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Modelling the shape of the pig scapula
Øyvind Nordbø1,2* 

Abstract 

Background:  The shape of pig scapula is complex and is important for sow robustness and health. To better under-
stand the relationship between 3D shape of the scapula and functional traits, it is necessary to build a model that 
explains most of the morphological variation between animals. This requires point correspondence, i.e. a map that 
explains which points represent the same piece of tissue among individuals. The objective of this study was to further 
develop an automated computational pipeline for the segmentation of computed tomography (CT) scans to incor-
porate 3D modelling of the scapula, and to develop a genetic prediction model for 3D morphology.

Results:  The surface voxels of the scapula were identified on 2143 CT-scanned pigs, and point correspondence was 
established by predicting the coordinates of 1234 semi-landmarks on each animal, using the coherent point drift 
algorithm. A subsequent principal component analysis showed that the first 10 principal components covered more 
than 80% of the total variation in 3D shape of the scapula. Using principal component scores as phenotypes in a 
genetic model, estimates of heritability ranged from 0.4 to 0.8 (with standard errors from 0.07 to 0.08). To validate the 
entire computational pipeline, a statistical model was trained to predict scapula shape based on marker genotype 
data. The mean prediction reliability averaged over the whole scapula was equal to 0.18 (standard deviation = 0.05) 
with a higher reliability in convex than in concave regions.

Conclusions:  Estimates of heritability of the principal components were high and indicated that the computational 
pipeline that processes CT data to principal component phenotypes was associated with little error. Furthermore, we 
showed that it is possible to predict the 3D shape of scapula based on marker genotype data. Taken together, these 
results show that the proposed computational pipeline closes the gap between a point cloud representing the shape 
of an animal and its underlying genetic components.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
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Background
The need for high-throughput phenotyping in animal 
breeding has accelerated the development of automated 
segmentation of computed tomography (CT) images [1–
3] and the generation of new precision phenotypes based 
on the morphology of animals [4]. Detailed 3D models 
would be useful for the development of new indicators 
for economically important traits that are not directly 
measurable on selection candidates, such as longevity 
and robustness. Including such relevant indicator pheno-
types in multi-trait genomic evaluations has the potential 

to increase the accuracy of estimated breeding values for 
traits under selection [4–6].

In human medicine, tremendous progress has already 
been achieved to create accurate descriptions of the 
shape of organs, bones, and surfaces through statisti-
cal shape modelling (SSM) [7]. More recently, the use 
of 3D cameras for web communication and entertain-
ment, has accelerated the development of SSM of the 
face in humans [8]. In humans, SSM of the face has 
also been used in genetic studies that aimed at building 
methods for the identification of people from biological 
material [9, 10]. In livestock science, there is also a lot of 
new research that focuses on 3D imaging since it pro-
vides automatic and objective measures on live animals 
for breeding applications [11]. Much emphasis has been 
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placed on replacement of phenotypes that, traditionally, 
have involved a large amount of manual work, for exam-
ple weight [12–14], body condition score, and locomo-
tion [15, 16]. Automatic high-throughput phenotyping 
from imaging technologies provides precise measures 
on already developed phenotypes, and simultaneously 
provides information about an individual from the 3D 
surface data. As such, 3D imaging has the potential to 
provide objective information about an individual’s con-
dition and health. This could be used to gain a better 
understanding of the mechanisms that underlie animal 
health and robustness [4] and to develop relevant pheno-
types for animal breeding [17].

The images recorded by, e.g., CT or 3D cameras are 
point clouds of surfaces and tissues without any annota-
tion. To create relevant scalar phenotypes, which are the 
input data of the traditional mixed model equations used 
for animal breeding [18], these images must be anno-
tated. The objects of interest may be rotated in relation 
to each other and are represented by different numbers of 
pixels. Hence, there is a need to create point correspond-
ence [19], i.e. a map that explains which points represent 
the same piece of tissue among individuals.

In this paper, we report the construction of a com-
putational pipeline for generating surface meshes with 
point correspondence based on automatic segmented 
CT images. Furthermore, we perform a principal compo-
nent analysis (PCA) of the 3D shape and present a physi-
cal interpretation of the first principal components (PC). 
Finally, we build a statistical genomic prediction model 
for the 3D scapula surface and present the prediction 
accuracy of this model through a cross-validation study.

Because of its complex shape and its importance for 
sow robustness and health, we used the pig scapula as a 
model organ [4], but our computational pipeline can, in 
theory, be applied to any 3D object that represents the 
surface of an organ, bone, or body.

Methods
Animals
The animals in this study were purebred Landrace pigs 
that originated from the Norsvin breeding nucleus. All 
the phenotypes used were part of routine records in the 
breeding programme and conducted in accordance to the 
laws and legislations for raising pigs in Norway. In total, 
2143 boars were CT-scanned at the boar testing station 
as part of the Topigs Norsvin breeding program [20]. The 
animals were born and raised to 25–30  kg in different 
nucleus herds located in Norway before being sent to the 
boar test station. The boar test included feed and weight 
records, scores for conformation traits, and CT scanning 
at the end of the test (at 120 kg) [21].

Genotypes
Single nucleotide polymorphism (SNP) genotyping was 
performed at CIGENE (University of Life Sciences, Ås, 
Norway) or at GeneSeek (Lincoln, NE, USA), using either 
the Illumina GeneSeek custom 80 K SNP chip (Lincoln, 
NE, USA), the Illumina Porcine SNP60 Beadchip (Illu-
mina Inc., San Diego, CA, USA), an Illumina GeneSeek 
custom 50  K SNP chip (Lincoln, NE, USA), or the Illu-
mina Porcine SNP9 Beadchip (Illumina Inc., San Diego, 
CA, USA). Genome positions of the SNPs were based on 
the Sscrofa10.2 assembly of the reference genome [22]. 
The genotypes were filtered [23] and imputed using the 
AlphaImpute software [24, 25]. After imputation, geno-
types on 34,726 SNPs were available for 2088 animals.

Ethics approval
All animals were cared for according to the laws and reg-
ulations for keeping pigs in Norway (Regulation for the 
keeping of pigs in Norway 2003-02-18-175, 2003; Ani-
mal welfare Act 2009-06-19-97, 2009). In Norway, animal 
breeding is controlled by “Mattilsynet” (Norwegian Food 
Safety Authority), who has officially approved Norsvin for 
maintaining herd-books through article 1(d) of Directive 
88/661/EEC (approval date 27.07.1994). The official herd 
ID for the boar test station is 0403050826. Data recording 
and sample collection were conducted strictly in line with 
the laws given by Norwegian animal research authorities 
on the protection of animals (“Lov om dyrevelferd”). The 
data were obtained as part of routine data recording in 
commercial breeding programs. Samples collected for 
DNA extraction were used only for the routine diagnostic 
purpose of the breeding program.

Creation of phenotypes from CT‑images
The full skeleton of live pigs was identified by apply-
ing a threshold value of 200 Hounsfield units to the CT 
scans [26]. Thereafter, the left scapula was identified and 
extracted [2], before modelling the 3D morphology of the 
scapula in Python, which involved the steps described 
below.

Creation of the scapula atlas
For the sake of simplicity, the surface of the left scapula 
was modelled for a random pig with a scapula that looked 
normal by visual inspection of the CT image:

(a)	 The scapula was centred, rotated, and scaled to its 
second invariant (on scapula CT images, the width 
is more precisely measured than the length [4]).

(b)	 The surface voxels were extracted. As an alternative 
to the marching cubes algorithm [27], which also 
has the potential to create surface meshes from e.g. 
3D camera images, a standard 3D Delaunay trian-
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gularization [28] was performed. This gives a con-
vex volumetric mesh representation of the scapula. 
To also represent the concave regions, tetrahedrons, 
which had one or more edge longer than a speci-
fied threshold (5 mm), were removed. This is sim-
ilar to the concept of alpha shapes and allows the 
object to have a partly concave surface. Inside the 
triangularization, all faces belong to two adjacent 
tetrahedrons, while surface faces belong to only 
one tetrahedron. To go from a volumetric mesh to 
a surface mesh representation of the scapula, faces 
that belonged to two tetrahedrons were removed, 
and only the nodes that belonged to the remaining 
(surface) faces were extracted and defined the sur-
face of the object. The output from this step was a 
dense surface mesh (Fig.  1) that consisted of 7472 
surface nodes, interpolated by 14,946 faces.

(c)	 To reduce the computational load and to avoid 
problems with multiple point correspondence, 
when fitting semi landmarks (see (b) in “Point cor-
respondence” below), a sparse subset of surface 
nodes was selected. This was done by going through 
all the nodes in the dense surface mesh and cal-
culating the local volume of the sub-mesh (i.e. the 
mesh consisting of the convex hull of each node and 
the other nodes that shared faces with this node). 
For sub-meshes with volumes smaller than a certain 
threshold, the centre node was removed and a new 
local mesh was built. After removing nodes that 
were associated with the smallest local volumes, 
the remaining nodes constituted the scapula atlas. 
By doing this, the number of surface points was 
reduced from 7472 to 1234 semi-landmarks (red 
dots in Fig. 1).

Point correspondence

(a)	 Each scapula was centred, rotated, and scaled in the 
same manner as was done for the atlas and a dense 
surface mesh was built for the individual, as in (b) 
in “Creating the scapula atlas” above, where the 
number of nodes varied between animals.

(b)	 To achieve the same number and same mean-
ing of all points or phenotypes for all individuals, 
we used the coherent point drift (CPD) algorithm 
[29], which is implemented in Python [30]. This 
algorithm and improvements of this method have 
been widely used to achieve point correspond-
ence for a variety of applications [31]. The CPD-
algorithm finds the transformation that best aligns 
two point-clouds, X and Y, using Gaussian mixture 
models (GMM) through expectation–maximiza-
tion (EM) optimization. The Y-points are consid-
ered as GMM centroids, whereas the X’s are data 
points to be fitted. At the optimum, the two point-
clouds are aligned and the output is the probability 
correspondence matrix P , which contains the prob-
ability that any point from Y corresponds to any 
of the points in X. In our case, we used the sparse 
atlas mesh as X [(c) in “Creating the scapula atlas”], 
and the dense surface mesh for each individual as 
Y [(a) in “Point correspondence”]. At the optimum, 
we used the most probable point correspondence 
for all points in X to find the corresponding point in 
Y. Hence, the raw phenotypes were a subset (1234 
points) of the dense surface mesh Y. Within the 
CPD algorithm, we tested three types of deforma-
tion, i.e. rigid, affine, and non-rigid [29], on a sub-
set of 115 individuals, using default parameters. To 
compare the effect of different deformation modes, 
we compared how well all points in the dense sur-
face point cloud for each individual were repre-
sented by the aligned subset. Based on the results 
from this initial test, we proceeded on the entire 
dataset that consisted of 2143 animals, using the 
affine deformation option.

(c)	 To better align the fitted point clouds of 1234 x, y, 
and z-coordinates for each animal, the centring, 
scaling, and rotating procedure from (a) in “Creat-
ing the scapula atlas” was repeated. For breeding 
purposes, size of the scalpula is an interesting phe-
notype, and therefore, data was rescaled to its origi-
nal size and measured in mm in an Eulerian coordi-
nate space.

(d)	 Earlier attempts to achieve point correspondence 
for scapula, resulted in problems with point match-
ing in regions where surfaces on different sides of 
the objects are close to each other. For example, at 

Fig. 1  A dense surface mesh (shown in grey) of a CT-scanned 
purebred Norwegian Landrace scapula with semi-landmarks (shown 
as red dots)
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the scapula spine, the bone is quite thin and aligned 
points for some individuals were fitted to the wrong 
side of the bone. To test whether the surface points 
were taken from the correct side of the spine, we 
measured the difference in y-values between two 
node points on each side of the spine, with similar 
x and z coordinate values (red points in Fig. 2a). In 
addition, we made similar measurements on some 
of the thinnest parts of the scapula. On each side of 
the spine, we selected two pairs of points with simi-
lar x and y values and measured the distance in the 
z direction (green and blue points in Fig. 2a).

Generation of scalar phenotypes

(a)	 To remove outliers, we summed the absolute devia-
tions from the population mean for all 3702 pheno-
types (1234 x, y, and z coordinates). Animals with 
a summed absolute deviation that was more than 
1.5 interquartile, ranges below the first quartile or 
above the third quartile were identified as outliers 
and removed from the dataset. After this step, 2088 
animals remained in the dataset.

(b)	 Because the number of raw phenotypes was very 
large and the covariance between the variables was 
large, PCA [32] was used to capture the main vari-
ation between individuals. A set of raw phenotypes 
for 200 animals were masked before running the 
PCA, since these animals constituted the validation 

set. In the PCA transformation, the M (1888) × N 
(3702) matrix X was transformed into a set of line-
arly uncorrelated variables, so the phenotype vector 
for each animal, m , could be expressed as: 

 where X̄ is the population mean of X , w are the 
principal component loadings or coefficients, and 
s are the principal component scores. The first few 
principal component loadings or coefficients ( w ) 
are the new uncorrelated variables that explained 
the main variation in the data and were used as the 
final aggregated phenotypes, while the principal 
component score snm was used as the phenotypic 
value of individual m for the new aggregated trait n.

Creating a statistical model
Next, we estimated the genetic parameters for the PCA 
scores using best linear unbiased prediction (BLUP) [33] 
multi-trait animal models with the DMU software [34], 
similar to the approach used for CT traits in previous 
work [4]. This analysis was conducted using a pedigree 
that contained all animals with CT data and five genera-
tion of ancestors, for 7315 animals. To limit the genetic 
analyses to a feasible number of traits, we included only 
the first 10 principal components. The PCA score pheno-
types snm were modelled in a mult-trait genetic analysis 
as:

(1)Xm = X̄ +

N
∑

n=1

wnsnm,

a b

Fig. 2  a A contour of the average pig scapula in the y–z plane for x-axis values between − 5 and +5 mm. The dots (red, blue and green) indicate 
points that were used to measure whether surface points were fitted on the wrong side of the bone. b Empirical Cummulative Distribution 
Function-plot of the distance between fitted point-pairs at opposite sides of the scapula surface. Green represents the distance between 
supraspinous fossa and subscapular fossa, blue the distance between infraspinous fossa and subscapular fossa, and red the width of scapular spine
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with herd year ( HY ) of the boar’s birth, birth month 
( BM ), and parity number of the dam ( PN ) as fixed effects, 
the boar’s phenotype for live weight at scanning date 
( LW ) as a fixed covariate, and the additive genetic effect 
of the animal ( amn ) and the residual ( eijklmn ) as random 
effects. The numbers of levels for HY , BM , and PN were 
148, 12, and 4, respectively, while the covariate LW had a 
mean of 122.8 kg and a standard deviation of 5.2 kg.

The genetic and phenotypic variance-covariances 
matrices G and P were further examined to identify 
genetically uncorrelated linear combinations of the 10 
PC traits by calculating the eigenvectors v and eigenval-
ues � of the GP−1 matrix [35]. The eigenvector associated 
with the largest eigenvalue shows the direction of the 
shape space that is associated with the highest heritabil-
ity estimate, whereas the eigenvector associated with the 
smallest eigenvalue shows the direction captured by the 
10 principal components for which variation is the least 
associated with the underlying genetics.

Cross‑validation using a genomic prediction model
The SNP genotypes of 2088 animals (1888 in training and 
200 in validation) were used to compute genomic rela-
tionships [36] with the program Gmatrix [37] as:

where Z is a matrix of standardised SNPs. Genotypes, 
with elements Zij = Iij − 2pj , where Iij is the number of 
the first allele that animal i carries for SNP j , with an 
allele frequency of pj . The genomic relationship matrix 
was fitted to the training data to predict genomic breed-
ing values [38] using the statistical model described 
above (Eq. 2).

The phenotypes of the validation animals were masked, 
and the breeding values for all 2088 animals were esti-
mated. Then, the genomic estimated breeding values 
(GEBV), amn for each of the validation animals were 
added to the relevant solutions of the fixed effects in 
the model ( HYin + BMjn + PNkn + β × LWln ) to con-
stitute predicted PCA scores, ŝnm . Since the data were 
extracted from a commercial breeding programme, the 
experimental setup was somewhat unbalanced, which 
could have led to unreliable estimates of fixed effects. To 
cope with this, we removed animals from the validation 
set for which the number of observations for any of their 
estimates of fixed effects was less than 4. By multiplying 
predicted PCA scores, ŝnm , by the corresponding PCA-
loadings, we predicted the 3702 raw phenotypes, using 
the 10 first PC, as:

(2)
sijklmn = HYin + BMjn + PNkn + β × LWln + amn + eijklmn,

(3)G =
ZZ

′

2
∑

pj(1− pj)
,

Goodness-of-fit of the shape was quantified by the 
mean Euclidean distance d

(

xm, x̂m
)

 between correspond-
ing genomic predicted points, x̂m, and true CT-data, xm, 
for each of the validation animals. To investigate predic-
tive performance over the surface [10], we also measured 
the spatial prediction reliability, R2 , using the following 
formula:

where the numerator is the squared Euclidean distance 
between true and predicted coordinates, averaged over 
the Mv validation animals, and the denominator is the 
mean squared Euclidean distance between observed and 
average coordinates values.

Visualization of results
For 3D visualization of the PCA components, we used 
the Mayavi [39] package. First, isonormals that pointed 
outwards were calculated for all faces in the mean shape 
mesh, and the average of isonormals of adjacent faces was 
used to calculate the isonormal of the nodes. The PCA 
loadings for each point explain how much of the vari-
ability of the raw data is explained by each of the prin-
cipal components. The loadings were organized into a 
vector field for the 1234 3D data points that represented 
the scapula. Taking the dot product between this vector 
field and the isonormals provided a scalar field that rep-
resented how variation in the current component affects 
morphological changes, perpendicular to the scapula 
surface. This allowed for the visualization of both inward 
and outward deformations in heatmaps.

Results
Selection of the best deformation type
To compare how the three types of deformation, rigid, 
affine, and non-rigid, worked within the coherent point 
drift (CPD) algorithm for the type of data analyzed here, 
an initial test was done on a subset of 115 animals. For 
this subset, the left scapula surface data consisted of 
between 7472 and 11,228 data points per animal. After 
deforming the atlas onto each individual’s data, a sub-
set of 1234 node points was extracted. To consider how 
well these 1234 node points represented the surface 
points, we calculated the Euclidean distance between all 
surface points and the closest node points. The median 
and maximum of these distances were calculated for 
each individual and then averaged over all individuals 

(4)X̂m = X̄ +

10
∑

n=1

wnŝnm.

(5)R2
= 1−

1

Mv

∑Mv
m=1

d
(

xm, x̂m
)2

1
Mv

∑Mv
m=1

d(xm, x̄)
2
,
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for each deformation type. For affine deformations, the 
median and maximum distances were 2.39 and 9.13 mm. 
For non-rigid deformations, the corresponding numbers 
were 2.46 and 10.29 mm, while for rigid formations, the 
median and maximum distances were 2.43 and 9.60 mm. 
Based on these statistics, the affine deformation was con-
sidered to best represent the scapula surface and was 
then used for the entire dataset.

Point correspondence
The coherent point drift algorithm was run successfully 
on the data from all 2143 animals, of which 55 were iden-
tified as outliers and removed from further analysis. The 
pair-wise distance between pairs of node points (indi-
cated by red, blue and green dots in Fig. 2a) on opposite 
sides of the scapula was measured for all animals and is 
shown as an empirical cumulative distribution function 
(ECDF) plot in Fig. 2b.

Figure 2 shows that the width at the narrowing on the 
scapula spine had a smooth uniform distribution with 
an average of 8  mm and a standard deviation of 1  mm, 
which indicates that surface points were fitted to the cor-
rect side for all animals. The distance for the two point-
pairs on the shoulder blade had a bimodal distribution, 
indicating that, for about 15% and 25% of animals, sur-
face modelling was not perfect for the supraspinous fossa 
(shown in green) and the infraspinous fossa (shown in 
blue), respectively.

Principal components
Of the 2143 animals, 2088 passed outlier removal. Of 
these, data on 200 animals were masked before the PCA 
for validation purposes. The first three PC explained 29.1, 
16.5, and 11.1% of the total variation, respectively, which 
means that more than 50% of the observed variation was 
captured by the first three PC, while more than 80% of 
the variation was captured by the first 10 PC (Table  1). 
After the first few components, the proportion of 
explained variance per PC shrank, and with 50 PC, 85.7% 
of the total variance was captured (Fig. 3a).

Comparing the data from the first 10 PC with the input 
of PCA showed that using 10 PC (Fig. 3b) resulted in an 
average error of 1.4  mm for node positions. The effects 
of the first four PC are illustrated in Fig. 4. The first PC 
was associated with mass transfer between infraspinous 
and supraspinous fossa (see Fig. 1) and the curvature of 
the scapular spine in the y–z plane. The second PC was 
mainly dominated by size of the scapula. This can also be 
observed in the regression coefficients ( β from Eq. 2) in 
Table  1, where the regression coefficient for live weight 
was much larger for this component than for the others. 
The third PC was mainly associated with shape of the 
spina scapula and also affected curvature of the entire 

bone in the x–z plane. The fourth PC mainly scaled the 
length to width and the length to thickness ratios.

Genetic parameters
To have a manageable number of traits in the genetic 
analysis, we focused on the first 10 PC and calculated 
genetic parameters using the DMU software [34]. Esti-
mates of heritabilities of the PC were high (0.40–0.79) 
(Table  1), while estimates of the genetic correlation 
between PC ranged from − 0.2 to 0.25, with a standard 
error of ~ 0.1. Summing the product of the explained 
variance and heritability estimate for the 10 PC in Table 1 
provides a rough estimate of the heritability of the 
observed scapula shape, and was equal to 0.47. However, 
this is a lower estimate, since variation in the remaining 
PC could also have a genetic component.

Each of the eigenvectors of the GP−1 matrix were asso-
ciated mainly with one PC (Table 2). Ranking the eigen-
vectors by the size of their associated eigenvalue, the first 
eigenvector was dominated by PC8, which was the PC 
with the highest heritability (Table  1), while the subse-
quent eigenvectors were mainly associated with PC with 
gradually decreasing heritabilities. The main exceptions 
from this pattern were the third and fourth largest eigen-
values which are both, to some extent, associated with 
both PC3 and PC9.

Validation
Of the 200 validation animals, 15 were removed 
because reliable estimates of fixed effects were not 
available. For the remaining 185 animals, estimates of 
fixed effects were added to the GEBV and then multi-
plied with the corresponding PC loadings (according to 

Table 1  Proportion of  variance explained by  the  first 
10 principal components (PC) (Exp. var.), and  estimates 
of  heritability (± SE) and  of  the regression coefficient, β, 
on live weight

PC principal components of the 3D scapula shape, β = regression coefficient on 
live weight, correcting for the size of the animals in a genetic analysis

PC Exp. var. h
2 SE β

PC1 0.29 0.52 0.07 − 0.23

PC2 0.17 0.56 0.08 − 1.16

PC3 0.11 0.68 0.07 0.16

PC4 0.09 0.67 0.07 0.64

PC5 0.07 0.50 0.07 − 0.25

PC6 0.04 0.63 0.07 0.19

PC7 0.02 0.78 0.07 − 0.31

PC8 0.01 0.79 0.07 − 0.07

PC9 0.01 0.68 0.07 − 0.03

PC10 0.01 0.40 0.07 0.10
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Eq. 4). Then, the predicted shape, X̂  was compared with 
the true shape, X , based on the average Euclidean norm 
of all 1234 corresponding 3D-points (see Fig. 5). Add-
ing predictions of more principal components reduced 
the mean error (across animals) from about 2.97  mm 
(when population average scapula was used as predic-
tion) to 2.64  mm when 10 PC-predictions were used. 
For comparison, omitting the GEBV (in Eq.  2) and 
using only the fixed effect estimates (indicated by blue 
dotted line in Fig. 5) reduced the mean error from 2.97 
to 2.94 mm, only.

The spatial prediction reliability, R2 , was calculated 
for each of the surface node points. The mean reliability 
for the full prediction model that included both GEBV 
and estimates of fixed effects was 0.18, with a standard 
deviation of 0.05 (Fig.  6b). By mapping reliabilities to 
the scapula, we see that the prediction reliability was 
slightly higher in convex than in concave regions. Spe-
cifically, some reliabilities were lower on the outside 
of the shoulder blade, close to the spine, both on the 
infraspinous and supraspinous fossa (see Fig.  6b). In 
comparison, using estimates of fixed effects only for 
shape prediction (Fig. 6a) resulted in spatial prediction 
reliabilities close to zero over the whole geometry.

Discussion
In this paper, we present a computational pipeline for 
shape modelling of 3D surfaces of organs and a predic-
tive model for 3D shape based on genomic data. In gen-
eral, estimates of heritability (Table  1) were high (mean 
0.62) compared to those of most traits related to skeletal 
features reported for humans [40–42], mice [43, 44], and 
livestock [45–47]. However, it should be mentioned that 
most of the literature on livestock focuses on bone size or 
on phenotypes related to bone length (e.g. height or stat-
ure), and not on bone shape, so the quantity of relevant 
data for comparison is limited. The high heritabilities of 
overall measures in the current study show that the shape 
of the scapula is highly heritable and that the computa-
tional pipeline that processes raw CT images to principal 
components is associated with limited errors.

In spite of the relatively small number of individuals 
used for training (1888), we have shown that genomic 
predictions of the 3D shape of the scapula was achievable. 
Adding additional principal components to predictions 
improved the average fit, resulting in an average error or 
predictions across points and animals of 2.64 mm based 
on the first 10 PC, which represents the sum of errors 
from genomic prediction and from simplification of the 

a b

Fig. 3  Cumulative variance explained by the 50 first principal components of the pig scapula (a), and mean error when comparing node positions 
based on the first 10 principal components with the true data (b).Grey lines represent the error for each animal and the red line represents the 
mean error across animals

(See figure on next page.)
Fig. 4  The first four principal components (PC) of the pig scapula. The colours of the 3D images indicate in what direction each PC altered the 
scapula shape. Red colour indicates growth perpendicular to the surface and blue colour indicates shrinkage perpendicular to the surface. The 
other plots show the contour of the scapula (x–y, x–z and y–z views) when adding (solid line) or subtracting (dotted line) two standard deviations of 
score values for each PC
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data when using 10 instead of 3702 variables. In addition, 
there are also some inherent imprecision in the CT data 
(voxel size of about 1 mm3), which limits the achievable 
predictive precision. Genomic predictions for shape had 
a mean reliability of 0.18, while predictions based on esti-
mates of fixed effects only resulted in a prediction relia-
bility close to zero. The reasons why estimates of genetics 
resulted in a better predictor of shape than estimates of 
environmental effects are: (1) the high heritability of the 
traits, and (2) the fact that the individuals were raised 
in very similar conditions and were scanned at a similar 
age/weight. For example, if the variation in body weight 
of scanned animals had been large, the predictive ability 
based on only estimates of fixed effects would probably 
have been higher.

The average spatial prediction reliability obtained here 
was of a similar order of magnitude as reported for facial 
shape predictions in humans [10]. In our data, reliability 
was quite spatially uniform, while for predictions of facial 
shape [10], reliability was relatively heterogeneous. In our 
data, the main area with lower spatial prediction reliabili-
ties was on the outside of the shoulder blade, close to the 
spine, both on the infraspinous and supraspinous fossa 
side (blue regions in Fig.  6b). This is an area that has a 
slightly concave curvature in the y–z plane. In addition, 
the bone is quite thin in this region and the lowered pre-
diction reliability might be because the CPD algorithm 
[29] led to conflicting correspondences between the sub-
scapularis fossa’s surface and the infraspinatus fossa’s 
surface in some instances (see blue and green points in 
and corresponding curves in Fig.  2). This problem was 
also reported in an analysis of human scapula data [48], 
and in that study conflicting correspondences were han-
dled first by dividing the surface into zones and then 
looking for correspondences between points belonging to 

Table 2  The ten largest eigenvectors ( vn ) of  the  GP−1 matrix as  linear combinations of  principal components 
and the associated eigenvalues, �

PC principal components of the 3D scapula shape

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

� 0.80 0.79 0.69 0.68 0.67 0.63 0.56 0.53 0.51 0.40

PC1a 0.00 0.00 0.00 0.00 0.00 0.01 − 0.03 1.00 0.01 0.01

PC2 0.02 − 0.01 0.00 0.00 − 0.01 0.01 − 1.00 − 0.03 0.01 0.00

PC3 0.00 − 0.02 − 0.98 0.17 0.01 0.01 0.00 0.00 0.01 0.00

PC4 0.00 − 0.02 − 0.01 − 0.01 − 1.00 − 0.05 0.01 0.00 0.00 0.00

PC5 0.03 − 0.01 0.01 0.00 0.00 0.00 0.01 − 0.01 1.00 0.00

PC6 0.01 0.00 − 0.01 0.00 0.05 − 1.00 − 0.01 0.01 0.00 0.00

PC7 0.02 1.00 − 0.02 0.00 − 0.02 0.00 − 0.01 0.00 0.01 0.00

PC8 − 1.00 0.02 − 0.01 − 0.05 0.00 − 0.01 − 0.02 0.00 0.03 0.00

PC9 0.05 0.00 − 0.17 − 0.98 0.01 0.00 0.00 0.00 0.00 0.00

PC10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 − 0.01 0.00 1.00

Fig. 5  Mean error for prediction of pig scapula shape, when 
including genomic predictions based on the first 10 principal 
components. Grey lines represent the error for each validation animal. 
The red line represents the error mean across animals and the blue 
dotted line represents the mean error when only estimates of fixed 
effects were used for shape prediction

Fig. 6  Spatial prediction reliability for the 3D model of the pig 
scapula based on fixed effects estimates only (a), and based on 
estimates of fixed effects plus genomic predictions, using the first 10 
principal components (b)
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the same zone, rather than fitting the whole point cloud 
in one step.

Previously, statistical shape models of scapula have 
been reported for humans [48–50], primates [51], and 
Felidae [52], but these were based on a much smaller 
number of individuals (between 15 and 57) than that 
used in our study. In addition, the scapula analysed here 
were probably more uniform in both size and shape than 
in these previous studies because the individuals were 
more homogeneous in terms of age and genetics and 
were raised under uniform environmental conditions. In 
some of these previous studies, the first principal com-
ponent explained a large amount of the total variance of 
the data, i.e. 60% [50], 72% [49], and 99% [52], and repre-
sented mainly the size-component in the data. Even after 
removing the size-component from the total variation, 
fewer principal components were needed in these stud-
ies to explain a certain ratio of the total variance than the 
number required in our study.

Examination of genetically orthogonal linear combi-
nations of the PC traits through eigen decomposition of 
the GP−1 matrix, showed almost a one-to-one relation-
ship between PC traits and eigenvectors, which was as 
expected, since estimates of genetic correlations between 
the PC traits were relatively low (between − 0.2 and 0.25 
with a standard error of ~ 0.1). The main exceptions to 
this one-to-one relationship were the third and fourth 
largest eigenvalues, which were both associated with the 
third and ninth principal component, which both had a 
heritability estimate equal to 0.68.

Implications of the chosen methods
Our aim was to build a computational pipeline that could 
connect 3D data of an individual to its underlying genet-
ics. Hence, the results rely on a variety of methods and 
assumptions, and some justification and implications of 
the chosen methods are presented here.

Creating the scapula atlas
In the current study, for simplicity, a random individual 
was selected to create the atlas for point correspond-
ence. Other alternatives, such as using an average atlas 
or multi-atlas, have been shown to give a more accurate 
atlas [53, 54] and might have improved the point corre-
spondence, especially in the concave regions and where 
the surfaces on different sides of the objects are close to 
each other.

Surface extraction method
In the current study, we used Delaunay triangularization 
and removed all tetrahedrons with any edge longer than a 
specified threshold. The rationale for this was to establish 
a more general method than, e.g., the marching cubes 

algorithm [27], which can also extract surfaces from less 
structured point clouds, such as those coming from 3D 
cameras. The level of the threshold chosen could, how-
ever, affect results. A high threshold could reduce the 
information about the concave areas, while a low thresh-
old could result in a discontinuous surface. By using a 
threshold of 5 mm for a point cloud with a regular grid 
with a resolution equal to 0.94 × 0.94 × 1.25  mm, some 
smoothing occured in the most concave regions, as for 
example where the tendons attach to the scapular spine.

Point registration method
The CPD-algorithm was used to find corresponding 
points across individuals. Initial tests were conducted 
with default input parameters and the affine deformation 
was found to perform best. Optimization of parameters, 
which could potentially improve the achievements of the 
method, was not performed. In addition, as described in 
Methods, we used the most probable point correspond-
ence (from matrix P ) for all points in X to find the cor-
responding point in Y. An alternative that could have 
improved the method is to use P to calculate weighted 
coordinate points from Y. A weakness of the original 
CPD-algorithm is that only the Euclidean distance is 
considered as a measure of similarity and not the neigh-
bourhood structure of points [31], as exemplified by 
locating corresponding points on the wrong side of the 
object (Fig. 2). Much effort has been put into improving 
the CPD algorithm, such that it includes more informa-
tion about the local structure between neighbouring 
points, see e.g. [31, 55]. Testing these developments as 
well as other relevant point registration methods [56, 57] 
is beyond the scope of this paper, but will be followed up 
in future research.

Scaling method
In the current study, the size of the object was embed-
ded in the definition of the phenotypes. Before doing the 
PCA, the surface point cloud was rescaled to its origi-
nal size, measured in mm. However, the PC-phenotypes 
were corrected for the live weight of the animal at scan-
ning to account for different sizes of the animals and in 
order to keep the phenotypes as independent as possible 
from animal management decisions (e.g. day of scan-
ning). An alternative for handling the effect of size would 
be to consider size separately from the PCA [58] and 
treat it as a separate scalar phenotype in the statistical 
model for estimating genetic parameters. Although this 
approach would have changed the principal components, 
the main conclusions would probably remain much the 
same, because the size component in the current dataset 
was relatively limited.
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Training population and cross‑validation
In the current study, a set of 200 animals was masked 
from the dataset before calculation of the principal com-
ponents, estimation of genetic parameters, and genomic 
prediction. This was done because our aim was to dem-
onstrate the concept of predicting the shape of an organ, 
rather than to obtain realistic prediction accuracies for 
animal breeding, which requires relevant relatedness 
between training and validation populations [59]. An 
alternative that would have increased the precision of the 
estimate of prediction reliability is to use K-fold cross-
validation [60]. However, this would have changed the 
definition of the phenotypes and the estimates of genetic 
parameters between validation sets, which would have 
made the results more difficult to interpret.

Further use of 3D animal models
Previously [4], we focused on the shape of the scapula 
spine and on some overall characteristics such as length, 
width, and thickness of the scapula. As hypothesized, we 
found that the shape of the scapula was genetically cor-
related with the severity of shoulder lesions and with 
body condition score of sows at weaning (of the litter). 
In the work reported here, we extended the shape mod-
elling to capture the entire 3D geometry of the scapula, 
which allowed us to use all morphological variation from 
the CT-scans. This is important to better understand the 
relationships between morphology, health, and genetics. 
Furthermore, for animal breeding purposes, detailed 3D 
models could be used to develop relevant indicators for 
traits that are not possible to measure on selection can-
didates, such as longevity and robustness [61–63]. By 
including relevant precision phenotypes in multivariate 
genomic predictions, the accuracy of estimated breeding 
values for economically important traits will increase [5]. 
As such, the development of a statistical shape model for 
breeding can be important for animal welfare and effi-
cient food production. In addition, the large number of 
CT scanned individuals in modern breeding programs, 
constitutes a valuable data source for verification of novel 
segmentation and detection algorithms. Furthermore, 
breeding animals are not covered by the General Data 
Protection Regulations, and high throughput genotyp-
ing and phenotyping from pig breeding could be used to 
improve reference datasets for genetic research across 
species, and to improve and automate diagnostic tools.

Conclusions
In this work, we constructed a statistical shape model 
of the pig scapula, in which the first 10 principal 
components covered 80% of the total shape variance 
observed in a large population of CT-scanned pigs. In 

general, estimates of heritabilities of the first principal 
components were high and showed that the computa-
tional pipeline that processes raw CT data to princi-
pal component phenotypes was associated with little 
error. Furthermore, we showed that it is possible to 
predict the 3D shape of the scapula based on genomic 
data. Some limitations in the quality of the point cor-
respondence were observed in concave areas where the 
surfaces of opposite sides of the scapula were close to 
each other. In those areas, the coherent point drift algo-
rithm sometimes led to conflicting correspondences 
between the different sides of the bone, and the reliabil-
ity of genomic predictions was lower than for the rest 
of the scapula. The statistical shape model can be used 
to develop precise indicator traits for phenotypes that 
are not possible to measure on selection candidates, 
such as longevity and robustness. As such, the develop-
ment of detailed 3D animal models can be an impor-
tant tool for improving animal welfare and for efficient 
food production.
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