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Abstract 

Background:  Genetic analysis of gene expression level is a promising approach for characterizing candidate genes 
that are involved in complex economic traits such as meat quality. In the present study, we conducted expression 
quantitative trait loci (eQTL) and allele-specific expression (ASE) analyses based on RNA-sequencing (RNAseq) data 
from the longissimus muscle of 189 Duroc × Luchuan crossed pigs in order to identify some candidate genes for meat 
quality traits.

Results:  Using a genome-wide association study based on a mixed linear model, we identified 7192 cis-eQTL 
corresponding to 2098 cis-genes (p ≤ 1.33e-3, FDR ≤ 0.05) and 6400 trans-eQTL corresponding to 863 trans-genes 
(p ≤ 1.13e-6, FDR ≤ 0.05). ASE analysis using RNAseq SNPs identified 9815 significant ASE-SNPs in 2253 unique genes. 
Integrative analysis between the cis-eQTL and ASE target genes identified 540 common genes, including 33 genes 
with expression levels that were correlated with at least one meat quality trait. Among these 540 common genes, 
63 have been reported previously as candidate genes for meat quality traits, such as PHKG1 (q-value = 1.67e-6 
for the leading SNP in the cis-eQTL analysis), NUDT7 (q-value = 5.67e-13), FADS2 (q-value = 8.44e-5), and DGAT2 
(q-value = 1.24e-3).

Conclusions:  The present study confirmed several previously published candidate genes and identified some novel 
candidate genes for meat quality traits via eQTL and ASE analyses, which will be useful to prioritize candidate genes in 
further studies.
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Background
In the past 10 years, genome-wide association stud-
ies (GWAS) have dramatically accelerated the forward 
genetic dissection of complex traits in various spe-
cies. For example, according to the release (as of 2019 

September 30) of the animal quantitative trait loci (QTL) 
database (https​://www.anima​lgeno​me.org/), 16,085 
QTL or associations for pork quality and carcass traits 
have been reported. However, previous reported GWAS 
results revealed that most of the leading single nucleotide 
polymorphisms (SNPs) for complex traits were located 
in noncoding regions [1], which suggests that variants 
located in regulatory elements contribute to phenotypic 
variation by regulating gene expression. Thus, prioritiz-
ing the functional genes and related causal variants that 
underlie QTL, especially for noncoding regions, is the 
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primary challenge in the post-GWAS era. Integration 
analysis of molecular phenotypes is anticipated to be one 
of the most promising approaches to solve this challenge 
[2–4].

Variants that regulate gene expression level, i.e. expres-
sion QTL (eQTL), are well known to contribute signifi-
cantly to phenotypic variation [5]. Cis-eQTL analysis can 
highlight the functional candidate genes in the charac-
terized QTL region [4, 6, 7]. Trans-eQTL and coexpres-
sion analysis can uncover trans-acting factor-mediated 
networks that control phenotypic variation [8, 9]. Thus, 
eQTL analysis bridges the gap between genotype and 
phenotype [10]. Recently, integration analyses of GWAS 
and eQTL have revealed clear advantages for prioritizing 
causal genes for human diseases [11–15], and statistical 
methods for such analyses have been developed [16–18].

In pigs, genome-wide eQTL analysis of the longissimus 
muscle has been conducted based on cDNA microarrays 
in four populations [19–23] and has deepened our under-
standing of the genetic variability of gene expression in 
muscle and provided novel candidate genes for meat 
quality-related traits. With the rapid decline of sequenc-
ing costs, RNA sequencing (RNAseq) is quickly replacing 
cDNA microarrays to achieve high-throughput assess-
ment of gene expression levels and has recently been 
used for eQTL analysis related to porcine disease resist-
ance [24] and in blood [25], skeletal muscle [26], and tes-
tis [27]. RNAseq also provides sequence information that 
enables the measurement of allele-specific expression 
(ASE), which could provide further confirmation of the 
results of cis-eQTL mapping [28]. An integrated strategy 
that combines eQTL and ASE analyses has been reported 
in pigs [25] and cattle [29].

In the present study, we characterized eQTL in porcine 
skeletal muscle by combining genome-wide eQTL and 
ASE analyses based on RNAseq data from 189 animals, 
in order to better understand the genetic regulation of 
gene expression in this tissue and to identify candidate 
genes that affect meat quality traits.

Methods
Animal sampling and phenotyping
The experimental population was described in our pre-
vious study [30]. Briefly, 425 animals (hereafter referred 
to as DL) produced by crossing eight Duroc boars with 
158 Luchuan sows were fed following the same proto-
col and slaughtered by a standardized procedure at the 
age of 210 ± 6 days. The longissimus dorsi muscle at the 
junction of the thoracolumbar was removed and imme-
diately frozen in liquid nitrogen for RNA extraction, and 
the spleen was sampled for DNA extraction. The current 
study was approved by the Scientific Ethics Committee of 

Huazhong Agricultural University (the approval number 
is HZAUSW-2016-010), Wuhan, China.

We measured the following meat quality traits of the 
longissimus dorsi muscle: meat color parameters L*, A*, 
B*, C and H, pH value at 45 min (pH 45 min) and 24 h 
(pH 24  h) post-slaughter, and drip loss. All procedures 
followed the Agricultural Industry Standards “Deter-
mination of Livestock and Poultry Meat quality” (NY/T 
1333-2007) of the People’s Republic of China.

DNA extraction, genotyping, and quality control (QC)
Genomic DNA was isolated from the spleen of 189 DL 
pigs (a randomly selected subset of the DL population 
mentioned above) by the standard method of phenol–
chloroform extraction and was quantified with a Nan-
oDrop-2000 spectrophotometer (Thermo Scientific). 
These individuals were then genotyped using the Illu-
mina porcine 50 K + SNP iSelect™ BeadChip at Neogen 
Bio-Scientific Technology (Shanghai) Co., Ltd.) according 
to the manufacturer’s protocol. The genotyping results of 
all individuals were merged with the “merge” function of 
plink (http://pngu.mgh.harva​rd.edu/purce​ll/plink​/) [31]. 
Quality control (QC) was done using Plink, with the fol-
lowing parameters: a threshold for minor allele frequency 
of 1% (–maf 0.01), a missing genotype call rate per SNP 
lower than 10% (–geno 0.1) and a missing genotype call 
rate per sample lower than 15% (–mind 15). Then, the 
missing genotypes were imputed with Beagle v4.1 by 
setting default parameters [32]. To avoid an extreme 
distribution of genotypes, we counted the number of 
individuals in each genotype by SNP and then calculated 
the median of the numbers of each genotype at each SNP. 
Only the SNPs on the autosomes and the X chromosome 
with a median number larger than 10% of the total num-
ber (≥ 19) were kept. Finally, 36,045 SNPs passed all cri-
teria and were retained for further analysis.

RNA extraction, sequencing, and quality control
Total RNA was extracted from the longissimus dorsi mus-
cle of all 189 individuals with the Trizol reagent accord-
ing to the product manual. RNA purity and integrity 
were assessed using an Agilent 2100 bioanalyzer (Agilent 
Technologies) and quantified with a NanoDrop-2000 
spectrophotometer (Thermo Scientific). For each sample, 
one µg of total RNA was used for the construction of a 
2 × 150 bp paired-end mRNA sequencing library with the 
NEBNext® UltraTM RNA Library Prep kit for Illumina® 
(NEB, USA). RNA sequencing reactions were conducted 
on the Illumina HiSeq 4000 platform. The RNAseq data 
produced were cleaned through the following QC steps: 
(1) remove adaptor; (2) discard reads containing more 
than 5% N; and (3) remove low-quality reads (the per-
centage of bases with quality score < 20).

http://pngu.mgh.harvard.edu/purcell/plink/
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eQTL mapping
The cleaned data were aligned to the reference genome 
assembly Sus_scrofa 11.1 (Ensembl Release 90), using 
Hisat2 v2.0.5 with a transcript annotation index [33]. 
The expression levels of genes annotated in the reference 
genome were quantified with StringTie v1.3.3 [34]. A 
TPM (transcripts per kilobase per million mapped reads, 
TPM) value of 0.01 was considered as a minimum thresh-
old for a gene to be regarded as expressed, and only those 
genes that were expressed in 90% of the samples were 
kept for eQTL analysis. Prior to eQTL analysis, normali-
zation was performed for each gene separately based on 
the rank of TPM values across samples.

In this study, eQTL analysis was carried out with 
MatrixEQTL [35] based on the following fixed linear 
model,

 where Y is the normalized expression level of the target 
gene, β is the SNP allele substitution effect, SNP is the 
marker genotype covariate, coded 0 (for homozygotes 
for the reference allele), 1, and 2 [35], PC are the top five 
principal components for correcting for population strat-
ification, which were calculated using the prcomp func-
tion in R based on marker genotypes, G is gender, Ba is 
slaughter batch, Bo is the effect of boar, A is a covariate 
of age, and e is a random residual. The cis-eQTL mapping 
window was defined from 1 megabase (Mb) upstream of 
the transcription start site to 1  Mb downstream of the 
gene end; all other SNP-gene pairs were defined as trans-
associated. For both cis- and trans-eQTL, we set the 
adjusted p value (q value) via the method of false discov-
ery rate (FDR) with a significance threshold at q = 0.05. 
Heritability of the expression level for each gene was 
estimated with HIBLUP (https​://githu​b.com/xiaol​ei-lab/
hiblu​p) using a mixed linear animal model with sex, age, 
slaughter batch, and boar as fixed effect terms and the 
genomic relationship matrix that derived from all avail-
able DNA chip SNPs as a random effect term. Student’s 
t test was used to compare differences in heritability 
between groups of genes.

Allele‑specific expression analysis based on RNAseq SNPs
Variants were called with GATK from the aligned data 
according to the best-practice pipeline (https​://gatkf​
orums​.broad​insti​tute.org/gatk/discu​ssion​/3891/calli​ng-
varia​nts-in-rnase​q). QC was performed for all obtained 
RNAseq variants using Plink [31] with the following 
parameters: threshold for the minor allele frequency of 
1% (–maf 0.01) and a missing genotype call rate lower 
than 10% (–geno 0.1). Then the missing genotypes were 
imputed with Beagle v4.1 with default parameters [32]. 

Y = β ∗ SNP + PC + G + Ba + Bo + A + e,

Subsequently, we removed Insertion/Deletion vari-
ants and only kept the SNPs that were on 18 autosomes 
and the X chromosome for further analysis. By overlap 
analysis, we identified all detected SNPs that were com-
mon to the DNA chip and RNAseq. With the genotype 
of the DNA chip as reference, the genotyping reliability 
of RNAseq SNPs was evaluated using the common SNPs 
with consistency and precision rate of heterozygotes (the 
number of true positive heterozygotes divided by the 
total number of true and false positive heterozygotes).

To avoid allelic mapping bias, we built a N-masking 
genome based on RNAseq SNPs with the maskFas-
taFromBed script in bedtools v2.26.0 [36]. The clean 
RNAseq data were realigned to the N-masking genome 
using Hisat2 v2.0.5 with a transcript annotation index 
[33]. Then, allele-specific reads were calculated using 
the GATK ASEReadCounter tool [37]. For each sample, 
the informative SNPs were singled out using the follow-
ing parameters: at least 10 total reads and 3 allele specific 
reads, and a percentage of specific reads for each allele 
higher than 1% of the total mapped reads [38]. Then, 
allele specific expression was evaluated for each informa-
tive SNP using a binomial exact test in R, with the FDR 
level set to 5% across SNPs per sample. Several additional 
filtering conditions for ASE SNPs were set at the popula-
tion level: at least 30 heterozygotes and at least 10 hete-
rozygotes that displayed ASE. Finally, the ASE SNPs were 
annotated with snpEff [39].

Correlation analysis between gene expression and meat 
quality traits
The phenotypic and log2-transformed gene expres-
sion data were corrected using a linear model, with sex, 
slaughter batch, and boar as fixed effects and age as a 
covariate. Pearson correlation coefficients were calcu-
lated between the residuals of log2-transformed expres-
sion levels of each gene and corrected phenotypic values 
of seven traits. For each trait, the q value was calculated 
using the R function p.adjust via the FDR method, with 
q ≤ 0.05 as the significance threshold for the correlations.

Collection of candidate genes from published references
To highlight potential candidate genes for the trait-asso-
ciated genes that were identified by the eQTL and ASE 
analyses, we collected all published references with the 
key words “pig” and “GWAS” in the database of PubMed 
(https​://www.ncbi.nlm.nih.gov/pubme​d). The obtained 
publications were inspected for content to identify pub-
lications that were related to pig genetics and names of 
candidate genes were collected. The Ensembl Gene ID of 
the candidate genes were obtained by the Biomart tool, 
and overlap analyses were conducted using their Ensembl 

https://github.com/xiaolei-lab/hiblup
https://github.com/xiaolei-lab/hiblup
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Gene ID to identify candidate genes from cis-eQTL- or 
ASE-associated genes.

Results
eQTL identified by GWAS
In total, RNA sequencing of the longissimus dorsi mus-
cle of 189 DL pigs yielded 9.23 billion clean reads with a 
length of 150 bp, a total size of 1385.20 gigabases (Gb), 
and an average sequencing size of 7.33 Gb, ranging from 
5.66 to 10.78  Gb (see Additional file  1: Table  S1). The 
expression levels of all reference genes were estimated 
for the 189 individuals with StringTie and 13,450 genes 
were kept for further analysis after QC. As for SNP gen-
otyping, 188 individuals had a genotype call rate higher 
than 94% and one individual had a genotype call rate of 
85.37%. After QC, 36,045 SNPs for 189 individuals were 
retained for further analysis.

The eQTL analysis assessed associations between 
SNPs and gene expression levels for 401,736 cis- and 
484,403,514 trans-SNP-gene pairs (Fig.  1a). The calcu-
lated genomic inflation factor was 1.089, which indi-
cated that the model controlled potential population 
stratification well. The QQplot in Fig.  1a showed that 
the distribution of the observed p values of cis-eQTL 
displayed earlier departure from the diagonal than that 
of trans-eQTL, which indicated that cis-eQTL were 
easier to detect than trans-eQTL. In total, we identified 
10,693 significant cis-SNP-gene associations (p ≤ 1.33e-3, 
q-value ≤ 0.05) (red dots on the diagonal line of Fig. 1b), 
corresponding to 7192 cis-acting SNPs (cis-SNPs) and 
2098 cis-eQTL-associated genes (cis-genes) (see Addi-
tional file  2: Table  S2). We also characterized 10,961 
trans-SNP-gene associations (p ≤ 1.13e-6, q-value ≤ 0.05) 
(blue dots in Fig. 1b), corresponding to 6400 trans-acting 
SNPs (trans-SNPs) and 863 trans-eQTL-associated genes 
(trans-genes) (see Additional file 3: Table S3).

Intersection analysis of cis-genes and trans-genes 
revealed 1676 cis-specific genes, 441 trans-specific 

genes, and 422 shared genes (see Additional file  4: 
Figure S1a). Among the 422 shared genes, 378 had 
both significant cis- and trans-eQTL on the same 
chromosome (see Additional file  5: Table  S4). Tak-
ing the SLC5A4 gene as an example, we found that it 
was significantly associated with 28 cis-SNPs and 
with 400 trans-SNPs on Sus scrofa chromosome (SSC) 
SSC14 (see Additional file  4: Figure S1b). The top cis-
SNP (SSC14:48,782,016, G > A) and the top trans-SNP 
(SSC14:45,347,247, A > G) displayed strong linkage dis-
equilibrium with each other (D’ = 0.99 and r2 = 0.83), 
which suggests that the associations between these 
SNPs (both cis and trans SNPs) and the SLC5A4 gene 
originated from a common cis-regulatory mutation. 
Among the 441 trans-specific genes, 399 genes had 
trans-eQTL on different chromosomes, e.g. ENS-
SSCG00000035894 (see Additional file  4: Figure S1c), 
and 42 genes had trans-eQTL on the same chromo-
some, e.g. STMN3 (ENSSSCG00000038405) (see Addi-
tional file 4: Figure S1d).

To evaluate the size of the cis-regulatory effect of each 
cis-eQTL with respect to the expression of the corre-
sponding associated gene, for all characterized cis-eQTL, 
38.04% (4068/10,693) had an absolute allele substitu-
tion effect estimate greater than 0.75, corresponding to 
approximately a 1.5-fold change in expression. For a sub-
set of 1459 cis-eQTL, the absolute estimate of the allele 
substitution effect was greater than 1.0, corresponding 
to an approximately twofold change in expression (see 
Additional file 2: Table S2). The allele substitution effect 
estimates of all characterized cis-eQTL displayed an 
obviously distinct bimodal density distribution (Fig. 1c).

Estimates of the heritability for the expression level of 
each gene showed that cis-genes had significantly higher 
heritabilities (p < 2.2e-16, Student’s t test) (Fig.  1d) as 
genes without associated cis-eQTL (Fig.  1e), although 
expression levels were not significantly different between 
these two groups of genes (p = 0.072, Student’s t test).

(See figure on next page.)
Fig. 1  Genome-wide eQTL analysis. a QQ-plot of -Log10(p value) of eQTL analysis using MatrixEQTL. “Cis p values” represent the statistical p values 
for cis-eQTL and “Trans p values” represent the statistical p values for trans-eQTL. b Scatter plot of all characterized eQTL. Each dot represents a 
SNP-gene pair, with the vertical direction linking to the SNP and the horizontal direction linking to the gene. The red and blue dots represent 
cis-eQTL and trans-eQTL respectively. The size of the dot indicates the degree of significance. c Density distribution of the cis-eQTL effects. “all 
local events” represents all the SNP-gene pairs for which the distance between SNP and gene is less than 1 Mb. d Comparison of the heritability 
of the expression levels of cis-eQTL associated genes and that of non-cis-eQTL genes. The white dots represent the median values. The p value 
indicates the difference between the two groups, which was calculated using a two-tailed t-test. e Comparison of the expression levels of 
cis-eQTL-associated genes and non-cis-eQTL genes. The white dots represent the median values. f Analysis of eQTL pleiotropy. The X-axis of the 
histogram represents different groups that were classified according to the associated gene numbers per eQTL, and the Y-axis represents the eQTL 
count for each group. cis-eQTL and trans-eQTL are distinguished by different colors. g Distribution of eQTL hotspot. The X-axis represents the 
chromosome distribution of eQTL, the Y-axis indicates the count of genes associated with each eQTL. The upper part displays the cis-eQTL hotspot 
distribution, and if the count of associated genes is greater than 3, it is shown in red. The lower part in displays the trans-eQTL hotspot distribution, 
and if the count of associated genes is greater than 3, it is shown in green
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An eQTL can influence the expression of multiple 
genes, which we refer to as pleiotropy of eQTL [40]. 
Descriptive statistics revealed that 29.77% (2,141/7,192) 
of cis-eQTL and 34.36% (2,199/6,400) of trans-eQTL 
were associated with the expression of two or more target 
genes, and 64 cis-eQTL and 107 trans-eQTL were associ-
ated with six or more genes (Fig. 1f ). It appeared that the 
eQTL that displayed pleiotropy were distributed in some 
specific chromosome regions but formed clusters, which 
could be regarded as eQTL hotspots (Fig. 1g). The most 
striking cis-eQTL with pleiotropy was the T > G substitu-
tion on SSC12 at position 5,516,315 (accession ID in the 
dbSNP database: rs340671286), which was associated 
with nine genes on SSC12 (see Additional file  4: Figure 
S1e). The most notable trans-eQTL with pleiotropy was 
the A > G substitution on SSCX at position 22,972,736 
(accession ID in the dbSNP database: rs332199038), 
which was associated with 56 genes (see Additional file 4: 
Figure S1f ).

ASE analysis based on RNAseq SNPs confirmed some 
of the cis‑eQTL associated genes
To further confirm the results of the cis-eQTL, we identi-
fied all the SNPs in the RNA sequencing data (RNAseq 
SNPs). In total, we characterized 182,039 RNAseq-SNPs 
that passed QC, which included 586 SNPs that were 
also present on the Illumina porcine 50  K + SNP iSe-
lect™ BeadChip (DNA-chip SNPs) (Fig. 2a). Consistency 
between the two genotyping methods (RNAseq versus 
DNA chip) using the common SNPs revealed that most 
individuals (182/189) had a consistency greater than 90%, 
and the remaining seven had a consistency greater than 
85% (Fig. 2b). Furthermore, the RNAseq genotyping pre-
cision for heterozygotes was evaluated for 586 common 
SNPs, 578 of which had a precision rate higher than 90% 
(Fig.  2c). The overall RNAseq genotyping precision for 
all heterozygotes at the 586 common SNPs was 99.08%, 
which indicates a high reliability of RNAseq-based 
genotyping.

Prior to ASE analysis, we evaluated mapping bias by 
calculating the allelic ratio, which is the ratio between 
counts of reference allele specific reads and total counts 
of all reads; this displayed an approximately symmetri-
cal distribution (Fig.  2d). We identified 9815 significant 

ASE SNPs in 2253 unique genes (see Additional file  6: 
Table  S5), which represented 8.71% of all genes in the 
reference genome (25,880). Overlap analysis between 
ASE-associated genes and cis-eQTL genes identified 
540 common genes (Fig.  2e), which means that 1558 
cis-eQTL genes were not confirmed by ASE analysis, of 
which 691 genes displayed low expression levels and did 
not pass QC of ASE (Fig. 2f and g).

Correlation analysis between gene expression 
and phenotypic value and reference analysis highlight 
candidate genes for meat‑quality
To highlight potential candidate genes for meat quality 
traits, we analyzed the correlation between trait phe-
notypes and gene expression levels. Among the 13,450 
genes, 768 genes had an expression level that was sig-
nificantly correlated with at least one trait phenotype, 
including 232, 2, 12, 17, 118, and 387 genes that were 
correlated with average B value, average C value, average 
L value, average H value, pH at 45 min, and pH at 24 h, 
respectively (see Additional file  7: Table  S6). Seventy-
seven genes were correlated with more than one trait, 
e.g. PYGM, which encodes the muscle-associated gly-
cogen phosphorylase, and the expression level of which 
was significantly correlated with pH 45 min (q = 6.92e-4) 
and average B value (q = 2.73e-2). Among the 768 genes 
that had an expression level correlated with trait pheno-
types, 103 were cis-eQTL-associated genes and 138 were 
ASE genes (see Additional file 7: Table S6); 33 genes were 
identified by both cis-eQTL and ASE analyses (Table 1).

To check whether these cis-genes and ASE genes had 
ever been suggested as candidate genes for economic 
traits in the literature, we set “pig” and “GWAS” as the 
key words to search all publications in PubMed and col-
lected 434 publications (until September 2019). Based on 
checking the abstract and main results, we selected 260 
publications, from which we collected 1869 candidate 
genes. By overlap analysis, we confirmed that 201 cis-
eQTL-associated genes (see Additional file  8: Table  S7) 
and 250 ASE genes (see Additional file 9: Table S8) were 
considered as candidate genes of economic traits in pre-
vious studies, including 63 genes that were identified by 
both cis-eQTL and ASE analyses (see Additional file 10: 
Table S9).

Fig. 2  ASE analysis and overlap with cis-eQTL results. a Genotyping consistency between RNAseq SNPs and DNA chip SNPs. b Barplot of the 
genotyping consistency between RNAseq SNPs and DNA chip SNPs. c Barplot of the heterozygote genotyping precision rate of RNAseq SNPs. 
d Density distribution of the reference allelic ratio at each locus for all samples. A reference allelic ratio higher than 0.51 is shown in red, lower 
than 0.49 in blue and for other values in gray. e Venn diagram of cis-eQTL genes and ASE-eQTL genes. f Venn diagram of ASE input genes and 
cis-eQTL-specific genes. g Boxplot of gene expression levels of different classifications. “ASE” means all the ASE-specific genes, “eQTL” represents 
the cis-eQTL-specific genes, “Non” represents all genome genes that have neither associated eQTL nor ASE signals, and “common” represents all 
common genes that were identified by both eQTL and ASE analyses

(See figure on next page.)
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Discussion
We have conducted thorough analyses to understand 
the global genetic regulation of gene expression in por-
cine skeletal muscle via eQTL and ASE analyses. First, we 
applied a stringent QC procedure for both expression and 
genotyping data. The experimental population was the F1 
population of two distant breeds, and the heterozygous 

genotype was the dominant genotype for some loci that 
were fixed for different alleles in two breeds. Thus, we did 
not perform a Hardy–Weinberg equilibrium (HWE) test 
for the genotyping data. Instead, for DNA-chip SNPs, 
we set a threshold of 19 for the median of the number 
of each genotype at each site to avoid an extreme distri-
bution of genotypes. For ASE analysis with RNAseq data, 

Table 1  The overlap between eQTL analysis, ASE analysis and correlation analysis

“Num_Het” represents the total number of observed heterozygotes, and “Num_ASE” means the number of heterozygotes that displayed ASE

Gene_name eQTL analysis ASE analysis Correlation analysis

SNP_id Fdr SNP_id Num_Het Num_ASE Ratio Traits Cor Fdr

HUS1 18:48910892 2.39E − 19 18:48526014 122 71 0.58 mean_B −0.27 2.82E − 02

mean_H −0.30 4.03E − 02

SPECC1 12:59392739 3.75E − 14 12:59557437 120 26 0.22 pH_24h 0.25 3.18E − 02

mean_B −0.24 4.84E − 02

METTL22 3:34053010 1.99E − 11 3:34040204 78 25 0.32 mean_H −0.29 4.49E − 02

ZFAND2B 15:120963216 4.85E − 06 15:121243305 74 73 0.99 pH_45min −0.33 1.97E − 03

PYGM 2:7381573 1.19E − 04 2:7407552 109 102 0.94 pH_45min 0.35 6.92E − 04

mean_B 0.28 2.73E − 02

ENSSSCG00000009631 14:7718361 4.29E − 04 14:6978183 160 50 0.47 pH_24h −0.25 3.01E − 02

ABRA 4:30027414 4.36E − 04 4:30712640 108 107 0.99 mean_B −0.28 2.59E − 02

RSL1D1 3:30749727 2.59E − 03 3:31285647 117 16 0.14 pH_24h 0.29 1.05E − 02

CAV3 13:64696229 3.04E − 03 13:65131086 122 97 0.80 pH_24h −0.25 3.16E − 02

mean_L 0.32 2.79E − 02

GMPR 7:12312194 3.07E − 03 7:12261459 126 124 0.98 pH_24h −0.25 2.93E − 02

NTN4 5:86726806 3.83E − 03 5:87783446 89 11 0.12 mean_L −0.36 6.25E − 03

GPC1 15:139006307 5.29E − 03 15:139483525 119 56 0.47 pH_45min −0.26 4.99E − 02

TRIM54 3:111962587 7.51E − 03 3:111836687 108 36 0.33 mean_B −0.26 4.08E − 02

pH_24h 0.26 2.83E − 02

LGMN 7:114180118 8.75E − 03 7:114200066 145 40 0.28 pH_45min −0.28 2.33E − 02

CACNA1S 10:23528382 1.14E − 02 10:23530021 133 71 0.53 pH_45min 0.26 4.43E − 02

ENSSSCG00000020808 3:16083309 1.59E − 02 3:16844732 109 41 0.38 mean_B −0.27 2.73E − 02

MTRR​ 16:74265935 1.81E − 02 16:74245560 66 13 0.20 pH_24h 0.24 4.53E − 02

CCT8 13:192188992 1.83E − 02 13:192414026 58 12 0.21 mean_B −0.27 2.96E − 02

ZFAND2A 3:930630 2.11E − 02 3:757286 106 21 0.20 pH_24h 0.25 3.18E − 02

RRP7A 5:6407132 2.17E − 02 5:6216045 137 44 0.32 mean_B −0.28 2.73E − 02

SOD2 1:7722553 2.27E − 02 1:7679607 184 115 0.63 pH_24h 0.25 3.03E − 02

ANKRD10 11:78298873 2.37E − 02 11:77325740 94 10 0.11 pH_24h 0.24 4.35E − 02

SDR39U1 7:75705436 2.64E − 02 7:74851797 99 45 0.45 mean_B 0.24 4.84E − 02

PLA2G7 7:41182729 3.35E − 02 7:41498072 186 49 0.26 mean_B −0.27 2.73E − 02

NAT9 12:5991040 3.53E − 02 12:6466570 131 53 0.40 mean_H −0.30 4.03E − 02

NPNT 8:116112745 3.72E − 02 8:115860561 44 15 0.34 pH_24h 0.26 2.55E − 02

GRK3 14:44316076 3.76E − 02 14:43439845 68 33 0.49 pH_24h 0.25 3.33E − 02

SMIM3 2:150955856 3.95E − 02 2:151763489 121 11 0.09 mean_B −0.25 4.48E − 02

ACTN3 2:6263381 4.35E − 02 2:5861691 117 109 0.93 pH_24h −0.27 2.00E − 02

NR4A1 5:17110306 4.74E − 02 5:17405098 74 22 0.30 pH_45min 0.49 1.86E − 09

CTGF 1:31914264 4.75E − 02 1:31676377 96 18 0.19 pH_45min 0.27 2.77E − 02

DYNLT1 1:8669156 4.82E − 02 1:8562162 129 58 0.45 pH_24h −0.30 8.57E − 03

KLHL40 13:27052606 4.90E − 02 13:26209704 86 33 0.38 pH_24h 0.30 9.62E − 03
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we applied the N-masking alignment strategy to elimi-
nate allelic mapping bias and set filtering conditions for 
both total read counts (10) and allele-specific read counts 
(3), as well as the minimum sample size of heterozygotes 
(30) and the count of ASE heterozygotes (10), which 
ensured higher reliability.

We found that 43.8% (378/863) of the trans-genes had 
a cis-eQTL on the same chromosome, such as SLC5A4. 
It should be noted that the distinction between cis- and 
trans-eQTL depends on the choice of the size of the cis-
window [41], which was defined as 1 Mb on either side of 
the associated gene in our study. Therefore, we could not 
rule out the possibility that most (if not all) of the above-
mentioned trans-eQTL affect the expression of target 
genes in cis. Our results confirmed the observation that 
cis-eQTL were easier to detect than trans-eQTL [41] and 
cis-eQTL were of main interest. Overlap analysis revealed 
that less than half of the cis-eQTL genes were confirmed 
by ASE analysis, which is in agreement with results from 
other studies [25, 42, 43]. The limited overlap between 
the two approaches could result from several factors. 
First, the markers involved differed, i.e. the GWAS used 
36,045 SNPs from the DNA chip, of which most were in 
intergenic regions, whereas ASE analysis used 182,039 
SNPs from the RNAseq data, of which most were within 
genes. As a result, the ASE analysis had a higher prob-
ability of discovering genes associated with regulatory 
variants than the eQTL analysis. Second, some of the 
lowly expressed genes were excluded from ASE analysis 
but kept for eQTL analysis (Fig. 2f and g). And third, both 
approaches may have been prone to detecting abnormal 
signals that were not caused by cis regulatory variants. 
For example, spurious cis-eQTL signals could result from 
copy number variations [44] or splicing mutations [45], 
while spurious ASE signals could result from imprinting 
[25] or from allelic mapping bias, although this was well 
controlled but not eliminated in our study (Fig. 2d).

The cis-eQTL analysis identified potential genes asso-
ciated with unknown regulatory variations and ASE 
analysis can validate their cis-regulatory effect [25]. 
Therefore, in spite of the limited overlap between the 
identified cis-eQTL and ASE genes, combining these 
two approaches should have increased the reliability 
of the results. The eQTL approach considers the total 
gene expression as the phenotype, which is influenced 
not only by regulatory variations but also by trans-act-
ing environmental and genetic factors [46]. The ASE 
approach uses heterozygotes to identify regulatory var-
iants that alter allele-specific expression and contrasts 
the expression of two alleles that are in the same cel-
lular environment and which can, therefore, be inter-
nal controls for each other, ensuring higher accuracy of 

the results [46]. As a result, ASE analysis can provide 
complementary and more precise mapping results than 
eQTL analysis, and combining these two approaches 
could speed up the identification of regulatory variants.

Gene expression level is a molecular phenotype that 
can bridge the gap between the gene and the tissue 
phenotype. In this study, we observed that the expres-
sion of some genes was correlated with various meat 
quality traits, which can be used in other studies, such 
as in prioritizing potential functional genes in GWAS. 
In particular, we highlighted 33 genes with expression 
levels that were correlated with meat quality traits, 
and for which their related eQTL were identified by 
both cis-eQTL and ASE analyses. These genes could be 
used as candidate genes for meat quality traits in future 
studies. In addition, we identified 63 candidate genes 
(see Additional file 10: Table S9) that were identified by 
the two approaches and that were reported in a previ-
ous publication. Among these 63 candidate genes, the 
most famous one is PHKG1, in which a splicing muta-
tion (g.8283C > A) in Duroc pigs leads to increased gly-
colytic potential and rapid pH decline in meat [6]. In 
a previous study, we confirmed that the splicing muta-
tion g.8283C > A is the causative mutation for the eQTL 
signal and that pigs that carry the mutant allele have a 
high risk of pale, soft, and exudative meat [30]. Other 
identified candidate genes that are of interest include 
NUDT7, which was assigned to a QTL for meat color 
[47–49], and FADS2 and DGAT2, which are involved in 
the regulation of lipid metabolism and fat deposition 
[50–52]. The discovery of cis-eQTL that regulate the 
expression of these genes further confirms that these 
candidate genes affect economic traits in the pig and 
enhance possibilities to identify the causative muta-
tions for each gene in future studies.

The animals used for muscle transcriptome sequenc-
ing were crossbred pigs between Duroc boars and 
Luchuan sows. An F1 population is generally consid-
ered not suitable for QTL mapping due to its limited 
genetic segregation and power. However, the Luchuan 
pig is a Chinese local pig breed that is not highly 
selected, and the use of a relatively large group of unre-
lated Luchuan sows (158 sows) represents extensive 
within-population diversity, which ensures that the 
regulatory effects of some genetic variations could be 
detected. Moreover, the ASE approach relies on het-
erozygous individuals, which are more abundant in an 
F1 population. In addition, gene expression is a molec-
ular phenotype that has a higher detection sensitivity 
than classical trait phenotypes. Therefore, our results 
provide valuable information on the genetics of gene 
expression in skeletal muscle.
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Conclusions
We conducted intensive analyses of the global genetic 
regulation of gene expression in porcine skeletal mus-
cle via eQTL and ASE analyses. By eQTL analysis, we 
identified 2098 cis-genes (p ≤ 1.33e-3, FDR ≤ 0.05) and 
863 trans-genes (p ≤ 1.13e-6, FDR ≤ 0.05). ASE analysis 
based on RNAseq SNPs confirmed 540 cis-genes, which 
included 33 genes with expression levels that were corre-
lated with at least one meat quality trait and 63 candidate 
genes that affect pig economic traits and that were iden-
tified in previous studies. The present study confirmed 
several previously published candidate genes and iden-
tified some novel candidate genes, which will advance 
the understanding of the genetics that underlie pig meat 
quality traits.
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