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Abstract 

Background: Cattle international genetic evaluations allow the comparison of estimated breeding values (EBV) 
across different environments, i.e. countries. For international evaluations, across-country genetic correlations (rg) 
need to be estimated. However, lack of convergence of the estimated parameters and high standard errors of the rg 
are often experienced for beef cattle populations due to limited across-country genetic connections. Furthermore, 
using all available genetic connections to estimate rg is prohibitive due to computational constraints, thus sub-setting 
the data is necessary. Our objective was to investigate and compare the impact of strategies of data sub-setting on 
estimated across-country rg and their computational requirements.

Methods: Phenotype and pedigree information for age-adjusted weaning weight was available for ten European 
countries and 3,128,338 Limousin beef cattle males and females. Using a Monte Carlo based expectation–maximiza-
tion restricted maximum likelihood (MC EM REML) methodology, we estimated across-country rg by using a multi-trait 
animal model where countries are modelled as different correlated traits. Values of rg were estimated using the full data 
and four different sub-setting strategies that aimed at selecting the most connected herds from the largest population.

Results: Using all available data, direct and maternal rg (standard errors in parentheses) were on average equal to 
0.79 (0.14) and 0.71 (0.19), respectively. Direct-maternal within-country and between-country rg were on average 
equal to − 0.12 (0.09) and 0.00 (0.14), respectively. Data sub-setting scenarios gave similar results: on average, esti-
mated rg were smaller compared to using all data for direct (0.02) and maternal (0.05) genetic effects. The largest 
differences were obtained for the direct-maternal within-country and between-country rg, which were, on average 
0.13 and 0.12 smaller compared to values obtained by using all data. Standard errors always increased when reducing 
the data, by 0.02 to 0.06, on average. The proposed sub-setting strategies reduced the required computing time up to 
22% compared to using all data.

Conclusions: Estimating all 120 across-country rg that are required for beef cattle international evaluations, using a 
multi-trait MC EM REML approach, is feasible but involves long computing time. We propose four strategies to reduce 
computational requirements while keeping a multi-trait estimation approach. In all scenarios with data sub-setting, 
the estimated rg were consistently smaller (mainly for direct-maternal rg) and had larger standard errors.
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Background
International genetic evaluations of beef cattle performed 
by Interbeef allow the comparison of estimated breeding 
values (EBV) across countries. Current Interbeef evalua-
tions involve up to ten countries, five breeds (Limousin, 
Charolais, Beef Simmental, Angus, and Hereford), and 
two trait groups: animal weaning weight (composed of 
age-adjusted weaning weight) and calving (composed of 
birth weight and calving ease) (Cromie, personal commu-
nication). To estimate international EBV (IEBV), across-
country estimated genetic correlations ( rg ) are necessary 
[1], which in turn require sufficient genetic connections 
between countries that are usually provided by sires 
with recorded offspring in more than one country. How-
ever, there are two main challenges for the estimation of 
across-country rg in beef cattle international evaluations: 
the small number of genetic connections available for the 
estimation process and the long computing time neces-
sary to obtain them. In beef cattle, although many pheno-
types are recorded in both sexes, the number of genetic 
connections between populations is small due to the lim-
ited use of artificial insemination [2]. Such small numbers 
of genetic connections between populations have been 
reported since the first Interbeef pilot study [3] and in 
international evaluations of small dairy breeds [4, 5]. This 
lack of genetic connections between beef cattle popula-
tions makes the estimation of across-country rg more dif-
ficult. Furthermore, estimating across-country rg is even 
more challenging in Interbeef evaluations than in dairy 
breeds because, in addition to the direct genetic effect, 
maternal genetic and permanent environment effects are 
usually included in the model [1, 3].

Estimating across-country rg using all the available 
data from participating countries would allow the use of 
all the available genetic connections. However, this has 
been prohibitive due to computational constraints, and 
thus, most often, subsets of data are used. To overcome 
these computational constraints, two main approaches 
have been used: (1) reduction of the number of popula-
tions analysed simultaneously, i.e. country sub-setting, or 
(2) use of subsets of national submitted data, i.e. within-
country data sub-setting [6].

Strategies for country sub-setting reduce the amount of 
data, but also results in not using all the genetic connec-
tions provided by sires with offspring recorded in more 
than two countries. In turn, not using all the genetic 
connections may lead to inaccurate estimates of rg and 
impair the convergence of estimated parameters, result-
ing in long computing times [6]. Moreover, the resulting 
across-country rg matrices are very often non-positive 
definite, as expected for large variance–covariance matri-
ces [7], and require a bending approach, e.g. [8]. The 

most extreme approach of country sub-setting is the cur-
rent estimation procedure of Interbeef, which is based 
on a series of bivariate estimations [9], i.e. by analysing 
two countries at a time. However, in theory, some of the 
described shortcomings by Pabiou et al. [9], such as lack 
of convergence and use of bending, could be overcome 
by using a multivariate model including all the countries 
simultaneously.

To date, the application of a within-country data sub-
setting approach for a multivariate estimation of rg in 
Interbeef evaluations has not been fully investigated, 
mainly because of computational constraints. With 
such multivariate models and large datasets, traditional 
restricted maximum likelihood (REML) algorithms are 
not suitable, which is one of the reasons why Bayesian 
Gibbs sampling algorithms have been developed and 
used [10, 11]. Based on García-Cortés et  al. [12], Mati-
lainen et al. [13] developed a Monte Carlo based expecta-
tion–maximization restricted maximum likelihood (MC 
EM REML) algorithm that gives the possibility to com-
pute variance components (VC) from a large amount of 
data using a multi-trait approach, while being more effi-
cient than Gibbs sampling [14].

Thus, our objectives were: (1) to estimate across-coun-
try rg for the Limousin Interbeef genetic evaluations by 
using a multiple trait approach, and (2) to investigate the 
impact of possible within-country data sub-setting strat-
egies on the estimated rg and associated standard error, 
and on the required computing time, by taking the low 
across-country genetic connectedness into account. 
The within-country data sub-setting strategies aimed 
at selecting the most connected herds across countries, 
based on genetic connectedness measures and, for com-
parison, one strategy used a random selection of herds.

Methods
Limousin data and pedigree
Interbeef January 2018 routine evaluation data for age-
adjusted weaning weight (AWW) were available for 
eight Limousin populations, representing ten European 
countries: Switzerland (CHE), Czech Republic (CZE), 
Germany (DEU), Denmark, Finland and Sweden (DFS), 
Spain (ESP), France (FRA), Great Britain (GBR) and Ire-
land (IRL). The following data edits were applied to the 
submitted national datasets: (1) animals belonging to 
contemporary groups (CG) smaller than the defined 
national minimum size (Table 1), and (2) embryo trans-
fer animals, were removed. The presence of outliers can 
affect the procedure to estimate variance components 
both in terms of accuracy of the across-country esti-
mated rg (i.e. standard errors) and of computing time, 
thus, data that were below or above three phenotypic 
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standard deviations from the phenotypic mean of each 
population-sex combination were removed. After these 
edits, individual phenotype records were available for 
3,115,598 Limousin males and females, distributed across 
19,330 herds.

The numbers of observations available for each popula-
tion are in Table 1. The FRA population alone represents 
87.1% of the observations, followed by the GBR popula-
tion with 4.1%. DFS and DEU populations represented 
2.9 and 2.8% of the observations, respectively. ESP, CHE, 
IRL and CZE were the smallest populations, each rep-
resenting 1% or less of the data. Recorded animals were 
born between 1972 and 2017. FRA and GBR were the 
only two populations with animals recorded since 1972, 
whereas submitted records for Spain stopped in 2011 
(Table  1). Furthermore, each country adopted different 
national models for AWW, both in terms of fixed and 
random effects. National environmental effects for each 
population are in Additional file 1: Table S1.

Pedigree information for the available data was 
extracted from the Interbeef international pedigree data-
base using the Interbeef routine workflow, and the fol-
lowing quality controls were performed: all recorded 
animals without a corresponding record in the pedigree, 
involved in duplicates and pedigree cycles (i.e. an ani-
mal being its own ancestor) were removed. Furthermore, 
using the RelaX2 software [15], the available pedigree 
data were pruned to include animals with phenotypes 
and their ancestors (i.e. using the option “prediction” in 
RelaX2), without a limit on generation. The final pedi-
gree included 3,431,742 animals, born between 1927 and 
2017, and a maximum depth of 19 generations.

Measure of connectedness
Genetic connections across countries are provided by 
animals having recorded offspring across two or more 
populations. First, an analysis was conducted to investi-
gate and quantify the existing common bulls (CB), com-
mon dams and common maternal grandsires (CMGS) 
across-populations. Then, this information was used to 
compute the following measures of connectedness: coef-
ficients of genetic similarity, coefficient of adjusted num-
ber of populations for sires, and the harmonic mean of a 
sire’s progeny size. Finally, these measures were used to 
identify the best-connected subsets of data for the esti-
mation of across-country rg.

Genetic similarity
The concept of genetic similarity between two popula-
tions initially proposed by Rekaya et al. [16, 17] has been 
applied in dairy cattle studies [5, 18] as a measure of con-
nectedness between two countries. We adapted the for-
mula slightly to include sires’ offspring of both sexes to 
account for the structure of beef cattle data, such that the 
coefficient of genetic similarity between two populations 
a and b ( GSab ) is defined as:

where CBab is the number of common bulls between 
populations a and b , TBab is the total number of bulls 
in populations a and b , NOik is the number of offspring 
(male and females) of sire i in country k ( k = 1, 2).

The coefficient of genetic similarity ranges from 0 
to 1 and can be interpreted as the proportion of off-
spring between two populations that originate from CB. 
Therefore, the closer the coefficient of genetic similarity 
between two populations is to 1, the larger is the number 
of genetic connections between two populations.

Balanced offspring distribution (BOD) and adjusted number 
of populations (AN_POP)
The concept of genetic similarity was extended by Jorjani 
et al. [6] to take the across-country balanced number of 
daughters for dairy sires into account by using the coef-
ficient of balanced daughter distribution. We extend this 
concept to include both male and female offspring, here-
after referred to as the balanced offspring distribution, 
which is computed for sire i ( BODi ) as:

GSab =

∑2
k=1

∑CBab
i=1 NOik

∑2
k=1

∑TBab
i=1 NOik

,

BODi = 1−

∑NP
j=1

∣

∣nij − n̄i.
∣

∣

2 ·
∑NP

j=1 nij
,

Table 1 Number of  age-adjusted weaning weight 
phenotypes, number of  herds, year of  birth of  recorded 
animals, and  minimum contemporary group size 
by population

a POP, populations; CZE, Czech Republic; DFS, Denmark, Finland and Sweden; 
ESP, Spain; GBR, Great Britain; IRL, Ireland; FRA, France; DEU, Germany; CHE, 
Switzerland
b Year of birth
c Minimum contemporary group

POPa N % Herds YoBb Min  CGc

CZE 10,500 0.3 121 1991–2017 1

DFS 90,456 2.9 9190 1980–2017 1

ESP 33,152 1.1 188 1989–2011 5

GBR 127,840 4.1 745 1972–2017 5

IRL 20,609 0.7 1304 1975–2017 3

FRA 2,714,368 87.1 6677 1972–2017 2

DEU 88,628 2.8 881 1981–2017 3

CHE 30,045 1.0 224 1993–2017 5

Total 3,115,598 100 19,330 1972–2017
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where NP is the number of populations in the interna-
tional genetic evaluation, nij is the number of offspring 
of sire i in population j , n̄i. is the average number of off-
spring of sire i across all populations.

Following Jorjani et al. [6], the adjusted number of pop-
ulations (AN_POP) of sire i was computed for an easier 
interpretation of the BOD coefficient as:

The BOD coefficient ranges from 0 to 1 and the AN_
POP coefficient ranges from 1 to NP . For example, a CB 
with a balanced distribution of recorded offspring across 
N  countries would have an AN_POP coefficient equal to 
N  . If the distribution of offspring of CB is not balanced 
across all N  countries, the AN_POP coefficient would be 
between 1 and N .

Harmonic mean of a sire’s progeny size
The harmonic mean of a sire’s progeny size across two 
countries can be used as a measure to identify an unbal-
anced distribution of offspring. The harmonic mean of 
the progeny size for sire i ( HMi ) with recorded offspring 
in two countries can be calculated as:

where N1 and N2 are the progeny sizes of sire i in coun-
tries 1 and 2, respectively.

The use of the harmonic mean to measure the unbal-
anced distribution of offspring can be extended to the 
herd level as follows:

where HMh is the harmonic mean coefficient for herd 
h , NP is the number of populations in the international 
genetic evaluation, CBjh is the number of common bulls 
between population j and herd h , HMijh is the har-
monic mean of the CBi progeny size for a common bull i 
between population j and herd h.

Scenarios
The data sub-setting strategies were focused only on 
the French Limousin population, since it was the larg-
est national dataset and, therefore, it has a large impact 
on computing time. Data sub-setting was not applied to 
the other Limousin populations since it could lead to a 
relatively large reduction in the number of observations 
for any of those populations (especially for the smallest 
ones). In order to minimize variation in data size across 

AN_POPi = NP · BODi.

HMi = 2

/(

1

N1

+
1

N2

)

,

HMh =

NP
∑

j=1

CBjh
∑

i=1

HMijh,

different scenarios, and allow a meaningful compari-
son of computational requirements, the FRA popula-
tion was reduced in all sub-setting strategies such that 
the selected amount of data was close to the number of 
phenotypes for the GBR population, which is the second 
largest dataset. As a result, the total number of records 
retained across all populations in any of the data subsets 
was approximately 0.5 million.

For the subsequent estimation of variance components, 
we considered different scenarios depending on which 
FRA records were selected for the analysis, whereas all 
the records of all other countries were included in all 
scenarios:

1. Scenario ALL: using the complete dataset, i.e. 
3,115,598 AWW records and 3,431,742 animals in 
the pedigree.

2. Scenario RND: selection of randomly composed 
groups of FRA herds. FRA herds were randomly 
divided into 20 subsets. For each subset, the coef-
ficients of genetic similarity with all participating 
countries were computed. The three subsets with the 
highest coefficients of genetic similarity were ana-
lysed separately. In these subsets of data, 533,816, 
521,077 and 556,100 phenotypes were retained, with 
706,717, 692,205 and 729,778 animals in the pedi-
gree, respectively.

3. Scenario GSCB: selection of FRA herds based on 
herd-level coefficients of genetic similarity, defined as 
the average of the coefficients of genetic similarity 
computed between herd h and each population b 

( GShb ), with GShb =
∑

j

∑CBhb
i=1 NOij

∑

j

∑TBhb
i=1 NOij

 , where CBhb is the 

number of common bulls between herd h and popu-
lation b , TBhb is the total number of bulls in herd h 
and population b , NOij is the number of offspring 
(male and females) of sire i in j , with j = h, b (i.e. in 
herd h or population b).

 The final dataset included 506,080 phenotypes and 
the pruned pedigree included 654,841 animals across 
all involved countries. The amount of retained data 
for the FRA population corresponded to 1% of the 
FRA herds.

4. Scenario GSTOT: selection of FRA herds based on 
the herd-level coefficient of genetic similarity that 
includes information from both CB and CMGS 
(common maternal grand-sires, i.e. maternal grand-
sires with grand-offspring in more than one country). 
Genetic similarity at the herd level was defined as the 
average of the coefficients of genetic similarity com-
puted between herd h and each population b , as 
GSTOThb

=
(

GSCBhb + GSCMGShb

)

/2 . GSCBhb was the 
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coefficient of genetic similarity computed at the herd 
level considering CB as defined in Scenario GSCB, 
and GSCMGShb was the coefficient of genetic similarity 
computed at the herd level considering CMGS 

defined as GSCMGShb =

∑

j

∑CMGShb
i=1 NOij

∑

j

∑TMGShb
i=1 NOij

 , where 

CMGShb is the number of CMGS between herd h and 
population b , TMGShb is the number of total mater-
nal grand-sires in herd h and population b , NOij is 
the number of grand-offspring (male and females) of 
maternal grand-sire i in j , with j = h, b (i.e. in herd h 
or population b).

 The final dataset included 513,969 phenotypes and 
the pruned pedigree included 663,127 animals across 
all involved countries. The amount of retained data 
for the FRA population corresponded to the top 1% 
of the FRA herds ranked on their GSTOT coefficient.

5. Scenario HM: selection of FRA herds based on the 
harmonic mean of sires’ progeny size. Based on the 
harmonic means computed at the herd level, FRA 
herds were selected until the FRA population was 
reduced to about 0.5 million records. The final data-
set included 502,716 phenotypes, with a pruned ped-
igree of 649,081 animals across all involved countries.

When data reduction was applied to the FRA popula-
tion (i.e. all scenarios except Scenario ALL), the RelaX2 
software was used for pedigree pruning with the follow-
ing options: “prediction” pruning method and no genera-
tion limit.

Model and software
In all scenarios, variance component estimation (VCE) 
was performed using an animal model accounting for 
across-country interaction (AMACI) [1]. The AMACI 
model accounts for country-specific fixed and random 
effects by fitting for each country their national model. 
The AMACI model, currently used for Interbeef routine 
evaluations, is equivalent to a multi-trait animal model 

with maternal effects, where each population is modelled 
as a different trait:

where yi is the vector of observations for population i ; bi 
is the vector of fixed effects for population i ; ri is the vec-
tor of random environmental effects for population i ; ui 
is the vector of random additive genetic (direct) effects; 
mi is the vector of random maternal (indirect) additive 
genetic effects; pei is the vector of random maternal per-
manent environmental effects (provided by the dam); 
ei is the vector of random residual effects. X and C are 
incidence matrices linking records to fixed and random 
environmental effects, respectively. Z , W , and P are inci-
dence matrices linking records to the animal, maternal 
genetic and maternal permanent environmental effects, 
respectively.

The four random environmental effects refer to the 
national effects of herd-year-season in CZE, herd-year 
in DEU and CHE, and sire-herd in CHE (see Additional 
file  1: Table  S1). Furthermore, a maternal permanent 
environmental effect was not fit for the DEU population 
in the national evaluation (Ruten, personal communica-
tion). Because the international model follows the national 
evaluation models, DEU was the only population without 
a maternal permanent environmental effect in the AMACI 
model (see Additional file 1: Table S1).

It is assumed that:
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where, σ 2
ui

 is the direct additive genetic variance for pop-
ulation i , σ 2

mi
 is the maternal additive genetic variance 

for population i , σui ,mi is the additive genetic covariance 
between direct and maternal effect for population i , σui ,uj 
is the additive genetic covariance between populations 
i and j , σui ,mj is the additive genetic covariance between 
the direct effect for population i and the maternal effect 
for population j , σ 2

ri
 is the random environmental vari-

ance for population i , σ 2
pei

 is the permanent environ-
mental variance for population i , σ 2

ei
 is the residual error 

variance for population i , A is the numerator relationship 
matrix, I is the identity matrix, ⊕ indicates the matrix 
direct sum of i diagonal matrices, and ⊗ indicates the 
Kronecker product. Permanent environmental covari-
ances between countries were fixed to 0 since only 697 
dams had offspring in more than one country.

All analyses for VCE were conducted using the MC 
EM REML algorithm as implemented in the MiX99 soft-
ware [19]. The MC EM REML algorithm performs two 
main steps within each REML round. In the first step, 
best linear unbiased prediction (BLUP) estimates of ran-
dom effects are obtained from the real data. In the sec-
ond step, BLUP estimates of random effects are obtained 
from repeatedly simulated data based on the model and 
a given set of VC. Successively, via MC EM REML, VC 
are estimated using the sum of the squares of estimated 
random effects obtained from the real data, and the 

var(r) =
4

⊕

i = 1

Ini · σ
2
ri,

var(pe) =
7

⊕

i = 1

Ini · σ
2
pei,

var(e) =
8

⊕

i = 1

Ini · σ
2
ei,

prediction error variances obtained from the simulated 
data. For both the real and simulated data, the precon-
ditioned conjugate gradient (PCG) algorithm is used 
to obtain solutions of the mixed model equations. The 
PCG convergence criterion is defined as the square root 
of the relative difference between solutions of consecu-
tive PCG iteration rounds. In the REML round step, the 
convergence criterion for VCE is defined by using a lin-
ear regression of the estimated VC over the last REML 
rounds. When the linear regression slope is smaller than 
a given value, convergence is reached (for more details 
see Matilainen et al. [13]).

The VCE estimated via MC EM REML was standard-
ized for all scenarios using: (1) a maximum of 1000 PCG 
iterations, (2) a convergence criterion for PCG iterations 
equal to  10−5, (3) one simulated dataset for each REML 
round, and (4) a convergence criterion of  10−9 for the 
VCE. In all scenarios, the provided set of starting values 
were the most recent estimates available and currently in 
use for the 2018 Limousin Interbeef routine evaluations.

Approximated standard errors (SE) of the estimated 
VC can be obtained in an additional MC EM REML 
round [20]. This additional MC EM REML round was 
performed using the same setting as described above for 
VCE, but with 500 simulated datasets and no limit for the 
maximum number of PCG iterations. The same settings 
were used in all scenarios. Approximated standard errors 
of across-country rg were calculated from the obtained 
information matrix as described by Klei and Tsuruta [21].

Results
First, we present the results for the assessment of the 
available genetic connections in the whole dataset, fol-
lowed by the estimated rg in each scenario and their com-
putational requirements.

Table 2 Total number of bulls used within population (diagonal), number of common bulls (above diagonal) and genetic 
similarity coefficients (below diagonal) between populations

a POP, population; CZE, Czech Republic; DFS, Denmark, Finland and Sweden; ESP, Spain; GBR, Great Britain; IRL, Ireland; FRA, France; DEU, Germany; CHE, Switzerland

POPa CZE DFS ESP GBR IRL FRA DEU CHE

CZE 554 65 44 67 64 157 101 63

DFS 0.06 4375 76 109 94 171 143 73

ESP 0.07 0.06 1188 97 78 358 105 71

GBR 0.04 0.05 0.04 5486 239 396 125 72

IRL 0.14 0.07 0.12 0.15 2073 200 120 65

FRA 0.11 0.13 0.13 0.13 0.12 57,784 339 342

DEU 0.06 0.06 0.06 0.04 0.07 0.15 4366 188

CHE 0.12 0.06 0.08 0.04 0.10 0.13 0.11 1699



Page 7 of 16Bonifazi et al. Genet Sel Evol           (2020) 52:32  

Measures of connectedness
Common bulls and common maternal grand sires
We assessed the available genetic connections between 
countries by quantifying the number of recorded off-
spring of CB. The number of CB varied with the coun-
try combination, with a minimum of 44 CB between 
ESP-CZE and a maximum of 396 for FRA-GBR (Table 2). 
The average number of CB between two populations was 
143.6. The number of sires used within a country var-
ied considerably, with a minimum of 554 bulls for CZE, 
and a maximum of 57,784 bulls for FRA, which reflects 
the differences in the population sizes of participating 
countries.

Since CB can have recorded offspring in more than 
one bivariate country-combination, hereafter we will 
use the term “unique CB” to indicate an individual CB. 
The total number of unique CB in the available dataset 
was equal to 1436. Of these unique CB, 1053 (73.4%) had 
offspring in two populations, while 12.4, 5.2, 4.4, 2.2, 1.7 
and 1.2% had offspring in three up to all eight popula-
tions, respectively. Moreover, the distribution of CB by 
number of connecting populations and by country of ori-
gin (Table 3) showed that the majority of CB were from 
France (82.5%), followed by Germany (6.3%), Great Brit-
ain (5.7%), Denmark (2.0%) and Ireland (1.81%). Finally, 
sires that connected four or more populations were 
mostly French bulls (Table 3).

The distribution of the number of CB per year of birth 
and country of first registration reflects the exchange of 
genetic material across the analysed populations (Fig. 1). 

Figure  1 indicates that consistent genetic connections 
between countries started with the use of CB born dur-
ing the 1970s and 1980s. In addition, the use of sires 
born in more recent years reflects the use of more recent 
genetic material, with the majority of the CB born after 
the 1990s, and with the highest frequency of year of birth 
of CB being in 2001 (Fig.  1). Furthermore, French sires 
represented a large proportion of CB in each year, with 
sires from Germany, Ireland and Great Britain becoming 
more frequently used at the international level during the 
last decade.

Common maternal grand-sires can also provide valua-
ble genetic connections [1, 3], particularly for the estima-
tion of the maternal and direct-maternal across-country 
rg . Table  4 shows the distribution of CMGS per num-
ber of connected populations. Of the total 3828 unique 
CMGS, 79.4% had recorded grand-offspring in only two 
populations, whereas there is an inversely proportional 
relationship between number of CMGS and number of 
connected populations with 13.2, 3.1, 1.9, 1.2, 0.7 and 
0.5% of CMGS connecting three up to all eight popula-
tions, respectively. Furthermore, 25.5% of the CMGS are 
also CB (Table 4).

Genetic similarity
Coefficients of genetic similarity between populations 
are in Table  2. Jorjani [18] used a coefficient of genetic 
similarity of 0.06 as a threshold to divide Ayrshire bull 
populations into two country groups. However, in the 
literature, we found no other clear thresholds for the 

Table 3 Distribution of  common bulls per  country of  first registration and  across  different numbers of  connected 
populations

a COU, country of first registration; CAN, Canada; CHE, Switzerland; CZE, Czech Republic; DEU, Germany; DNK, Denmark; ESP, Spain; FRA, France; GBR, Great Britain; IRL, 
Ireland; LUX, Luxemburg; NOR, Norway; SWE, Sweden; USA, United States of America

COUa Number of connected populations

2 3 4 5 6 7 8 Sum

CAN 5 1 1 7

CHE 4 4

CZE 3 3

DEU 71 11 4 3 2 91

DNK 25 2 1 1 29

ESP 1 1 2

FRA 861 139 61 58 29 20 17 1185

GBR 57 19 5 1 82

IRL 21 4 1 26

LUX 3 3

NOR 1 1

SWE 1 1

USA 1 1 2

Sum 1053 178 74 63 31 20 17 1436
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coefficient of genetic similarity to define the level of 
connectedness between two populations. Therefore, we 
defined three arbitrary thresholds for the coefficient of 
genetic similarity: a low, medium and high level of con-
nectedness for coefficients of genetic similarity lower 
than 0.05, between 0.05 and 0.10, and higher than 0.10, 
respectively.

Overall, we observed a medium level of across-country 
connections when all the data were considered, with an 

average coefficient of genetic similarity of 0.09 across 
populations. All the populations showed a high level of 
connectedness with FRA (> 0.10), which reflects the high 
proportion of French CB. Moreover, the IRL population 
had a high level of connections with all countries except 
with DFS and DEU. As a result, IRL and FRA were the 
two populations with the highest average coefficient of 
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Fig. 1 Distribution of year of birth of common bulls and their country of first registration. DEU, Germany; DNK, Denmark; FRA, France; GBR, Great 
Britain; IRL, Ireland

Table 4 Distribution of  common maternal grand-sires 
(CMGS) with  grand-offspring in  two or  more populations 
and number of CMGS that are also common bulls (CB)

Connected POP CMGS CMGS also CB

Yes No

2 3040 552 2488

3 507 204 303

4 119 76 43

5 72 57 15

6 46 42 4

7 25 24 1

8 19 19 0

Sum 3828 974 2854

Table 5 Average number of  populations (AN_POP) 
and  balanced offspring distribution (BOD) coefficients 
for common bulls (CB)

AN_POP BOD Number of CB

Balanced

 = 2 = 0.25 332

 = 3 = 0.375 18

 = 4 = 0.5 0

 = 5 = 0.625 1

Unbalanced

 > 1–1.999 > 0.125–0.25 933

 > 2–2.999 > 0.25–0.375 104

 > 3–3.999 > 0.375–0.5 43

 > 4–4.999 > 0.5–0.625 5

Sum (all CB)

 > 1 > 0.125 1436
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genetic similarity with other countries (0.11 and 0.13, 
respectively). GBR showed the lowest bivariate connec-
tions (GS < 0.05) with CZE, ESP, DEU, and CHE.

Balanced offspring distribution (BOD) and adjusted number 
of populations (AN_POP)
The balanced offspring distribution and the adjusted 
number of population coefficients can be considered as 
two quantitative measures of the same quantity, i.e. bal-
ance in sires’ offspring records across country. Table  5 
reports the AN_POP and BOD distribution for CB. 
Among all CB, none had a balanced distribution across 
all eight populations, resulting in all sires having an 
AN_POP smaller than 8 and a maximum AN_POP of 5 
for a single CB. The majority of the CB (> 65%) had an 
AN_POP smaller than 2. In addition, 23.1% of the CB 
had an AN_POP of 2 and only 11.9% of the total CB had 
AN_POP larger than 2. Since the AN_POP coefficients 
are computed as a function of the BOD coefficients, their 
distributions are similar.

Estimated genetic correlations in different scenarios
Modelling the countries as different traits in international 
evaluations, as in the AMACI model, allows the genetic 
correlations between countries to be lower than 1, which 
accounts for genotype-by-environment interactions and 

possible differences in phenotypic distribution, trait and 
national model definition of the AWW. Descriptive sta-
tistics for each population-sex combination highlight 
differences in phenotypic mean for AWW across popula-
tions (see Additional file  1: Table  S2). These differences 
may be associated with a variation in trait definition 
across countries and, in particular, with the adjustment 
criteria applied (see Additional file 1: Table S3). Although 
an improved harmonization of traits across countries 
is desirable, it does not remove the need to model each 
country as a separate trait.

Using different approaches to select the data leads to 
different subsets of data for the FRA population. First, 
we present the estimated rg for Scenario ALL, and sec-
ond, we provide a description of the data selected and the 
result yielded in each sub-setting scenario.

Results of the across-country estimated rg and approxi-
mated standard errors (SE) when using all the data (Sce-
nario ALL) are in Table 6. The average across-country rg 
for the direct genetic effect was equal to 0.79 and ranged 
from 0.62 (DEU-IRL) to 0.94 (DEU-DFS). The average 
across-country rg for the maternal effect was equal to 0.71 
and ranged from 0.65 (CHE-IRL) to 0.87 (FRA-GBR). The 
average estimated direct-maternal within-country rg was 
equal to − 0.12 and ranged from − 0.33 for FRA to 0.40 
for CHE. Direct-maternal between-country rg were on 
average equal to 0 and ranged from − 0.14 (GBR-FRA) 

Table 6 Scenario ALL—heritabilities (italic characters on the diagonal), estimated genetic correlations (below diagonal) 
and standard errors of estimated correlations (above diagonal), for direct and maternal genetic effects

Population: CZE, Czech Republic;DFS, Denmark, Finland and Sweden; ESP, Spain; GBR, Great Britain; IRL, Ireland; FRA, France; DEU, Germany; CHE, Switzerland

Direct Maternal

CZE DFS ESP GBR IRL FRA DEU CHE CZE DFS ESP GBR IRL FRA DEU CHE

Direct

 CZE 0.24 0.16 0.21 0.15 0.19 0.12 0.14 0.22 0.10 0.15 0.20 0.16 0.16 0.10 0.12 0.19

 DFS 0.87 0.30 0.16 0.10 0.13 0.07 0.10 0.15 0.13 0.06 0.14 0.11 0.12 0.06 0.09 0.16

 ESP 0.74 0.77 0.13 0.17 0.20 0.14 0.17 0.22 0.20 0.18 0.16 0.16 0.16 0.10 0.15 0.22

 GBR 0.71 0.82 0.94 0.29 0.14 0.06 0.10 0.18 0.15 0.12 0.15 0.06 0.11 0.06 0.11 0.18

 IRL 0.83 0.76 0.87 0.91 0.35 0.11 0.13 0.21 0.16 0.15 0.18 0.11 0.14 0.09 0.12 0.20

 FRA 0.76 0.89 0.77 0.82 0.76 0.29 0.06 0.13 0.09 0.08 0.10 0.08 0.10 0.02 0.06 0.12

 DEU 0.76 0.94 0.76 0.77 0.62 0.81 0.24 0.14 0.13 0.11 0.16 0.13 0.13 0.06 0.05 0.15

 CHE 0.85 0.81 0.76 0.71 0.70 0.70 0.70 0.12 0.19 0.18 0.23 0.20 0.19 0.11 0.14 0.10

Maternal

 CZE − 0.12 0.04 0.07 0.12 − 0.01 − 0.10 0.08 0.01 0.18 0.20 0.26 0.21 0.22 0.14 0.16 0.27

 DFS − 0.05 − 0.14 0.02 − 0.01 − 0.02 − 0.11 − 0.07 − 0.01 0.68 0.14 0.23 0.18 0.19 0.11 0.14 0.24

 ESP 0.03 0.09 − 0.22 − 0.08 − 0.09 − 0.05 0.05 0.02 0.67 0.68 0.07 0.24 0.25 0.15 0.21 0.33

 GBR 0.14 0.06 − 0.03 − 0.10 − 0.03 − 0.14 0.07 0.08 0.79 0.69 0.70 0.07 0.18 0.12 0.16 0.26

 IRL − 0.03 0.07 − 0.06 − 0.05 − 0.19 − 0.12 0.12 0.11 0.69 0.68 0.81 0.72 0.17 0.16 0.16 0.24

 FRA − 0.02 − 0.05 − 0.03 − 0.06 − 0.09 − 0.33 − 0.01 0.08 0.85 0.69 0.71 0.87 0.82 0.09 0.07 0.17

 DEU − 0.02 − 0.09 − 0.03 − 0.01 0.06 − 0.10 − 0.24 0.09 0.68 0.68 0.67 0.69 0.68 0.69 0.20 0.20

 CHE 0.12 0.11 0.07 0.08 0.03 − 0.05 0.06 0.40 0.73 0.68 0.67 0.66 0.65 0.77 0.66 0.05
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to 0.14 (GBR-CZE). For the CHE population, most of the 
direct-maternal between-country rg were positive (aver-
age of 0.06), whereas for the FRA population most of the 
direct-maternal rg were negative (average of − 0.06). SE of 
the estimated rg in Scenario ALL were on average equal 
to 0.14 for the direct rg (ranging from 0.06 to 0.22), and 
0.19 for the maternal rg (ranging from 0.07 to 0.33). SE of 
direct-maternal within-country and between-country rg 
were on average equal to 0.09 (ranging from 0.02 to 0.16), 
and 0.14 (ranging from 0.06 to 0.23), respectively. The 
DEU-FRA combination always had the largest SE of esti-
mated rg and the ESP-CHE combination had the smallest.

Table  7 provides a summary of the comparison 
between each sub-setting scenario (RND, GSCB, GSTOT 
and HM) and Scenario ALL, for the across-country esti-
mated rg and SE. Complete comparisons are in Addi-
tional file 1: Tables S4, S5, S6, and S7.

In Scenario RND, random subsets of FRA herd data 
were used to provide an easy-to-implement approach for 
data sub-setting. By chance, some of the 20 subsets could 
include better-connected herds, which would result in 
slightly different average coefficients of genetic similar-
ity across the 20 random samples of Scenario RND (see 
Additional file  1: Table  S8). The three subsets that we 
analysed had the closest coefficients of genetic similar-
ity to those calculated in Scenario ALL with average 

differences of − 0.008, − 0.0007 and − 0.012, respectively 
(see Additional file 1: Table S8).

The estimated rg , averaged across the three ana-
lysed samples of Scenario RND, were lower than those 
obtained with Scenario ALL (see Additional file  1: 
Table  S4). In particular, rg were slightly lower in Sce-
nario RND for the direct effect (average difference of 
− 0.02) and lower for the maternal effect (average dif-
ference of − 0.04) (Table  7). However, the largest dif-
ferences in rg between Scenarios RND and ALL were 
observed for the direct-maternal effect with average 
differences of − 0.12 and − 0.11 for within-country and 
between-country rg , respectively. On average, the SE 
of estimated rg were 0.03 greater for the direct effect 
in Scenario RND than in ALL, and 0.06 greater for the 
maternal effect (Table 7). The SE were on average 0.03 
and 0.05 greater for the direct-maternal within-country 
and between-country rg , respectively.

In Scenario GSCB, rg were estimated based on the top 
FRA herds that were ranked based on their coefficient 
of genetic similarity, including connections provided 
by CB. The coefficients of genetic similarity of selected 
FRA herds ranged from 0.07 to 0.11. In total, 36% of the 
FRA herds had a coefficient of genetic similarity lower 
than 0.001, which indicates a low use of international 
semen and that their contribution to the estimation of 
across-country rg is small. The Scenario GSCB resulted, 

Table 7 Summary statistics for  estimated across-country genetic correlations (rg) and  their standard errors (SE), 
for the direct, maternal and direct-maternal effect (within and between-country) in ALL versus each sub-setting scenario 
(RND, GSCB, GSTOT, HM)

a ALL, all data; RND, herds selected randomly; GSCB, herds selected based on genetic similarity considering common bulls; GSTOT, herds selected based on genetic 
similarity considering common bulls and common maternal grandsires; HM, herds selected based on harmonic mean of sire’s progeny size
b Results for the sub-setting scenarios are expressed as a deviation from ALL, i.e. after subtracting the results of ALL

Scenarioa Direct Maternal Direct-maternal

Within-country Between-country

Average Min Max Average Min Max Average Min Max Average Min Max

Genetic correlations

 ALL 0.79 0.62 0.94 0.71 0.65 0.87 − 0.12 − 0.33 0.40 0.00 − 0.14 0.14

Differenceb in rg
 RND − 0.02 − 0.04 − 0.01 − 0.04 − 0.07 − 0.02 − 0.12 − 0.17 − 0.04 − 0.11 − 0.16 − 0.06

 GSCB − 0.02 − 0.03 0.00 − 0.05 − 0.08 − 0.03 − 0.13 − 0.17 − 0.04 − 0.11 − 0.17 − 0.03

 GSTOT − 0.02 − 0.03 0.00 − 0.05 − 0.08 − 0.03 − 0.13 − 0.18 − 0.05 − 0.12 − 0.17 − 0.04

 HM − 0.02 − 0.04 0.00 − 0.06 − 0.09 − 0.03 − 0.11 − 0.17 − 0.03 − 0.10 − 0.17 − 0.02

Standard errors

 ALL 0.14 0.06 0.22 0.19 0.07 0.33 0.09 0.02 0.16 0.14 0.06 0.23

Differenceb in SE

 RND 0.03 0.01 0.06 0.06 0.02 0.10 0.03 0.01 0.07 0.05 0.01 0.09

 GSCB 0.03 0.00 0.06 0.05 0.01 0.10 0.03 0.01 0.08 0.04 0.01 0.09

 GSTOT 0.02 0.00 0.05 0.05 0.02 0.09 0.03 0.01 0.07 0.04 0.01 0.08

 HM 0.03 0.00 0.06 0.06 0.02 0.11 0.03 0.01 0.07 0.04 0.01 0.09
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across the selected FRA herds, in an average increase of 
genetic similarity of 0.15 with other populations com-
pared to Scenario ALL.

Across-country estimated rg from Scenario GSCB 
were on average lower than from Scenario ALL by 0.02 
for the direct and 0.05 for the maternal effect (Table 7). 
Direct-maternal rg from Scenario GSCB were also 
on average smaller than from Scenario ALL, by 0.11 
within-country and 0.13 between-country. On average, 
the SE of estimated rg were 0.03 and 0.05 larger for the 
direct and maternal rg respectively, in Scenario GSCB 
than in Scenario ALL (Table  7). The SE of the direct-
maternal within-country and between-country rg were 
on average also 0.03 and 0.04 larger in Scenario GSCB 
than in Scenario ALL.

In Scenario GSTOT, rg were estimated based on the top 
FRA herds that were ranked based on their coefficient 
of genetic similarity, including connections provided by 
both CB and CMGS. The coefficients of genetic similar-
ity of selected FRA herds ranged from 0.08 to 0.12. The 
coefficient of genetic similarity was lower than 0.001 for 
many FRA herds (33%). In Scenario GSTOT, selection of 
the most connected herds resulted, across FRA herds, in 
a higher coefficient of genetic similarity (considering only 
CB) with other populations, with an average increase of 
0.14 compared to Scenario ALL.

Direct and maternal rg were on average smaller, by 
0.02 and 0.05, respectively, in Scenario GSTOT than 
in Scenario ALL (Table  7), and the largest differences 
were related to the direct-maternal within-country 
and between-country rg : on average − 0.13 and − 0.12, 
respectively. On average, the SE of the estimated direct 
and maternal rg were 0.02 and 0.05 larger in Scenario 
GSTOT than in Scenario ALL (Table  7) and the SE of 
the direct-maternal rg were also on average 0.03 and 0.04 

larger in Scenario GSTOT than in Scenario ALL, within-
country and between-country, respectively.

The aim of Scenario HM was to select FRA herds based 
on their harmonic mean coefficient (HM). The average 
HM coefficient of all FRA herds was 965.7 but large vari-
ations were observed across herds, with HM coefficients 
ranging from 0 (small herds with recorded offspring from 
unknown sires) up to 15,116. For Scenario HM, the 37 
selected herds had an average HM coefficient of 8942. 
Selecting FRA herds on their HM resulted in an average 
increase of 0.08 of the coefficient of genetic similarity at 
the population level for FRA compared to Scenario ALL.

Across-country estimated rg from Scenario HM were 
on average lower than from Scenario ALL by 0.02 for 
the direct and 0.06 for the maternal effect (Table 7). The 
direct-maternal rg in Scenario HM were also smaller on 
average than in Scenario ALL by 0.11 within-country 
and 0.10 between-country. On average, the SE of the 
estimated rg were 0.03 and 0.06 larger for the direct and 
maternal rg , respectively (Table  7). Similarly, the SE of 
the direct-maternal rg from Scenario HM were on aver-
age, 0.03 and 0.04 larger than from Scenario ALL, within-
country and between-country, respectively.

Computational requirements
Using all the data, Scenario ALL took 43 days and 23 h 
to estimate across-country rg (Table  8). The data sub-
setting scenarios (RND, GSCB, GSTOT, HM) that were 
aimed at reducing the number of phenotypes to 0.5 mil-
lion, decreased the total computing time by 9 to 16 days 
(Table  8), corresponding to 22% up to 36% of the time 
required for Scenario ALL. Differences in computational 
requirements between data sub-setting scenarios can be 
due to differences in CPU frequency, but also to external 
factors, such as the server’s load. Considering this, the 

Table 8 Computational requirements across scenarios based on single-core analyses

a ALL, all data; RND, herds selected randomly; GSCB, herds selected based on genetic similarity considering common bulls; GSTOT, herds selected based on genetic 
similarity considering common bulls and common maternal grandsires; HM, herds selected based on harmonic mean of sire’s progeny size
b Central Processing Unit (CPU) frequency
c Random access memory (RAM) peak usage
d Total elapsed time

Scenarioa Phenotypic records Pedigree records CPU (GHz)b RAM peak 
usage (GB)c

REML rounds 
(number)

Average time 
per REML 
round (min)

Total time 
(days: 
hours)d

ALL 3,115,598 3,431,742 4.0 2.39 1173 53 43:23

RND sample 15 533,816 706,717 4.0 0.49 1432 11 11:12

RND sample 20 521,077 692,205 3.7 0.48 1543 14 15:21

RND sample 2 556,100 729,778 3.7 0.51 1462 15 16:00

GSCB 506,080 654,841 4.0 0.46 1496 9 9:21

GSTOT 513,969 663,127 4.0 0.45 1530 9 10:06

HM 502,716 649,081 4.0 0.46 1675 9 11:06
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total computing time was similar across the different data 
sub-setting scenarios. Random access memory (RAM) 
requirements were low for all scenarios and ranged from 
2.39 gigabytes when using all the data to about 0.5 giga-
bytes with reduced data (Table 8). Sub-setting scenarios 
decreased the required time per REML round to ~ 17% of 
that for Scenario ALL (Table  8). Compared to Scenario 
ALL, sub-setting the data led to an increase of the num-
ber of REML rounds, which ranged from 22% (Scenario 
RND sample 15) to 43% (Scenario HM).

Discussion
In this study, we applied a multi-trait approach to esti-
mate a 16 × 16 across-country rg matrix for Limousin 
beef cattle international evaluation in a single analysis. 
Furthermore, we investigated the application of within-
country sub-setting strategies to reduce the amount of 
data required for estimating rg . We applied these sub-
setting strategies only to the FRA herds, because this is 
the largest population in the evaluation. Sub-setting the 
data from the other countries would yield only relatively 
small reductions in overall data size but could cause loss 
of valuable information and genetic connections. Our 
approach could be applied to international beef cattle 
evaluations of other breeds with population structures 
similar to that of the Limousin breed, e.g. for country that 
has a much larger population than the others. An exam-
ple is the Charolais breed in Interbeef evaluations, with 
the French population representing more than 90% of the 
overall data [22, 23].

Hereafter, first we discuss the genetic level of the con-
nections available in the dataset used, then the impact 
of the sub-setting strategies on the estimated rg and the 
required computing time. Finally, we describe possible 
implications of this study in the context of beef cattle 
international evaluations.

Genetic connections across-country
Direct connections varied greatly across countries as 
indicated by the number of CB (Table  2). Most of the 
CB in this study connected only two populations, but a 
good proportion of CB connected more than two popu-
lations at the same time, most of which were born after 
1980 (see Additional file  2: Figure S1). Across-country 
genetic connections also occurred through CMGS, most 
of them connecting only two or three populations. How-
ever, CMGS that connected more than four populations 
increasingly appeared as CB (79, 91, 96 and 100% from 
5 up to 8 connected populations, respectively). This 
increased proportion indicates that daughters of popular 
imported sires are likely to be kept as dams for the next 
generation and, in turn, will provide grand-offspring’s 

phenotypes for such sires. In this study, the range of the 
numbers of CB and CMGS that connected Limousin 
populations were similar to those previously reported [9, 
24, 25], and only a few populations had a small number of 
connecting CB, but none had missing connections. Lim-
ited across-country connections were reported in previ-
ous studies both for the Charolais [9, 25] and Simmental 
[26] breeds. Furthermore, previous studies in dairy cat-
tle breeds, such as Guernsey [27], Ayrshire [5, 18], Brown 
Swiss and Jersey [5], also reported low across-country 
connectedness levels, which suggest that our approach 
may also be beneficial to low-connected dairy breeds. 
Nevertheless, the number of available connections in the 
Limousin populations in our study is still small compared 
to that of dairy breeds such as the Holstein–Friesian [5, 
28].

The coefficient of genetic similarity provides a quan-
tification of the number of genetic connections avail-
able between two countries. The coefficients of genetic 
similarity revealed that IRL and FRA are “link-provider” 
countries, as termed in dairy cattle international evalua-
tions [5, 6, 29]. The inclusion of such link-provider coun-
tries, together with the less connected ones, during the 
estimation of across-country rg may help to overcome 
the lack of convergence [6], either when including all the 
countries together in the model or only a group of them, 
i.e. when applying a country sub-setting strategy.

The sire’s AN_POP coefficient provided further 
insights on the level of genetic connectedness available 
in the data. Jorjani et  al. [6] showed that selecting sires 
with a balanced offspring’s distribution may be beneficial 
to estimate across-country rg in large dairy populations. 
When applied to international beef evaluations, about 
65% of the CB had an AN_POP lower than 2. In addition, 
all CB with connections in all eight populations were 
severely penalized for being unbalanced. These results 
indicate that the majority of the genetic connections are 
established between two countries and that the number 
of offspring for CB is unbalanced in beef cattle interna-
tional evaluations. These unbalanced distributions of 
sires’ offspring imply that implementing a herd sub-set-
ting strategy for the estimation of across-country rg based 
on AN_POP was not possible.

Estimated genetic correlations using all data
The across-country estimated rg and heritabilities 
obtained in our study are in line with those from previous 
international beef cattle studies [9, 25]. Estimated direct-
maternal within-country rg were negative and ranged 
from − 0.10 to − 0.33, with the exception of CHE. Using 
national data, CHE reported a direct-maternal within-
country rg of − 0.01 [30]; the positive direct-maternal rg 
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that we obtained for CHE may be related to its sire-by-
herd interaction effect (see Additional file  1: Table  S1). 
Berweger et  al. [31] also observed that fitting a sire-by-
herd interaction effect in the model affected the estima-
tion of direct-maternal rg in Swiss beef cattle data.

In cattle international evaluations, across-country rg 
determine to what extent the information from partici-
pating countries contributes to the estimation of Inter-
national EBV [32] and can be lower than 1 for different 
reasons. First, countries may differ in terms of environ-
mental conditions [33], which can lead to genotype-by-
environment (i.e. country) interactions [34]. Second, 
national trait definitions may differ, for instance, depend-
ing on the country, AWW being adjusted to a different 
time period and with different approaches (see Addi-
tional file  1: Table  S3). Third, differences in national 
evaluation procedures may exist [35]: an example in beef 
cattle is the definition of contemporary groups (CG) (see 
Additional file 1: Table S1).

Submitted AWW were partly modelled differently 
by each participating country (see Additional file  1: 
Table S1). Countries adapt their national model to repre-
sent in the best way their production system and national 
evaluations. Thus, effects that explain specific national 
genetic evaluations should be included in the interna-
tional evaluation to account for possible non-genetic 
sources of variation of the submitted data [35]. Exam-
ples of specific national sources of variation are access 
to alpine grazing, seasonality effects and small CG mod-
elled as random [36]. In international evaluations, both in 
dairy and beef cattle, it is common practice to have differ-
ent effects fitted at the national level between countries. 
In dairy cattle international evaluations, countries correct 
for their national fixed and random effects before submit-
ting sires’ de-regressed proofs [35, 37]. In Interbeef, since 
phenotypes are shared across countries, the correction 
for fixed and random national effects is done in one step 
at the international level with the AMACI model by mod-
elling each country, and its associated national model, as 
a different trait [1, 38].

Large SE of across-country estimated rg (Table  6) are 
common in studies concerning international evaluations, 
both in beef [1, 25] and dairy cattle [32, 39]. Large SE may 
be due to a lack of direct connections across-country 
that are established through CB, and to the heterogene-
ous data structure between different countries for the 
same trait [25, 32]. Although in our dataset, there was a 
medium level of connectedness, in terms of coefficient of 
genetic similarity, and no population had missing genetic 
links (i.e. CB = 0), the large SE obtained underline and 
support the need to increase genetic connections across-
country in beef cattle populations.

Estimated variance components depend, to some 
extent, on the information content of the data. For 
instance, it is important that the performance of an ani-
mal can be compared to contemporaries within herd. In 
international beef cattle evaluations, the minimum size of 
the CG is defined by each participating country (Table 1). 
Two populations (CZE and DFS) reported a minimum 
size of CG of 1. However, in Scenario ALL, the number 
of animals belonging to a CG of size 1 was limited to only 
0.1% of the total phenotypes. We tested the hypothesis 
that animals belonging to a CG of size 1 had no impact 
on the results of this study: the maximum difference in rg 
with ALL was 0.009, for a direct-maternal between-coun-
try rg (results not shown).

Removing old data from the process to estimate vari-
ance components is an alternative straightforward 
approach to reduce the amount of data used. We inves-
tigated the effect of removing old disconnected Limou-
sin beef cattle data on the across-country estimated rg . 
Since most of the across-country genetic connections, 
established through CB that connected more than two 
populations, were initiated after 1980 (see Additional 
file 2: Figure S1), we chose this year as a threshold for the 
recorded year of birth of an animal. The retained data 
included 3,019,527 phenotypes, with a pruned pedigree 
of 3,345,349 animals. Removing old disconnected data 
had a negligible impact on the estimated rg compared 
to all data in Scenario ALL: average differences of 0.00 
for direct and maternal rg , and − 0.01 for direct-mater-
nal within-country and between-country rg (results not 
shown). This limited impact on across-country estimated 
rg is in agreement with the findings of Jorjani [28] in dairy 
cattle international evaluations.

Impact of reducing data
In this study, we shifted the focus from the selection of 
the most connected sires, which is typical of international 
dairy cattle evaluations [6], to the selection of the man-
agement unit, i.e. the most connected herds. Selection of 
entire herds better accounts for beef cattle data structure 
and allows retaining all within-herd CG information for 
those dams and sires with multiple recorded offspring. 
In turn, selecting herds may be beneficial for the estima-
tion of maternal genetic effects. The coefficient of genetic 
similarity applied at the herd level as in Scenarios GSCB 
and GSTOT do not account for the herd size. Neverthe-
less, we observed a linear relationship between the coef-
ficient of genetic similarity of herd and the herd size. A 
possible explanation for this positive relationship is that 
small herds may be more inclined to use natural service 
bulls, as opposed to large herds, in which the more fre-
quent use of artificial insemination leads to a higher use 
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of international sires’ semen. Furthermore, herd coef-
ficients of genetic similarity revealed a large proportion 
(more than 30%) of FRA herds disconnected from other 
populations, and in all non-random scenarios (GSCB, 
GSTOT and HM), larger herds, compared to Scenario 
ALL, were selected: average number of records per herd 
of 406.5, 1588.6, 1708.2 and 2742.9 for Scenarios ALL, 
GSCB, GSTOT and HM, respectively. Likewise, com-
pared to Scenario ALL, larger CG were selected in non-
random scenarios: average number of records per CG 
of 16.2, 20.9, 21.7 and 30.6 for Scenarios ALL, GSCB, 
GSTOT and HM, respectively.

Genetic similarity computed at the FRA population 
level increased in non-random scenarios compared to 
Scenario ALL, even if some CB between FRA and other 
populations were removed due to the herd selection pro-
cess. Nevertheless, estimated rg are similar across sub-
setting scenarios. All sub-setting scenarios resulted in 
smaller across-country rg , which ranged from an average 
of 0.02 for the direct rg up to 0.13 for the direct-mater-
nal within-country rg . The SE of estimated rg always 
increased when reduced data were used, regardless of 
the scenario considered, and ranged from an average 
increment of 0.02 up to 0.06. The average difference in 
estimated rg between Scenarios GSCB and GSTOT was 
0.00 (regardless of the effect considered), which indicated 
that there was no benefit in including information from 
CMGS in the coefficient of genetic similarity. Results 
from non-random scenarios suggest that given a certain 
level of genetic connections, as in Scenario GSCB, there 
is no additional benefit in including information related 
to CMGS, as in Scenario GSTOT, or to the CB’s balanced 
offspring distribution, as in Scenario HM.

To further understand the impact of reducing FRA data 
on across-country estimated rg , we performed an addi-
tional scenario (NO_FRA), i.e. by using the same dataset 
as in Scenario ALL, but the FRA population was excluded 
from the estimation process. The results showed that 
the inclusion of FRA data helps to estimate the national 
genetic variances of other populations (see Additional 
file 2: Figures S2 and S3). For example, smaller maternal 
genetic variance and larger maternal permanent envi-
ronmental variance were estimated for IRL in NO_FRA 
than in Scenario ALL, leading to a lower maternal herit-
ability for IRL in NO_FRA than in Scenario ALL. On the 
other hand, for the GBR population, the exclusion of FRA 
data resulted in a larger estimated maternal genetic vari-
ance than in Scenario ALL. In addition, compared with 
Scenario ALL, reducing or removing FRA data resulted 
in a larger estimated maternal permanent environmental 
variance for ESP (see Additional file 2: Figure S2). Thus, 
it seems that differences in across-country estimated rg 

across scenarios are related to the amount of FRA data 
used in the estimation process, rather than to how the 
subset of FRA data was chosen. Thus, we foresee that the 
application of other methods for the selection of con-
nected herds, even if they are more sophisticated such 
as the CD methodology [40], would not result in across-
country estimated rg closer to those obtained when using 
of all data. After all, differences in estimated rg between 
Scenario ALL and other scenarios were small.

While Scenario RND reduced the number of FRA herds 
randomly, Scenarios GSCB, GSTOT and HM reduced the 
number of observations by selecting the best-connected 
herds. Therefore, selected data are not “missing-at-ran-
dom” [41, 42]. Bayesian algorithms have been suggested 
to be better suited for dealing with such non-missing-at-
random data structures compared to REML algorithms 
[41]. Nevertheless, in our study, scenarios with non-ran-
dom sub-setting showed small differences in estimated rg 
compared to those of Scenario RND.

The total required computing time was similar for 
all sub-setting scenarios, with the computing time per 
REML round being directly proportional to the data 
reduction applied. Indeed, by reducing data to ~ 16% of 
the complete dataset (from 3.1 to ~ 0.5 million pheno-
types), the required computing time per REML round 
was reduced to ~ 17% (from 53  min in Scenario ALL to 
9  min in non-random scenarios). However, the larger 
required number of REML rounds in sub-setting scenar-
ios resulted in the total computing time not being pro-
portional to the data reduction applied (Table 8). A larger 
number of REML rounds may indicate a more difficult 
estimation of the parameters during VCE as suggested by 
Jorjani et  al. [6]. In this study, selecting herds based on 
the coefficient of genetic similarity as in Scenarios GSCB 
and GSTOT, required a smaller number of REML rounds 
than in Scenario HM, which indicates that herds selected 
based on genetic similarity could result in an easier esti-
mation of genetic parameters. Although Scenario RND 
subsets resulted in a similar number of REML rounds 
compared to Scenarios GSCB and GSTOT, the required 
computing time was longer due to the larger number of 
records analysed.

Implications
Estimated within-country genetic and environmental 
variances may differ from those reported by member 
countries, both when estimated using all international 
data (ALL Scenario) and subsets of data (RND, GSCB, 
GSTOT, HM Scenarios) (see Additional file  2: Fig-
ures  S2 and S3). However, national reported variances 
are considered more accurate than those obtained from 
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international data, since countries can use a more repre-
sentative national dataset for VCE, e.g. when not all the 
data are submitted for international evaluations. Thus, in 
Interbeef evaluations, changes in across-country rg are of 
primary interest, whereas within-country estimated vari-
ances are replaced with those reported by member coun-
tries. Indeed, it is common practice to use the reported 
national variances together with the estimated across-
country rg to build the across-country genetic covariance 
matrix from which IEBV are estimated.

The multi-variate approach proposed in this study is 
preferable over the current-in-use bi-variate approach 
for Interbeef evaluations [9]: matrices obtained in dif-
ferent scenarios were positive definite and bending 
procedures were avoided. This was enabled by the MC 
EM REML algorithm that allowed the estimation of all 
120 across-country rg at the same time. In comparison, 
when using the bi-variate method with a similar dataset 
as in this study, many estimated across-country rg did 
not converge, for example, 8 and 17 out of the 28 rg , for 
the direct and maternal effects, respectively (Pabiou, 
personal communication). As a result, across-country 
rg are usually set to an arbitrary default value. The use 
of such arbitrary values may be questionable, espe-
cially considering the possible impact on IEBV and, in 
turn, on establishing future genetic connections across 
populations. Moreover, under the current bi-variate 
approach, all 56 direct-maternal between-country rg are 
not estimated but are assumed to be 0, which may not 
be realistic. For instance, using all data, direct-maternal 
between-country estimated rg were all negative for FRA 
(Table 6), while for CHE they were almost all positive.

Conclusions
The MC EM REML algorithm allowed the simultane-
ous estimation of all across-country rg using a multi-
trait animal model. Reducing the data mainly affected 
the estimates of direct-maternal within-country and 
between-country rg , but had a small impact on the esti-
mated direct and maternal across-country rg . Estimated 
rg were very similar across sub-setting strategies, which 
means that the way the subset of FRA data was chosen 
hardly affected the values of rg . The standard errors 
of estimated rg increased when reduced data were 
used. Using the data sub-setting strategies reduced 
the amount of data used to about 16% of the complete 
dataset and the required computing time decreased to 
22% of that required when using all data.
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