GBLUP-
ADAA, thus we expected that in the additive × additive 
scenario, GBLUP-ADAA would have the best fit and 
that NetSparse would have the best fit among the other 
two scenarios. In the additive × additive scenario ( EA ), 
NetSparse had a significantly higher accuracy than the 
other methods except BayesB. Surprisingly, GBLUP-
ADAA did not fit this scenario better than the other 
methods. In the complementary ( EC ) scenario, Net-
Sparse had 0.6 to 1.5 percentage points higher accuracy 
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Fig. 4 Dominance Accuracy of NetSparse versus other methods for the base scenario, and the two (Medium and Extreme) dominance scenarios. 
The line x = y is added in red for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the method it is 
compared to, a marker below the line means a lower accuracy of NetSparse than the other method
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on average than the other methods, but these results 
were not consistent across replicates. The accuracy 
of NetSparse in the interaction scenario ( EI ) was on 
average three or more standard errors above the other 
methods.

Discussion
In this study, we compared methods that differed in flex-
ibility. For example, the GBLUP-AD method is more 
flexible than the GBLUP method, because it allows for 
dominance effects to be fitted. In theory, the more flex-
ible method should be able to give the same predictions 
as simpler methods by setting the additional hyperpa-
rameters to zero. In reality, however, these additional 
hyperparameters also have to be estimated from the data 
because the genetic architecture of the trait is unknown. 
In this study, we used the default prior distributions from 
the BGLR package and estimated hyperparameters from 
the training dataset. We chose not to fine-tune the prior 
distributions on test performance, because in reality this 
is not possible. As a result, when the actual genetic archi-
tecture of a trait is simple (e.g. additive and not sparse), 
a more flexible method will perform worse than a sim-
pler method. Our results indeed showed that sometimes 

more flexible methods performed worse than simpler 
methods. For example, if we consider the scenario with 
complementary epistatic effects and consider the GBLUP 
and BayesB methods, BayesB with hyperparameter π 
set to zero is equivalent to GBLUP, but when fitting the 
value of π in BayesB to the data, a non-zero value of π is 
estimated, which in this scenario gives worse test perfor-
mance than π = 0 . In [5], it also was seen that, in certain 
cases, GBLUP can have higher accuracy than BayesC, 
which is a sparse method similar to BayesB.

The particular observation that NetSparse has higher 
accuracy than BayesB for the S10 and S100 scenarios was 
unexpected because BayesB is a sparse additive method, 
while NetSparse is a sparse non-additive method. Since 
the underlying data generating process is sparse additive, 
the expectation is that BayesB matches the simulated data 
better than NetSparse. The difference in method between 
NetSparse and BayesB is that NetSparse includes non-
additivity and that NetSparse and BayesB use differ-
ent priors for the variances. Therefore, we also made a 
comparison with LinSparse (Fig.  6), which is NetSparse 
without non-additive effects. The accuracy obtained with 
LinSparse for these scenarios was higher than for BayesB, 
which strongly suggests that the difference in accuracy 
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Fig. 5 Epistasis Accuracy of NetSparse versus other methods for the three epistatic scenarios: Additive × Additive, Complementary and 
Interaction. The line x = y is added in red for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the 
method it is compared to, a marker below the line means a lower accuracy of NetSparse than the other method



Page 12 of 14van Bergen et al. Genet Sel Evol           (2020) 52:26 

between them originated from the different prior distri-
butions for the variances.

In BayesB, the prior distributions for the variances are 
scaled inverse chi-squared distributions, which are con-
jugate priors for the likelihood function, which makes 
Gibbs sampling possible. The NUTS sampler in PyMC3 
does not require conjugate priors and, following the sug-
gestions of [35], we chose half-normal distributions for 
the standard deviations. The main difference between the 
scaled inverse chi-squared and half-normal distributions 
is that the half-normal distribution decays faster than 
exponentially for large values, which gives much lighter 
tails than the scaled inverse chi-squared distribution, 
which decays only polynomially.

The epistatic method GBLUP-ADAA did not seem to 
give better fits than methods that did not fit epistasis. We 
think this is due to a lack of data for estimating epistatic 
effects accurately. Inaccurate estimates of these effects 
will not improve predictive ability.

Given that neural networks are able to fit more than 
additive relations, we expected that NetSparse would 
also be able to fit dominance and epistatic effects. This 
expectation was confirmed in scenarios with strong 

dominance effects and scenarios with epistatic effects 
because accuracy of NetSparse was higher than the accu-
racy of additive models. However, NetSparse may be at a 
disadvantage with traits that have negligible non-additive 
effects. Nevertheless this indicates a potential for Sparse 
Bayesian Neural Networks for improving phenotype 
prediction.

The main limitation of NetSparse is running time. On 
our hardware, training NetSparse took around 4 h per 
scenario with 500 animals and 5000 SNPs. The running 
time of NetSparse scales approximately linearly with 
both the number of animals and the number of SNPs, 
and can therefore become prohibitive when applied to 
larger datasets. The other methods have running times 
that were less than 2 min on these datasets, making them 
much more feasible for use on larger datasets. Consider-
ing the promising results of NetSparse, further studies 
could try to increase the computational performance so 
that larger datasets can be analyzed. As sampling of inde-
pendent MCMC chains can be done in parallel on differ-
ent machines, additional computational resources can 
speed up the wall time of sampling by a factor equal to 
the number of chains used. The MCMC sampling could 
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Fig. 6 Sparsity The accuracy of NetSparse versus BayesB and LinSparse on sparse scenarios with 10 or 100 QTL. The line x = y is added in red 
for reference. A marker above the line means a replicate with higher accuracy for NetSparse than the method it is compared to, a marker below the 
line means a lower accuracy of NetSparse than the other model
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also be replaced by variational inference, where the real 
posterior is approximated by a simpler variational pos-
terior from which samples can be drawn directly, which 
would help NetSparse scale to larger datasets. The dis-
crete variable s could be handled, for instance, using the 
Concrete Distribution. [36]

Conclusions
This study shows that in nearly all scenarios the accu-
racy of NetSparse is not significantly lower than that 
of all other methods investigated. In particular, the Net-
Sparse method performed as well or better than GBLUP 
and BayesB for all scenarios evaluated. On data gener-
ated from a sparse QTL simulation model, accuracies 
obtained with NetSparse were significantly higher than 
accuracies obtained with  all the  other methods inves-
tigated. In the medium dominance scenarios, accuracy 
obtained with NetSparse was 0.0 to 0.8 percentage points 
higher than that with the other methods investigated. In 
the extreme dominance scenario, accuracy obtained with 
Netsparse was 0.6 percentage points higher than that 
with other methods that did not explicitly model domi-
nance. For methods that did explicitly model dominance, 
the accuracy was 5.8 to 6.3 percentage points lower for 
NetSparse. In the epistatic scenarios, accuracy obtained 
with NetSparse was 0.6 to 3.9 percentage points higher 
than that with the other methods. However, running time 
can be limiting, as NetSparse inference took about 200 
times as long as the other methods.
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Appendix A: Prior distributions
The prior distributions for NetSparse are:

The prior distributions for LinSparse ( f (x;u) = w⊺

(x ⊙ s)+ b ) are:

The prior distributions of bhi  each have a different mean 
because equal priors would make the model invariant 
under a relabeling of the hidden units and result in a 
degenerate geometry of the sampling space where each 
u is equivalent to at least H ! − 1 other configurations. 
For 20 hidden units, there are over 1018 configurations, 
which makes it completely infeasible to explore the entire 
parameter space.

We could analytically marginalize out σo and σh , 
resulting in a probability density over w in terms of the 
modified Bessel function of the second kind:

ei | β ∼ N

(

0,β−1
)

,

Wij | σh ∼ N

(

0, σ 2
h /P

)

,

w | σo ∼ N

(

0, σ 2
o /H1

)

,

bh ∼ N

(

µ
h, σ 2

bh
1
)

,

(

µ
h = [−2σh, . . . , 2σh],

σbh = 4σh/
√
H
)

bo ∼ Unif(−∞,∞),

β , σh, σo ∼
∣

∣

∣
N

(

0, 22
)∣

∣

∣
,

sp | π ∼ Ber(1− π), and

π ∼ Unif(0, 1).

ei | β ∼ N

(

0,β−1
)

,

w | σ ∼ N

(

0, σ 2/P1
)

,

b ∼ Unif(−∞,∞),

β , σ ∼
∣

∣

∣
N (0, 22)

∣

∣

∣
,

sp | π ∼ Ber(1− π) and

π ∼ Unif(0, 1).
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and similarly for W . For simplicity, we kept the model 
parameterization in terms of σh and σo.
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