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Abstract 

Background:  Several studies have found that the growth rate of a pig is influenced by the genetics of the group 
members (indirect genetic effects). Accounting for these indirect genetic effects in a selection program may increase 
genetic progress for growth rate. However, indirect genetic effects are small and difficult to predict accurately. 
Genomic information may increase the ability to predict indirect genetic effects. Thus, the objective of this study was 
to test whether including indirect genetic effects in the animal model increases the predictive performance when 
genetic effects are predicted with genomic relationships. In total, 11,255 pigs were phenotyped for average daily gain 
between 30 and 94 kg, and 10,995 of these pigs were genotyped. Two relationship matrices were used: a numerator 
relationship matrix ( A ) and a combined pedigree and genomic relationship matrix ( H ); and two different animal mod-
els were used: an animal model with only direct genetic effects and an animal model with both direct and indirect 
genetic effects. The predictive performance of the models was defined as the Pearson correlation between corrected 
phenotypes and predicted genetic levels. The predicted genetic level of a pig was either its direct genetic effect or 
the sum of its direct genetic effect and the indirect genetic effects of its group members (total genetic effect).

Results:  The highest predictive performance was achieved when total genetic effects were predicted with genomic 
information (21.2 vs. 14.7%). In general, the predictive performance was greater for total genetic effects than for direct 
genetic effects (0.1 to 0.5% greater; not statistically significant). Both types of genetic effects had greater predictive 
performance when they were predicted with H rather than A (5.9 to 6.3%). The difference between predictive perfor-
mances of total genetic effects and direct genetic effects was smaller when H was used rather than A.

Conclusions:  This study provides evidence that: (1) corrected phenotypes are better predicted with total genetic 
effects than with direct genetic effects only; (2) both direct genetic effects and indirect genetic effects are better pre-
dicted with H than A ; (3) using H rather than A primarily improves the predictive performance of direct genetic effects.
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Background
Quantitative geneticists are increasingly interested in 
estimating genetic parameters for the impact of an indi-
vidual on the phenotypes of other individuals [1]. The 
expectation is that selection for such beneficial interac-
tions between animals for a certain trait will increase 

genetic progress in that trait [2]. Pigs interact with one 
another and they have been subject to genetic analyses of 
interactions [3–5]. Since these interactions may give rise 
to previously unexploited heritable variation [6], inclu-
sion of genetic effects of interactions between pigs in 
animal models for the estimation of breeding values may 
improve the efficiency of breeding programs [7].

Griffing [6] proposed an animal model for estimat-
ing simultaneously both an additive genetic effect on 
own performance (direct genetic effect) and an additive 
genetic effect on the performance of other individuals 
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(indirect genetic effect) on the same trait. Using these 
models should enable the utilization of the heritable (co)
variation that arises from these interactions [7]. In addi-
tion, the association between direct and indirect genetic 
effects may explain why some selection schemes result 
in unexpected responses, whether smaller or larger than 
expected [6–8].

Indirect genetic effects have proven challenging to 
quantify and predict. Some studies on growth rate in 
pigs show that including indirect genetic effects in the 
animal model improved its goodness-of-fit and/or its 
predictive performance [4, 9, 10], whereas other studies 
found neither of these results [3, 11, 12]. Some of these 
studies may have been challenged by both the complex 
nature of interactions between pigs and the fact that 
indirect genetic models are more sensitive to experimen-
tal design/data structure than classical animal models 
[9, 13–17]. A major challenge with predicting indirect 
genetic effects is that they are often small and thereby 
require more information for accurate prediction than 
direct genetic effects.

Modelling indirect genetic effects with genomic infor-
mation may offer a solution to the abovementioned chal-
lenge since estimating genetic relationships between pigs 
using genomic information rather than pedigree informa-
tion increases the accuracies of the coefficients of kinship. 
While the estimated genetic relationship from pedigree 
information depends on the number of generations that 
is traced [18], genomic information captures both signals 
of selection and drift from all previous generations [19]. 
Consequently, genomic information is better for trac-
ing direct genetic effects than pedigree information and 
could be better for indirect genetic effects too.

For direct genetic effects, estimating the genetic rela-
tionships between pigs using genomic information 
rather than pedigree information may result in smaller 
estimated variance components [20]. This may have 
both analytical and genomic causes [21–24]. Therefore, 
it is not advised to estimate variance components using 
genomic information [24].

In spite of the challenges associated with parameter 
estimation, genomic information has proven very ben-
eficial when predicting direct genetic effects [25–27] and 
can be expected to be beneficial when predicting indirect 
genetic effects as well. This is indicated in the study by 
Alemu et  al. [28] that predicted the sums of direct and 
indirect genetic effects and found that genomic infor-
mation improved the predictive performance. However, 
their study does not answer the question of whether 
genomic information increased the predictive perfor-
mance of direct genetic effects, indirect genetic effects 
or both. To our knowledge, no study has investigated 
whether indirect genetic effects increase the predictive 

performance of animal models when direct and indi-
rect genetic effects are predicted simultaneously with 
genomic information.

We hypothesize that: (1) the combined predictive per-
formance of indirect and direct genetic effects is superior 
to the predictive performance of only direct effects; and 
(2) both prediction with the combination of indirect and 
direct genetic effects and prediction with direct genetic 
effects only is more accurate with genomic relationships 
than with pedigree relationships.

Methods
In this section, we successively present (1) the phenotypic 
data; (2) the definitions of standardized starting weight 
covariates; (3) the characteristics, imputation, and qual-
ity control of the genotypic data; (4) the construction 
of relationship matrices with either pedigree informa-
tion only or both pedigree and genomic information; (5) 
the linear mixed models with either both indirect- and 
direct- genetic effects or direct genetic effects only; (6) 
the equations to calculate variance components and her-
itability statistics; and (7) the procedure used to estimate 
the predictive performances of genetic levels from the 
linear mixed models.

No Animal Care and Use Committee approval was 
obtained for this study because the pigs were part of rou-
tine performance tests in the DanBred breeding program. 
All pigs were kept in accordance with both Danish legis-
lation for pig production and the Danish Product Stand-
ard [29].

All data was provided by SEGES, Danish Pig Research 
Centre.

Phenotypic data
The data was recorded in a DanBred Landrace nucleus 
herd in which pigs were performance-tested for average 
daily gain between August 2015 and October 2018. Boars 
and gilts were housed in different stables, and pigs were 
produced on-farm through artificial insemination. The 
test scheme was carried out on a weekly basis. The pigs 
entered the test when they weighed more than 28 kg with 
the restriction that their entry date could not be later 
than 2 weeks after the first pig in the pen entered the test. 
The test of a group ended when the largest pig in the pen 
reached 94 kg. The age at test start and number of days 
in test differed between pen-mates, since pigs within a 
group could enter the test at different dates. All pigs were 
weighed at the start and end of the test. Growth rate 
was defined as the average daily gain in live weight from 
start to end of the test; i.e. average daily gain is the aver-
age weight gain per day during the test period. Pigs that 
were removed from the pen before the end of the test 
obtained no measurement on daily gain, but were kept in 
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the dataset (165 pigs). The final dataset contained 11,420 
pigs (6422 boars and 4833 gilts) among which 11,255 
pigs had an average daily gain measurement, 1179 dams 
of phenotyped animals, 384 sires of phenotyped animals, 
1197 groups (boar groups: 646; gilts groups: 551), and 
1595 litters.

Group structure
Pigs were allocated to groups based on liveweights prior 
to test start: i.e. heavy pigs were grouped with other 
heavy pigs and vice versa, which means that related-
ness between group members was not considered when 
grouping the animals. The group size at test start was 9 
for gilts and 10 for boars. The average group size was 9.57 
pigs at test start because there were more groups with 
boars than with gilts. Due to removals, a pig had on aver-
age 8.5 group members per day. Groups contained pigs 
from on average 7.7 litters (min: 4; max 10; SD: 1.2) and 
6.6 sires (min: 3; max 10; SD: 1.3). The average related-
ness among group members is presented as part of the 
results.

Definition of covariables
Two covariables related to starting weight were defined: 
sWghtAge and WghtDev.
sWghtAge is the expected weight of pigs at the average 

age pigs were weighed. The growth rate of a pig is approx-
imately a sigmoid function of the age (developmental 
stage) of the pig [30]. Thus, the observed growth rate 
depends on the developmental stage at which it is meas-
ured. The developmental stage of a pig depends primar-
ily on its age and previous feed intake [31]. The pigs in 
this study differed in developmental stages, in particular 
due to variation in the age at which they entered the test 
(Table 1). In an attempt to account for these differences 
in developmental stage of the pigs in the animal model, 
starting weights were corrected for the age at which they 
were observed:

where sWghtAgei is the weight at test start corrected for 
difference in age, sWghti is the observed weight at test 
start in kg, sAgei is the age at test start in days, and sAge 
is the average age in days at test start across all animals.
WghtDev is the expected deviation in start weight 

from the group mean at the average date the group was 
weighed. If a pig is lighter than its group members, it is 
at a disadvantage when competing for resources. To cal-
culate WghtDev , first we standardized starting weights to 
one timepoint within each group:

(1)

sWghtAgei = sWghti −
sWghti
sAge i

(

sAgei − sAge
)

,

where sAge is as defined for sWghtAge ; sDatei is the date 
at which the starting weight was observed for pig i; and 
sDateg is the average date at which the starting weight 
was observed in group g . Lastly, WghtDev was defined as 
the difference in WghtDate from the group mean:

where sWghtDateg is the average sWghtDate within 
group g . The mean, standard deviation, minimum, and 
maximum of sWghtAge and sWghtDev are in Table 1.

Genotypic data and quality control
Pigs were genotyped with the NEOGEN GeneSeek® 
Genomic Profiler Porcine BeadChip [32]. This chip pro-
vides information on genotypes on both autosomal and 
sex chromosomes. The aim was to genotype all the pigs, 
but due to sampling errors, only 10,998 pigs (96%) were 
genotyped.

Genotypes from three animals that failed DanBred’s 
parentage tests were omitted. Genotypes were regarded 
as valid if their GenCall-scores (GC-score) were above 
60% [33]. Quality control of the genotypic data was per-
formed per single nucleotide polymorphism (SNP) only. 
A SNP was used in later steps of the analysis if its call-
rate was greater than 90%; its minor allele frequency 
was greater than 1%; its frequency of Mendelian errors 
was less than 0.1%; and its p value for the test of Hardy–
Weinberg equilibrium was greater than 10−7. The Hardy–
Weinberg criterion was not applied to SNPs on the sex 
chromosomes. After quality control of SNPs, missing 
genotypes were imputed with the FImpute v2.2 software 
[34]. In total, 34,123 SNPs and genomic information from 
10,995 pigs was used for further analysis.

(2)

sWghtDatei = sWghti −
sWghti
sAgei

(

sDatei − sDateg
)

(3)sWghtDevi = sWghtDatei − sWghtDateg,

Table 1  Mean, standard deviation, minimum 
and maximum of the phenotype and covariates

SD, Standard deviation; sWghtAge , Starting weight adjusted for age at start; 
sWghtDev , Deviation in date-adjusted starting weight from group mean

Variable Mean SD Min Max

Average daily gain (g/day) 1117.8 152.7 90.9 1580. 0

sWghtAge (kg) 29.76 2.87 16.20 41.13

sWghtDev (kg) 0.01 2.45 − 11.94 9.53

Average number of group 
members in the group (heads/
day)

8.5 0.6 6.2 9.0
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Relationship matrices
Genetic effects were predicted with two types of relation-
ship matrices: a numerator relationship matrix ( A ), and 
a combined pedigree and genomic relationship matrix 
(single-step; H ). A was constructed with a pedigree 
containing ancestors five generations prior to pigs with 
phenotypes. H was constructed from A and a genomic 
relationship matrix ( G ) using the single-step method 
[26, 35]. G was constructed using Method 1 of VanRaden 
[36] with centering and scaling based on the allelic fre-
quencies observed for all genotyped pigs in the pedigree. 
The diagonal and off-diagonal elements of G were scaled 
and centered to have the same mean as the part of A 
that relates to genotyped animals [37–40]. Lastly, G was 
replaced by the weighted average between G and A to 
take into account that marker genotypes do not capture 
all the genetic variance:

where w is the weight on the genomic relationship matrix. 
The value of w ranged from 0 to 99% across prediction 
analyses (see section on “Predictive performance”).

Animal models
Growth rate was analyzed with two linear mixed models: 
an animal model with both direct and indirect genetic 
effects (INDIRECT) and a classical animal model with 
only direct genetic effects (CLASSIC). For both models, 
variance components were estimated with A as covari-
ance structure for genetic effects. Estimated variance 
components will be referred to by using the names of 
the models (DIRECT/INDIRECT). Variance component 
estimates and their respective model were then used to 
predict genetic effects with either A or H as covariance 
structure for genetic effects. In the following, prediction 
of genetic effects using CLASSIC and A as covariance 
structure will be referred to as CLASSIC_PED, predic-

tion of genetic effects using CLASSIC and H as covari-
ance structure will be referred to as CLASSIC_GEN, 
prediction of genetic effects using INDIRECT and A as 
covariance structure will be referred to as INDIRECT_
PED, and prediction of genetic effects using INDIRECT 
and H as covariance structure will be referred to as 
INDIRECT_GEN.

(4)Gw = wG+ (1− w)A,

Variance components were estimated with the average 
information restricted maximum likelihood (AI-REML) 
algorithm and genetic effects were predicted with best 
linear unbiased prediction (BLUP). Both the estimation 
of variance components and BLUP were carried out with 
the DMU software [41].

INDIRECT, the model with both indirect and direct 
genetic effects is as follows:

where subscripts D and I indicate whether an effect is 
direct or indirect, and the absence of a subscript indi-
cates that the effect is expected to capture both direct 
and indirect effects; y is a vector of growth rates dur-
ing the performance test; b is a vector of parameters 
for the fixed effects. The fixed class effects are sex and 
the interaction level between year of birth and month 
of birth. The fixed continuous effects are starting weight 
( sWghtAge ; see Eq.  (2)), deviation in starting weight 
from the group mean ( sWghtDev ; see Eqs. (3) and (4)), 
and the average number of group members present in 
the pen during the performance test (heads/day). The 
latter is used to correct for the effect of stocking den-
sity as pigs were removed during the test; aD is a vec-
tor of direct genetic effects; aI is a vector of indirect 
genetic effects; u is a vector of sex-year-month effects; 
lD is a vector of direct litter effects; lI is a vector of indi-
rect litter effects, i.e. effect of litters of group mates; eI 
is a vector of indirect environmental animal effects, i.e. 
this effect is analogous to a group effect; eD is a vector 
of residuals; and X , ZD , ZI , W , QD , QI , and RI are design 
matrices. Model INDIRECT contains two vectors of 
random genetic effects (direct and indirect) and five 
vectors of random, independent environmental effects 
(sex-year-month, direct litter, indirect litter, indirect 
environmental animal and residual), assumed to follow 
the distribution: 

where σ 2
aD

 is the direct genetic variance; σ 2
aI

 is the indi-
rect genetic variance; σaD,I is the covariance between 
direct and indirect genetic effects; C is the covariance 
structure for genetic effects, i.e. C is A for models INDI-
RECT and INDIRECT_PED, and H for model INDI-
RECT_GEN; σ 2

u  is the sex-year-month variance; σ 2
lD

 is 

(5)
y = Xb+ ZDaD + ZIaI +Wu +QDlD +QIlI + RIeI + eD,
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the direct litter variance; σ 2
lI

 is the indirect litter variance; 
σ 2
eI

 is the indirect non-genetic animal variance; σ 2
eD

 is the 
residual variance; and Iu , IlD , IlI , IeI , and IeD are identity 
matrices with dimensions equal to the number of levels 
of their respective effects.

CLASSIC, the model with only direct genetic effects, is 
as follows:

where matrix and vector notations are identical to those 
for INDIRECT (Eq.  (5)). CLASSIC contains one vec-
tor of random genetic effects (direct) and five vectors of 
random, independent environmental effects (sex-year-
month, direct litter, indirect litter, indirect environmental 
animal and residual), assumed to follow the distribution: 

where the notation is the same as for INDIRECT 
(Eq. (6)).

CLASSIC contains indirect litter and indirect non-
genetic animal effects although  it is meant to represent 
a usual animal model. The reasons are that these indi-
rect effects explain phenotypic variation and that greater 
similarity between CLASSIC and INDIRECT makes the 
results on their log-likelihood-ratio test more related to 
whether indirect genetic effects exist or not.

A log-likelihood ratio test was used to test whether 
INDIRECT had a better model fit than CLASSIC: 
P
(

�LogL
)

= χ2
(

−2 loge

[

ℓ(CLASSIC)
ℓ(INDIRECT)

])

 , where χ2(. . .) is 
the cumulative distribution function of the Chi square 
distribution with two degrees of freedom for the parame-
ters σ 2

aI
 and σaD,I ; ℓ(CLASSIC) is the likelihood value of 

CLASSIC; and ℓ(INDIRECT) is the likelihood value of 
INDIRECT.

Variance components and heritability parameters
The equations used to calculate variance components and 
heritability statistics for both CLASSIC and INDIRECT 
are in Table 2. Two heritability statistics were calculated: 
direct heritability ( h2 ) and total heritability ( T2 ) [2].

Predictive performance
To estimate the predictive performance of the mod-
els, the data were divided into training data and valida-
tion data. Training data contained phenotypes on pigs in 

(7)
y = Xb+ ZDaD +Wu +QDlD +QIlI + RIeI + eD,

groups where all pigs were born before January 1st, 2018 
(9431 pigs; 83.8%), whereas the validation data contained 
phenotypes on pigs not included in the training data 
(1824 pigs; 16.2%).

The predictive performance of the animal models was 
defined as the ability to use the training data to predict 
corrected phenotypes of pigs in the validation data. The 
predictive performance was quantified as Pearson’s cor-
relation coefficient between corrected phenotypes and 
predicted genetic levels. Here, the corrected phenotype 
was defined as the difference between observed pheno-
types and fixed effects from INDIRECT: yc = y − Xb . 
The predicted genetic level was either based on direct 
genetic effects only, DGEi = aDi  , or on a combination of 
direct and indirect genetic effects, TGEi = aDi +

∑n
j�=i a

I
j 

(total genetic effect), where aDi  is the direct genetic effect 
of pig i , and aIj is the indirect genetic effect of group 
member j of pig i . Predictive performance of indirect 
genetic effects alone was not assessed, since this is not 
informative for investigating whether indirect genetic 
effects improve the total predictive ability. A Hotelling-
Williams t-test [42, 43] was used to determine whether 
differences in predictive performances of genetic levels 
were statistically significant.

For both INDIRECT_GEN and CLASSIC_GEN, 
genetic effects were predicted 20 times with differ-
ent weights on G when constructing H (Eq.  (4)). The 
weight on G ranged from 5 to 99% with an inter-
val of 5% except between w = 95% and w = 99% ; i.e. 

Table 2  Definitions of  variance components 
and heritability statistics

σ 2
TBV , total heritable variance.σ 2

aD
 , direct genetic variance. n̄ , average group size at 

test start (9.57 pigs). σaI,D , direct–indirect genetic covariance. σ 2
aI

 , indirect genetic 
variance. σ 2

u , sex-year-month variance. σ 2
lD

 , direct litter variance. σ 2
lI

 , indirect 
litter variance. σ 2

eI
 , Indirect animal variance. σ 2

eD
 , residual variance. r  , average 

relatedness among animals in a pen, averaged across pens (16.6%). σ 2
env , total 

variance due to not-heritable variance components. σ 2
P  : total phenotypic 

variance. h2 , direct heritability. T2 , total heritability

Classic Indirect

σ 2
TBV

None σ 2
aD

+ 2(n̄− 1)σaD,I + (n̄− 1)2σ 2
aI

σ 2
env σ 2

u + σ 2
lD
+ (n̄− 1)

(

σ 2
lI
+ σ 2

eI

)

+ σ 2
eD

σ 2
p σ 2

aD
+ σ 2

env σ 2aD
+ (n̄− 1)σ 2aI

+ r(n̄− 1)

(

2σaD,I
+ (n̄− 2)σ 2aI

)

+ σ 2env

h2
σ 2
aD

∗

[

σ 2
p

]

−1

T 2 None
σ 2
TBV ∗

[

σ 2
p

]

−1
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w ∈ {5% , 10% , 15% , . . . , 95% , 99% } (Eq.  (1)). The 
purpose was twofold: (1) to find the weight on G that 
returned the best predictive performance and (2) to 
examine the ranking between predictive performances of 
DGE and TGE at different weights on G . For both INDI-
RECT_GEN and CLASSIC_GEN, the genomic analysis 
with the best predictive performance was used to repre-
sent the predictive performance of that model.

The prediction biases of genetic levels were defined as 
the linear regression coefficient of corrected phenotypes 
on genetic levels. Just as the predictive performance, the 
prediction bias was calculated with different weights on 
G.

Results
Estimated variance components
Direct genetic variances were similar between CLAS-
SIC and INDIRECT ( σ 2

aD
 : 3339 ± 450 vs. 3349 ± 451, 

Table  3). The genetic correlation between direct and 
indirect genetic effects was not statistically significantly 
different from zero ( ρaD,I : 0.06 ± 0.18). The indirect litter 
and indirect animal variances were larger for CLASSIC 
than for INDIRECT ( σ 2

lI
 : 37.7 ± 11.1 vs. 19.1 ± 12.2; σ 2

eI
 : 

112.9 ± 18.1 vs. 97.4 ± 21.8). The direct heritability was 
0.19 ± 0.02 for both CLASSIC and INDIRECT. For INDI-
RECT, the total heritability was larger than the direct 
heritability (0.35 ± 0.09 vs. 0.19 ± 0.02).

Predictive performance
The predictive performance of direct genetic effect 
(DGE) from CLASSIC, DGE from INDIRECT, and total 
genetic effects (TGE) from INDIRECT were all improved 
when predicting genetic effects with the single-step rela-
tionship matrix rather than the numerator relationship 
matrix (Table  4 and Fig.  1). The best predictive perfor-
mance was achieved with TGE from INDIRECT and a 
50% weight on the genomic relationship matrix (Fig. 1). 
The predictive performance of TGE was better than the 
predictive performance of DGE (Table  4 and Fig.  1), 
although differences in predictive performance between 
TGE and DGE were not statistically significant (Table 4). 
The difference in predictive performance between TGE 
and DGE decreased as the weight on genomic informa-
tion increased (Fig. 1; Eq. (1)). 

Prediction bias
The patterns and levels of prediction biases were simi-
lar for DGE and TGE (Fig. 2). Prediction bias was lowest 
with 45% weight on genomic information for DGE and 
with 50% weight on genomic information for TGE.

Discussion
As expected, the predictive performances of the models 
with genomic information were superior to those using 
pedigree information only (Table 4 and Fig. 1). Thereby, 
the predictive performance of the indirect genetic model 
was improved with genomic information. This is in 
accordance with the previous studies on genomic predic-
tion of TGE by Alemu, et al. [28] and Brinker, et al. [44].

As expected, the predictive performance of TGE was 
better than the predictive performance of DGE for indi-
rect genetic models. However, the predictive superiority 
of TGE compared to DGE decreased as the weight on 
genomic information increased. Although it is difficult to 
interpret patterns of differences in correlations, this result 
indicates that indirect genetic effects estimated with 
genomic information contribute less than indirect effects 
estimated with pedigree information to the predictive 
performance of TGE. Therefore, one may speculate that 

Table 3  Estimates of  variance components, heritability, 
and likelihood ratio statistics with associated p-values

σ 2
aD

 , direct genetic variance. σ 2
aI

 , indirect genetic variance. ρaD,I , genetic 
correlation between direct- and indirect- genetic effects. σ 2

u , sex-year-month 
variance. σ 2

lD
 , litter variance. σ 2

eD
 , residual variance. σ 2

1I , indirect litter variance. 
σ 2
eI

 , indirect animal variance. σ 2
p  , total phenotypic variance. σ 2

TBV , total heritable 
variance. h2 , direct heritability. T2 : total heritability. −2LogL , -2 times the log-
likelihood. P(�LogL) , Chi square p-value (2 degrees of freedom) of log-likelihood 
ratio between INDIRECT and CLASSIC

Classic Indirect

σ 2
aD

3339 (± 450) 3349 (± 451)

σ 2
aI

34.4 (± 16.3)

ρaD,I 0.06 (± 0.18)

σ 2
u

951 (± 319) 908 (± 306)

σ 2
lD

636 (± 131) 633 (± 131)

σ 2
eD

10,971 (± 289) 10,989 (± 295)

σ 2
lI

37.7 (± 11.1) 19.1 (± 12.2)

σ 2
eI

112.9 (± 18.1) 97.4 (± 21.8)

σ 2
p

17,188 (± 420) 17,597 (± 495)

σ 2
TBV

6201 (± 1694)

h2 0.19 (± 0.02) 0.19 (± 0.02)

T 2 0.35(± 0.09)

−2LogL 119,074.46 119,067.12

P(�LogL) 0.025

Table 4  Predictive performances of  direct genetic effects 
(DGE) and total genetic effects (TGE)

Predictive performances with different superscripted letters a, b and c were 
statistically different according to the Hotelling-Williams t-test

Predictive performance

DGE TGE

CLASSIC_PED 14.7%a

CLASSIC_GEN 20.9%b

INDIRECT_PED 14.7%a 15.3%a

INDIRECT_GEN 21.0%c 21.2bc
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pedigree information explains indirect genetic effects 
more accurately than genomic information.

Corrected phenotypes were defined as the difference 
between the raw phenotypes and the expected levels 
based on fixed effects from INDIRECT. This gives INDI-
RECT models an advantage over DIRECT models in the 
prediction analysis. Furthermore, corrected phenotypes 
can also be calculated as the difference between raw phe-
notypes and expected levels based on both fixed effects 
and selected random effects. The correction of pheno-
types for random effects relies on the assumption of inde-
pendence between the random effect used for correction 
and the genetic effects. If this assumption is violated, the 

choice of method for calculation of corrected pheno-
types can affect the ranking of predictive performances 
of genetic levels. In this study, we found that the method 
for calculating the corrected phenotypes influenced the 
results on predictive performance; i.e. the predictive per-
formance of TGE was inferior to the predictive perfor-
mance of DGE when correcting the phenotype for both 
fixed effects and random sex-year-month (results not 
presented). This susceptibility to method for correction 
of phenotypes indicates that sex-year-month effects and 
indirect genetic effects were not independently distrib-
uted as assumed by the animal model.

Fig. 1  Predictive performances of genetic levels at different weights on genomic information. DGE, Predictive performance of direct genetic 
effects; TGE, combined predictive performance of direct and indirect genetic effects

Fig. 2  Prediction biases for genetic levels at different weights on genomic information. DGE, Prediction bias of direct genetic effects; TGE, 
combined prediction bias of direct and indirect genetic effects
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In this study, we attempted to correct for indirect fixed 
effects. For example, the deviation in weight at test start 
from the average starting weight of the group ( sWghtDev ; 
see "Methods") is both a direct and indirect covariate. 
Since sWghtDev was positively associated with later 
growth rate (results not shown), its direct interpretation 
is that pigs that are larger than their group members at 
test start grow faster themselves. However, the sum of 
the deviations from the mean is zero, and therefore 
wi − w̄ = −

(

∑

j �=i wj − w̄
)

 ; i.e. the effect of sWghtDev is 
equivalent to the effect of the sum of the group members’ 
sWghtDev . Thereby, the indirect interpretation of 
sWghtDev is that pigs that weigh less than the average 
value for the group make their group members grow 
faster.

It is important to account for both direct and indirect 
fixed effects when predicting indirect genetic effects [16]. 
An indirect genetic model can be perceived as a compos-
ite animal model that comprises a classical direct animal 
model component and an indirect animal model compo-
nent, where each component contains fixed effects, ran-
dom environmental effects, and random genetic effects. 
Many previous studies on indirect genetic effects sparsely 
correct for indirect fixed effects. This may be partly due 
to very strong confounding between levels of effects for 
the direct and indirect components in some cases, e.g. 
in our study, year of birth was strongly confounded with 
year of birth of group mates. However, indirect fixed 
effects and direct fixed effects are not necessarily con-
founded and including indirect fixed effects in the animal 
model may lead to improved statistical modelling and 
predictive performance of indirect genetic models.

Similarly to the correction for indirect fixed effects, 
correction for indirect random effects may affect the 
predictive performance of animal models. In this study, 
the only indirect environmental random effect was an 
indirect environmental animal effect; i.e. an indirect ana-
logue of the direct residual. Most previous studies on 
indirect genetic effects on the growth rate of finishers 
have included a random group effect [3, 5, 9, 45], which 
is equivalent to the indirect environmental animal effect 
in this study when group sizes are constant. Other stud-
ies have examined other indirect effects in addition to the 
random group effect. For example, Canario et al. [10] and 
Canario et  al. [46] examined the indirect effect of litter, 
and Nielsen et al. [9] examined the indirect effect of sex. 
For Canario et al. [46], including indirect litter effects in 
the animal model reduced the estimated indirect genetic 
variance by two-thirds. This could indicate that indirect 
genetic effects capture indirect environmental effects 
if these are unaccounted for in the animal model. Thus, 
indirect genetic variances estimated by Arango et al. [3], 
Duijvesteijn et  al. [5], Nielsen et  al. [9], Chen et  al. [45] 

may be overestimated due to insufficient correction 
for indirect environmental effects other than the group 
effects.

The animal models of this study corrected for both 
indirect environmental animal effects and indirect litter 
effects. Nevertheless, the estimated indirect genetic vari-
ance component from this study was larger than most 
previously published indirect genetic variances for fin-
isher growth (34.4 ± 16.3 vs 6–20) [3, 5, 9, 10, 45]. This 
may be because our dataset only contains phenotypes 
from a single herd and thereby a narrower distribu-
tion of environmental effects than other studies. This is 
supported by the fact that we obtained larger estimates 
of direct genetic variances than Nielsen et  al. [9], who 
analyzed finisher growth across more herds in the same 
population.

Most of the estimated variance components are of 
similar magnitude to those from other studies. For exam-
ple, the direct genetic variance (3349 ± 451) is margin-
ally greater than those published by other studies (2762, 
2521, and 3200) [9, 47–49]; the direct litter variance 
(633 ± 131) is in the range of those published by other 
studies (984, 652, and 1576) [9, 47, 48]; and the residual 
variance (10,989 ± 295) was greater than those published 
by other studies (7246, 5439, and 10,000) [9, 47–49]. We 
may have obtained greater estimates of residual vari-
ances because of how we modelled contemporary groups 
(HYM). Other studies included contemporary groups as 
fixed effects, while we included contemporary group as a 
random effect.

In our study, we assumed that indirect genetic effects 
were not affected by the number of pigs in the group, 
and not affected by whether pigs were removed from the 
pen prior to the end of its testing period. It has been sug-
gested that the indirect genetic effect of a pig should be 
scaled (diluted) based on the number of pigs in its group 
or the number of days it was in the pen [50, 51]. In our 
study, dilution according to group size was not relevant 
since there was only little variation in group size (9 vs. 
10). Dilution of indirect genetic effects according to the 
time the pig spends in the pen was investigated; how-
ever, in accordance with Ask et al. [47], dilution did not 
provide an increase in predictive performance, and was 
therefore omitted.

In our study, the effects of sex, group size, and stable 
are confounded. Consequently, INDIRECT assumes that 
all genetic (co)variance components were equal across 
sex to avoid confusing the effect of sex with genome by 
environment interactions when interpreting the results. 
However, Nielsen et al. [9] found that the genetic corre-
lation between indirect genetic effects of boars and gilts 
was less than 1 and that both direct and indirect genetic 
variances differ between boars and gilts. We could not 
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test this in our study due to confounding of sex with sta-
ble. In future studies, it would be preferable to use data 
and animal models that enable the estimation of genetic 
variance components both within and across boars and 
gilts.

As mentioned above, based on the results on predic-
tive performance it can be speculated whether indirect 
genetic effects could be more appropriately modelled by 
the numerator relationship matrix than the single-step 
relationship matrix. Thus, we examined an alternative 
to INDIRECT. In this animal model, direct and indirect 
genetic effects were uncorrelated; both direct and indirect 
genetic effects were modelled using single-step relation-
ship matrices; and the weight on genomic information 
in the single-step matrix ranged from 0 to 99% for indi-
rect genetic effects, but was fixed at 1% for direct genetic 
effects. The predictive performance of TGE from this alter-
native model was, surprisingly, superior to any other model 
developed during our study when indirect genetic effects 
were modelled with pedigree information only. Meanwhile, 
the predictive performance of DGE from this model did 
not depend on the weight on genomic information for indi-
rect genetic effects. We do not recommend the use of this 
model for prediction as we can not explain this pattern and 
because the direct genetic effects no longer provide infor-
mation on indirect genetic effects through their covari-
ance structure. Nevertheless, the pattern of prediction of 
this alternative model may further indicate challenges with 
prediction of indirect genetic effects with genomic infor-
mation. Further research is needed to investigate whether 
results are replicable both within other populations and 
with other data to assess the consistency of the results.

Our results both support and challenge prediction of 
genetic effects with indirect genetic models and genomic 
information. On one hand, both TGE and DGE from 
the indirect genetic models with genomic information 
were superior to DGE from the classical animal mod-
els with genomic information. On the other hand, the 
conclusions are affected by both how heavily genomic 
information is weighted and the choice of method for cal-
culating corrected phenotypes. We believe that especially 
the latter indicates insufficient correction for both fixed 
and random environmental effects. The animal models 
of this study corrected for environmental effects similarly 
to previous studies [5, 9, 52]. Therefore, we are not sure 
that indirect genetic models with genomic informations 
are ready for implementation in an industrial genetic 
evaluation system for pigs. Instead, we strongly encour-
age future studies to attempt to replicate these results in 
other populations, and to expand the search for indirect 
environmental effects beyond those that have previously 
been associated with the trait in a classical genetic model 
with only direct genetic effects.

Conclusions
This study provides evidence that: (1) the combined pre-
dictive performance of indirect genetic effects and direct 
genetic effects is superior to the predictive performance 
of only direct effects; and (2) prediction of genetic levels 
is more accurate with genomic relationships than with 
pedigree relationships. The better predictive perfor-
mance of models with genomic relationships is primar-
ily due to better predictive performance of direct genetic 
effects. However, it is important to note that the first con-
clusion was sensitive towards both the definition of cor-
rected phenotypes and the relative weight on genomic 
information in the single-step relationship matrix.
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