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Abstract 

Background:  Edwardsiella tarda causes acute symptoms with ascites in Japanese flounder (Paralichthys olivaceus) 
and is a major problem for China’s aquaculture sector. Genomic selection (GS) has been widely adopted in breeding 
industries because it shortens generation intervals and results in the selection of individuals that have great breeding 
potential with high accuracy. Based on an artificial challenge test and re-sequenced data of 1099 flounders, the aims 
of this study were to estimate the genetic parameters of resistance to E. tarda in Japanese flounder and to evaluate 
the accuracy of single-step GBLUP (ssGBLUP), weighted ssGBLUP (WssGBLUP), and BayesB for improving resistance 
to E. tarda by using three subsets of pre-selected single nucleotide polymorphisms (SNPs). In addition, SNPs that are 
associated with this trait were identified using a single-SNP genome-wide association study (GWAS) and WssGBLUP.

Results:  We estimated a heritability of 0.13 ± 0.02 for resistance to E. tarda in Japanese flounder. One million SNPs at 
fixed intervals were selected from 4,978,724 SNPs that passed quality controls. GWAS identified significant SNPs on 
chromosomes 14 and 24. WssGBLUP revealed that the putative quantitative trait loci on chromosomes 1 and 14 con-
tained SNPs that explained more than 1% of the genetic variance. Three 50 k-SNP subsets were pre-selected based on 
different criteria. Compared with pedigree-based prediction (ABLUP), the three genomic methods evaluated resulted 
in at least 7.7% greater accuracy of predictions. The accuracy of these genomic prediction methods was almost 
unchanged when pre-selected trait-related SNPs were used for prediction.

Conclusions:  Resistance to E. tarda in Japanese flounder has a low heritability. GWAS and WssGBLUP revealed that 
the genetic architecture of this trait is polygenic. Genomic prediction of breeding values performed better than 
ABLUP. It is feasible to implement genomic selection to increase resistance to E. tarda in Japanese flounder with 50 k 
SNPs. Based on the criteria used here, pre-selection of SNPs was not beneficial and other criteria for pre-selection 
should be considered.
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Background
The Japanese flounder (Paralichthys olivaceus) is an 
economically important aquatic species that is cultured 
widely in the coastal areas of China, South Korea, and 
Japan. This fish is popular among consumers for its meat 
quality and good flavor. In addition, it is also popular 
among farmers because it is easy to rear, and the costs 
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of flounder farming are moderate. Since the discovery of 
Edwardsiella tarda in Japanese eels in the 1960s, it has 
become a widely spread pathogen [1]. E. tarda causes 
acute symptoms with ascites in many cultured fish, e.g., 
Japanese flounder, turbot, and channel catfish [2–5]. 
Because of the lack of effective measures to control this 
pathogen, the increasing mortality rate and associated 
farming costs are now severe problems in the Japanese 
flounder industry in China. Artificial selection could be 
a feasible procedure to improve resistance to this disease. 
Several positive cases of increased resistance to diseases 
through selective breeding methods have been reported 
in cultured fish, e.g., Atlantic salmon, rainbow trout, and 
Atlantic cod [6–14].

In general, resistance to bacterial diseases has a low to 
moderate heritability in fish, which makes it suitable for 
family selection [6, 8, 11, 13]. In aquatic breeding, phe-
notypes are usually evaluated by performing a challenge 
test, and breeding values of individuals or families are 
estimated by pedigree-based best linear unbiased predic-
tion (ABLUP). In order to avoid the spread of pathogens 
from parents to offspring, individuals that fail the chal-
lenge test are deemed inappropriate as parents for breed-
ing, but the healthy and unchallenged individuals are 
selected from families with high estimated breeding val-
ues (EBV), which greatly reduces the efficiency of selec-
tion for disease resistance.

Genomic prediction (GP) is a powerful tool for esti-
mating breeding values with a higher prediction accu-
racy than ABLUP [15, 16]. In addition, the use of GP in 
selection through genomic selection (GS) could solve 
the problem of selection efficiency in breeding for dis-
ease resistance in fish, as the breeding values of selection 
candidates could be estimated using data from a chal-
lenged reference group as soon as the single nucleotide 
polymorphism (SNP) genotypes are available on the 
selection candidates. Improvements in sequencing tech-
niques, coupled with their decreasing costs, have enabled 
whole-genome sequencing in many aquatic species, such 
as the torafugu (Fugu rubripes) [17], Atlantic salmon 
(Salmo salar) [18], Chinese tongue sole (Cynoglossus 
semilaevis) [19], nile tilapia (Oreochromis niloticus) [20], 
large yellow croaker (Larimichthys crocea) [21, 22], and 
Japanese flounder (P. olivaceus) [23]. Furthermore, many 
GP methods have been developed, including BayesB, 
BayesCπ, genomic BLUP (GBLUP), single-step genomic 
BLUP (ssGBLUP), weighted single-step genomic BLUP 
(WssGBLUP), and the stepwise linear regression mixed 
model (StepLMM) [15, 24–31]. These studies have laid a 
solid foundation and pave the way for conducting GS in 
aquatic breeding.

Most reported GP studies in fish have focused on 
disease resistance [32–38], and some on growth and 

meat quality traits [39–42]. Liu et  al. [32] investi-
gated the feasibility of GP by GBLUP and BayesCπ for 
E. tarda resistance in Japanese flounder through the 
cross-validation scheme, and revealed the potential of 
GS based on these two methods for increasing resist-
ance to E. tarda in Japanese flounder selective breeding 
[32]. However, no other genomic method for improv-
ing resistance to E. tarda in Japanese flounder has been 
reported, such ssGBLUP, WssGBLUP, and BayesB. Con-
sidering the genotyping costs in flounder breeding, it 
is necessary to evaluate the predictive accuracy of GP 
methods when marker density is reduced. In addition, 
we were also interested in the feasibility of GP by using 
trait-related SNPs. Based on an artificial challenge test 
and re-sequencing data, the aims of our study were to: 
(1) investigate the genetic architecture of resistance to 
E. tarda and detect trait-related SNPs; (2) estimate the 
heritability of resistance to E. tarda based on pedigree 
data; (3) pre-select three subsets of 50 k SNPs from the 
one million SNPs for GP; and (4) investigate the impact 
of pre-selection on the accuracy of three GP methods 
(ssGBLUP, WssGBLUP, and BayesB).

Methods
Fish samples and phenotypes
In 2007, three geographical flounder stocks (Korea, 
Japan, and China) were used as the founder population 
for developing the 1st generation flounder family [43]. 
The breeding objectives were to improve disease resist-
ance and growth performance. Every year, we devel-
oped 60 to 80 families, with each family cultured in 
separate tanks under standard culture conditions that 
were as identical as possible. All fishes were reared and 
challenged at the Yellow Sea Aquatic Product Com-
pany, Ltd., Haiyang, Yantai, Shandong Province, China. 
The challenge test was started at around 140 days after 
hatching, using protocols described in Chen et al. [43] 
and Zheng et al. [44]. In brief, for each family, 100 juve-
niles were selected at random and challenged with the 
same concentration of E. tarda by intraperitoneal injec-
tion. After infection, each batch of 100 juveniles was 
placed in a separate and sterilized tank with flowing 
water under culture conditions that were as identical as 
possible throughout the test. The survival status of the 
fish was recorded every 6 h. Body length and weight of 
the fish that died during the test were measured. Dur-
ing the test, the tail fins of dead fish were collected and 
preserved in absolute ethanol. At the end of the test, 
tail fins of all surviving fish were also sampled and pre-
served in absolute ethanol. The experiment ended when 
mortality stopped. A pre-test was conducted to confirm 
the concentration of E. tarda.
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Genotypes
Genomic DNA was extracted from the tail fin using the 
traditional phenol–chloroform protocol with RNase 
treatment. Samples were genotyped by whole-genome 
re-sequencing on an Illumina HiSeq2000. In total, 1099 
flounders were sequenced with an average sequencing 
depth of 6×. A quality control scheme was performed 
after re-sequencing and SNP calling. The criteria for 
removing low-quality SNPs were as follows: (a) a call rate 
less than 98%; (b) a minor allele frequency (MAF) lower 
than 5%; and (c) significant deviation from the Hardy–
Weinberg equilibrium (p-value less than 0.001). All miss-
ing genotypes were imputed after quality control. From 
the remaining SNPs, one million SNPs were extracted at 
fixed intervals and across the whole genome for down-
stream studies. Beagle version 3.3.1 [45], PLINK version 
1.90b4.4 [46], and fcGENE version 1.0.7 [47] were used 
for quality control and imputation protocols.

Estimation of heritability
Heritability for resistance to E. tarda in Japanese floun-
der was estimated by ABLUP with a five-generation 
pedigree. The binary trait (0 for death and 1 for sur-
vival) was analyzed using a threshold model with the 
probit link function, using R-ASReml [48]. The model 
was defined as follows:

where Yijklt is the observation (dead = 0/alive = 1) for fish 
k with dam l , challenged in experiment batch i at age j , 
batchi is the fixed effect of the experiment batch i , agej is 
the fixed effect of age j (days after hatching) at injection, 
ak is the random additive genetic effect of fish k , daml is 
the random maternal effect of dam l , Φ is the cumulative 
standard normal distribution function. In this model, the 
additive genetic effects were assumed to follow a normal 
distribution N

(

0,Aσ 2
a

)

 , where A is the numerator rela-
tionship matrix obtained from the pedigree (five gen-
erations), while maternal effects were assumed to follow 
N
(

0, Iσ 2
dam

)

 , where I is the identity matrix. Heritability 
was calculated as:

where σ 2
a  is the additive genetic variance, σ 2

dam is the 
maternal random effect variance, and σ 2

e  is the residual 
variance and equals 1.

Genome‑wide association study (GWAS)
To identify SNPs associated with resistance to E. tarda 
in the Japanese flounder, a single-SNP GWAS was 

Pr
(

Yijkl
)

= Φ
(

batchi + agej + ak + daml

)

,

h2 =
σ 2
a

σ 2
a + σ 2

dam + σ 2
e

,

performed using PLINK [46] with experiment batch, 
age at injection, and population structure (the first two 
dimensional elements of the principal component anal-
ysis) as predictors. Genotypes AA/Aa/aa were coded as 
0/1/2. The significance threshold was adjusted by the 
Bonferroni correction as 0.05 divided by the number of 
SNPs used in the GWAS.

In addition to the single-SNP GWAS procedure, a 
WssGBLUP was implemented using R-ASReml [48] 
to identify trait-related SNPs [30]. The model used for 
WssGBLUP was the same as the model used to estimate 
heritability, except that A was replaced by H , which is 
the combined genotype- and pedigree-based relation-
ship matrix and its inverse was as follows [28, 29]:

where A is the pedigree-based relationship matrix of all 
challenged animals; A22 is the pedigree-derived relation-
ship matrix of the 931 genotyped individuals; G is the 
weighted genomic relationship matrix constructed by the 
iterative algorithm described in [30] as follows:

1.	 set iter = 0 and D(iter) = I , where I is the identity 
matrix and iter is the iteration number;

2.	 construct matrix G∗

(iter) as 
G∗

(iter) = 0.95 ∗ ZD(iter)Z
′
�+ 0.05 ∗ A22 [26]; 

� = 1

2
∑

pj(1−pj)
 , where pj represents the frequency of 

the second allele at SNP j . Matrix Z equals matrix M 
minus matrix P , in which element Mij of M is the 
genotype of individual i at locus j and element Pij of 
P is equal to 2pj;

3.	 estimate genomic EBV (GEBV, ĝ ) using GBLUP;
4.	 estimate effects of all SNPs as 

û(iter) = �D(iter)Z
′G∗−1

(iter)ĝ;
5.	 estimate the variance of each SNP j as 

σ̂ 2
u,j(iter) = û2j(iter)2pj

(

1− pj
)

 [49];
6.	 estimate the element j of matrix D(iter+1) as djj(iter+1) ∑n

j=1 σ̂
2
u,j(iter)

n  , where n (= 20) is the number of SNPs 
within a sliding window;

7.	 normalize matrix D(iter+1) as 
D(iter+1) =

tr(D(0))
tr(D(iter+1))

D(iter+1);
8.	 construct the matrix G∗

(iter+1) as 
G∗

(iter+1) = 0.95 ∗ ZD(iter+1)Z
′
�+ 0.05 ∗ A22 [26], 

iter = iter + 1;
9.	 go back to step (4) when iter is less than or equal to 

3. Results from the second iteration were used for 
GWAS analysis. SNPs that explained more than 1% 
of the genetic variance were considered to be associ-
ated with the trait. Manhattan plots were created by 
R-qqman [50].

H−1
= A−1

+

[

0 0

0 G−1 − A−1
22

]

,
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Pre‑selection of SNPs
To investigate the benefit of pre-selection of SNPs on GP, 
three genotype subsets were extracted as follows and as 
illustrated in Fig. 1: (1) Geno1, 50 k SNPs were extracted 
from all quality-control-passed SNPs at fixed inter-
vals; (2) Geno2, 50 k SNPs were extracted based on the 
ascending order of the p-values obtained by the single-
SNP GWAS; (3) Geno3, 50 k SNPs were extracted based 
on the descending order of the estimate of the variance 
captured by each SNP ( ̂σ 2

u,j ) based on WssGBLUP. To 
reduce potential biases in accuracy of prediction when 
Geno2 and Geno3 were used, the p-values and the σ̂ 2

u,j 
used for pre-selection were not estimated based on the 
full dataset, but based on the five training sets that were 
used in cross-validation. As a result, Geno1 consisted of 
one subset, while five subsets were generated for Geno2 
and Geno3. The distributions of MAF for all quality-con-
trol-passed SNPs, and for the Geno1, Geno2, and Geno3 
subsets of SNPs were plotted using R-ggplot2 [51].

Genomic prediction methods and cross‑validation
Three GP methods (ssGBLUP, WssGBLUP, and BayesB) 
were used to estimate GEBV for investigating the poten-
tial at improving resistance to E. tarda in Japanese 
flounder breeding programs and to evaluate the effect 
of pre-selection of SNPs. Pedigree-based EBV (ABLUP) 
were used as a reference to assess the accuracy of the GP 
approaches. The model used for GP was the same as that 
used for the WssGBLUP-GWAS. For ssGBLUP, the G 
matrix was not weighted, whereas for WssGBLUP, it was 

weighted based on two iterations. ssGBLUP and WssGB-
LUP were implemented using R-ASReml [48].

In the BayesB approach, the GEBV ( ĝi ) of individual i is 
usually defined as 

m
∑

j=1

Mijûj , where ûj is the estimated 

effect of SNP j . In BayesB, a priori, 5% of SNPs were 
assumed to have non-zero effects, with an inverted chi-
square prior [15]. The effects of SNPs in BayesB were 
estimated by using the MCMC Gibbs sampling scheme 
with 15,000 iterations and the first 3000 being discarded 
as burn-in by using R-BGLR [52].

Five-fold cross-validation was conducted to assess 
the accuracy of the three GP methods. The full dataset 
of the genotyped individuals was divided into five non-
overlapping sets according to their family. One set was 
used for validation (VDT), in which the phenotypes were 
masked as missing in the prediction step, and the others 
were used for training (MDT). The mean area under the 
receiver operator characteristic (ROC) curves (AUC) of 
the five VDT, computed using R-pROC [53], was used to 
evaluate the performance of the GP methods [54, 55]. As 
mentioned above, each subset of Geno2 and Geno3 was 
generated based on GWAS and WssGBLUP using each 
fold of the MDT, and the accuracy of GP with each of the 
five Geno2 and Geno3 subsets was evaluated based on 
the corresponding VDT sets.

Results
Phenotypes, genotypes and heritabilities
The estimated heritability for resistance to E. tarda in 
Japanese flounder was equal to 0.13, which indicates 

Fig. 1  Process of pre-selection of SNPs. Dotted box in gray denotes the analytical method; dotted box in green denotes a pre-selected SNP subset 
for GS; words in orange denote criteria for pre-selection; words in blue denote the dataset used for pre-selection
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a lowly heritable trait (Table  1). Based on resequencing 
data from 1099 flounders, we obtained 9,121,759 initial 
raw SNPs. After quality control, 4,978,724 were retained 
for downstream studies. As shown in Fig.  2, the Geno1 
subset of SNPs and the full set of SNPs had similar MAF 
distributions. The five SNP subsets within Geno2 and 
Geno3 had very similar MAF distributions within the 
two pre-selection approaches. Compared to the Geno1 
subset, the number of SNPs with a MAF between 0.05 
and 0.20 was slightly larger in the Geno2 subset. The 
MAF distribution of SNPs in the Geno3 subset differed 
from that of the Geno1 and Geno2 subsets, with a smaller 
number of SNPs with low MAF and a substantially larger 
number of SNPs with MAF higher than 0.3.

Genome‑wide association study
The single-SNP GWAS identified significant SNPs on 
chromosomes 14 and 24 (Fig. 3). Six SNPs were identified 
with more than 1% of genetic variance by WssGBLUP, 
which provides additional support for the significant SNP 
on chromosome 14 (Fig.  4). Also, one trait-related SNP 
was detected on chromosome 1 (Fig. 4).

Genomic prediction and pre‑selection of SNPs
The accuracy of three GP methods (ssGBLUP, WssGB-
LUP, and BayesB) with the three subsets of SNPs (Geno1, 
Geno2, and Geno3) was compared based on their mean 
AUC in five VDT. The prediction accuracy of all GP 
methods was superior compared to that of ABLUP, with 
relative increases of at least 7.7% (Fig.  5). For Geno1, 
WssGBLUP (0.66) and ssGBLUP (0.65) had close accu-
racies, which were higher than that of BayesB (0.60). 
Based on the results of cross-validation, the accuracy of 
the three GP methods was hardly increased when pre-
selected SNPs were used for prediction. Some reductions 
in accuracy were observed for BayesB and WssGBLUP 
when Geno3 was used. The mean Pearson’s correla-
tion between EBV and GEBV of VDT ranged from 0.24 
to 0.56 with the lowest correlation for WssGBLUP (0.30 
in Geno1; 0.24 in Geno2; 0.26 in Geno3), and followed 
by ssGBLUP (0.37 in Geno1; 0.35 in Geno2 and Geno3). 
However, GEBV estimated by BayesB had the highest 
correlation with EBV (0.56 in Geno1; 0.36 in Geno2 and 
Geno3). GEBV predicted by the three GP methods using 
the same SNP subset had moderate-to-high correlations 

Table 1  Estimates (± SE) of  variance components 
and  heritability for  resistance to  E. tarda in  Japanese 
flounder estimated by pedigree-based BLUP

Additive genetic Dam Heritability

0.16 ± 0.03 0.11 ± 0.03 0.13 ± 0.02

Fig. 2  Distribution of minor allele frequency of all (a) and 
pre-selected SNPs based on the Geno1 subset (b), the five Geno2 and 
Geno3 subsets (c) to (l)
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(0.67 to 0.94), of which the correlation between ssGB-
LUP and WssGBLUP (0.94 in Geno1 and Geno3; 0.92 
in Geno2) was higher than other combinations (0.67 to 
0.87). For BayesB and when using different pre-selected 
subsets, correlations between GEBV ranged from 0.84 to 
0.87, which was lower than observed for ssGBLUP (0.93 
to 0.95) and WssGBLUP (0.92 to 0.97).

Discussion
Heritability
Disease resistance is a vital trait in aquaculture, par-
ticularly in intensive and industrial fish farming, which 
requires stringent conditions regarding the cultured 
species and environment. Heritability is an important 
parameter in selective breeding because it quantifies how 
much of the phenotypic variance in the trait is caused by 
genetic factors, which provides a reference for planning 
breeding schemes. We estimated a heritability of 0.13 
(underlying scale) for resistance to E. tarda in Japanese 
flounder, which indicates that it is a low heritability trait. 
Zheng et al. [44] reported a similar heritability estimate 

(0.18) based on threshold (logit) model pedigree-based 
BLUP for resistance to E. tarda in Japanese flounder. 
Studies on another species of flatfish, Chinese tongue 
sole, estimated heritabilities that ranged from 0.11 to 0.28 
for disease resistance defined as a binary trait based on 
a threshold model [56–58]. Although low, the estimated 
heritability of 0.13 would allow the flounder breeding 
industry to improve resistance to E. tarda in Japanese 
flounder by family selection.

Genome‑wide association study
The GWAS detected two significant SNPs on chromo-
somes 14 and 24. A peak formed around the significant 
SNPs, which led us to believe that QTL for resistance to 
E. tarda could be located on these chromosomes. Wss-
GBLUP is a powerful tool to detect QTL [30, 59, 60] and 
the percentage of genetic variance explained by each 
SNP estimated by WssGBLUP provided additional evi-
dence for QTL on chromosome 14 (Fig. 4). In addition, 
one SNP on chromosome 1 also explained more than 1% 
of the genetic variance, thus suggesting the presence of 

Fig. 3  Manhattan plot for resistance to E. tarda in Japanese flounder based on single-SNP GWAS

Fig. 4  Manhattan plot of the genetic variance explained by each SNP using the WssGBLUP approach
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a trait-related SNP on this chromosome. The percent-
age of genetic variance explained by the single SNPs that 
we identified here (6 SNPs within a 0.3-Mb window on 
chromosome 14 with each SNP explaining more than 1% 
of the genetic variance) was higher than that reported by 
Palaiokostas et al. (almost 4% of the genetic variance on 
chromosome 3 in a 0.5-Mb window containing approxi-
mately seven SNPs) [33]. This could be due to the dif-
ferent size of the window for weighting SNPs and the 
method used for estimating the proportion of genetic 
variance. The performance of WssGBLUP with different 
weighting methods (single SNP and multiple SNPs as a 
window) was also investigated to confirm the optimal 
weighting window (results not shown here). We found 
that more iterations were needed for stabilization as the 
size of the window increased. In addition, compared with 
the weighting of single SNPs, overestimation could be 
restricted by weighting with an appropriate number of 
SNPs.

Pre‑selection of SNPs and genomic prediction
There is no doubt that GP methods result in superior pre-
diction compared to pedigree-based BLUP. Our results 
are consistent with many previous studies in fish [33–
38]. Liu et  al. [32] reported that GBLUP and BayesCπ 
based on one million SNPs and 71 candidates resulted 
in high prediction accuracy in selection, with a Pearson 

correlation between phenotypes and GEBV of 0.70, 
which indicates that GS is a potentially efficient method 
to improve the resistance to E. tarda in Japanese flounder. 
To meet the cost-efficient and time-saving requirements 
in breeding practice, the predictive accuracy of GBLUP 
and BayesCπ with a range of SNP densities (1  k, 10  k, 
50 k, 100 k, 700 k, and 1 M) was evaluated (results not 
shown here). We found that GBLUP and BayesCπ yielded 
similar estimates of GEBV, and that accuracy of predic-
tion was not improved substantially when the number of 
SNPs was increased beyond 50 k. Therefore, we inferred 
that 50  k SNPs capture a sufficient amount of informa-
tion. Based on cross-validation results in this study, we 
also confirmed that it is feasible to conduct GP with 50 k 
SNPs to improve the predictive accuracy for resistance to 
E. tarda in Japanese flounder with a relative increase in 
accuracy of at least 7.7% over pedigree-BLUP. We applied 
the weighting method that was proposed by Wang et al. 
[30], which was originally used to improve the power of 
GWAS for detecting QTL. The weighting method not 
only improves the precision of GWAS, but also increases 
the accuracy of GP [59, 60]. In our study, WssGBLUP had 
the highest relative increases in accuracy over pedigree-
BLUP (20.9 to 22.2%), but ssGBLUP resulted in similar 
accuracies. WssGBLUP is a time-consuming protocol, 
especially when high-density SNPs are used for predic-
tion. Hence, ssGBLUP might be an optimal method to 

Fig. 5  Relative increases of the mean area under the curve of three genomic prediction methods estimated with three subsets of pre-selected 
SNPs
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predict GEBV for resistance to E. tarda in our Japanese 
flounder population.

A previous study on the large yellow croaker (Larim-
ichthys crocea) reported that the accuracy of GP for two 
growth traits could be improved when SNPs were pre-
selected based on the largest absolute effects of SNPs 
and the degree of association with the trait of interest. 
[40]. In our study, two methods, single-SNP GWAS 
and WssGBLUP, were used to pre-select 50  k trait-
related SNPs, which were then applied in GP. However, 
no increases in accuracy were observed when the pre-
selected SNPs were used, and even some reductions in 
accuracy were observed for BayesB. This difference in 
result from [40] could be explained by the dataset used 
for pre-selection in [40], which was the full dataset 
instead of the training set. In general, cross-validation 
is a strategy used for simulating the breeding process of 
GS to evaluate predictive accuracy. However, to reduce 
the potential biases caused by SNP pre-selection, the 
selection of SNPs must be part of the cross-validation 
approach. I.e. the SNPs must be pre-selected based on 
an analysis of the training data, and then applied to GP 
of the validation data.

Because the accuracy evaluated by a cross-validation 
scheme depends on the relatedness between the MDT 
and VDT, we also evaluated another grouping strategy to 
evaluate the feasibility of pre-selection. In this strategy, 
two individuals were sampled randomly from each fam-
ily to be used as a VDT, resulting in stronger relation-
ships between the MDT and the VDT. Five replicates 
of MDT-VDT were generated based on this grouping 
method. Interestingly, the accuracy based on this group-
ing method yielded similar results as those reported in 
Table 2.

Pre-selection of SNPs changed the distribution of 
MAF, with the distribution of MAF in Geno3 being 
altered more towards high MAF than was obvious for 
Geno2 (Fig.  2). The proportion of variance explained 

by a SNP is a function of its allele frequency, i.e. SNPs 
with a low MAF tend to explain a smaller variance, 
which could affect the accuracy of GP. However, it is 
interesting to note that the accuracies of GP meth-
ods using Geno2 and Geno3 are very similar, even the 
Geno3 subset has a higher proportion of high MAF 
SNPs than Geno2. We speculated that the distribution 
of SNPs on chromosomes and the linkage disequilib-
rium between markers and QTL changed when SNPs 
were pre-selected from the one million SNPs and 
that their genetic effects and variances had to be esti-
mated again when used for GP. Therefore, SNPs with 
strong genetic effects or large variances might not 
explain more variance after re-estimation. Since no 
clear increase in GP accuracy was observed when trait-
related SNPs were used for prediction, pre-selection of 
SNPs based on variance  explained (from WssGBLUP) 
or p-values (from single-SNP GWAS) may not be suit-
able  criteria for pre-selection on the E. tarda resist-
ance in Japanese flounder.

Conclusions
We estimated the heritability of resistance to Edwards-
iella tarda in Japanese flounder to be 0.13 using a five-
generation pedigree. One million SNPs were extracted 
from the 4,978,724 SNPs that passed the quality control 
and were used for GWAS analysis and pre-selection 
of SNPs. Significant SNPs were identified on chromo-
somes 14 and 24. WssGBLUP with the one million SNPs 
resulted in the detection of additional trait-related 
SNPs on chromosomes 1 and 14. It is feasible to imple-
ment genomic prediction with 50 k SNPs for increasing 
resistance to E. tarda in Japanese flounder. Pre-select-
ing 50 k SNPs based on estimates of variance contrib-
uted  (from WssGBLUP) or p-values (from single-SNP 
GWAS) did not increase accuracy of genomic predic-
tions substantially.

Table 2  Area under  curve from  receiver operating curves for  resistance to  E. tarda in  Japanese flounder obtained 
by  pedigree-based BLUP and  genomic prediction procedures for  three methods of  pre-selection of  SNPs (Geno1, 2, 
and 3) for five-fold cross-validation

Fold Pedigree BLUP Geno1 Geno2 Geno3

BayesB ssGBLUP WssGBLUP BayesB ssGBLUP WssGBLUP BayesB ssGBLUP WssGBLUP

1st 0.50 0.62 0.63 0.64 0.60 0.64 0.63 0.55 0.63 0.62

2nd 0.54 0.62 0.64 0.64 0.62 0.64 0.64 0.61 0.64 0.64

3rd 0.54 0.57 0.65 0.67 0.52 0.62 0.67 0.54 0.64 0.66

4th 0.57 0.68 0.72 0.74 0.70 0.74 0.73 0.69 0.73 0.72

5th 0.56 0.54 0.62 0.61 0.55 0.62 0.64 0.52 0.60 0.63

Mean 0.54 0.60 0.65 0.66 0.60 0.65 0.66 0.58 0.65 0.65
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