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Spatial modelling improves genetic 
evaluation in smallholder breeding programs
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Abstract 

Background:  Breeders and geneticists use statistical models to separate genetic and environmental effects on 
phenotype. A common way to separate these effects is to model a descriptor of an environment, a contemporary 
group or herd, and account for genetic relationship between animals across environments. However, separating the 
genetic and environmental effects in smallholder systems is challenging due to small herd sizes and weak genetic 
connectedness across herds. We hypothesised that accounting for spatial relationships between nearby herds can 
improve genetic evaluation in smallholder systems. Furthermore, geographically referenced environmental covari-
ates are increasingly available and could model underlying sources of spatial relationships. The objective of this study 
was therefore, to evaluate the potential of spatial modelling to improve genetic evaluation in dairy cattle smallholder 
systems.

Methods:  We performed simulations and real dairy cattle data analysis to test our hypothesis. We modelled environ-
mental variation by estimating herd and spatial effects. Herd effects were considered independent, whereas spatial 
effects had distance-based covariance between herds. We compared these models using pedigree or genomic data.

Results:  The results show that in smallholder systems (i) standard models do not separate genetic and environmen-
tal effects accurately, (ii) spatial modelling increases the accuracy of genetic evaluation for phenotyped and non-
phenotyped animals, (iii) environmental covariates do not substantially improve the accuracy of genetic evaluation 
beyond simple distance-based relationships between herds, (iv) the benefit of spatial modelling was largest when 
separating the genetic and environmental effects was challenging, and (v) spatial modelling was beneficial when 
using either pedigree or genomic data.

Conclusions:  We have demonstrated the potential of spatial modelling to improve genetic evaluation in smallholder 
systems. This improvement is driven by establishing environmental connectedness between herds, which enhances 
separation of genetic and environmental effects. We suggest routine spatial modelling in genetic evaluations, 
particularly for smallholder systems. Spatial modelling could also have a major impact in studies of human and wild 
populations.
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Background
This study evaluates the potential of spatial modelling 
to improve the genetic evaluation of animals in small-
holder systems. Over the past century, genetic selec-
tion of dairy cattle has significantly increased milk 

production in developed countries [1]. For example, the 
average milk production of US Holstein cows has almost 
doubled between 1960 and 2000, and more than half of 
this is due to genetic improvement [2]. However, such 
improvements have not been achieved in low to mid-
dle income countries, for example, in East Africa. For 
instance, Rademaker et al [3] reported that milk yield in 
smallholder farms in Kenya are about 5 to 8 L per cow 
per day, which is several-fold smaller than in large-scale 
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commercial farmers around the world. These low milk 
yields are due to environmental, technological and infra-
structural difficulties as well as mixed breed composition 
[4, 5]. Whereas large-scale commercial farmers measure 
phenotypes accurately, and keep records of performance 
and pedigree, smallholders usually do not keep records 
and the absence of routine phenotyping systems reduces 
the accuracy of these records [6, 7].

To perform an accurate genetic evaluation of animals 
in a breeding program, a sufficient amount of data is 
needed, and the data should be appropriately structured 
[7–9]. In developed countries, a small number of large-
scale commercial farms produce most of the milk, and 
there is a widespread use of artificial insemination that 
establishes strong genetic connectedness between herds. 
However, in many smallholder systems, smallholder 
farms contribute significantly to milk production, and 
there is low usage of artificial insemination with conse-
quent weak genetic connectedness between herds. For 
example, smallholder milk-producing households in 
Kenya with one to three cows represent the majority of 
the national dairy population [3, 10]. Furthermore, 87% 
of surveyed Kenyan farmers used natural mating ser-
vices rather than artificial insemination, even though 54% 
reported that they would have preferred artificial insemi-
nation [11]. Similar proportions were reported elsewhere 
[12, 13].

Small herd sizes and weak genetic connectedness 
between herds challenge accurate genetic evaluation 
[14–16]. When herds are small, it is difficult to accurately 
separate the genetic and environmental effects on the 
phenotype. Furthermore, with weak genetic connected-
ness, low relationships between animals in different herds 
limit sharing of information, which additionally limits 
accurate separation of the genetic and environmental 
effects. Since most smallholders mate cows with their 
own or neighbour’s bull, it is reasonable to assume that 
most farmers in close distance use the same bulls. This 
system genetically connects herds that are close in dis-
tance although the overall genetic connectedness across 
the country is weak.

In the statistical models for genetic evaluations, 
the genetic effect is modelled using expected or real-
ised genetic relationship between animals, respec-
tively derived from pedigree or genomic data. A herd 
effect, or a herd-year-season effect, is often included as 
the main environmental effect [6, 17–20]. When herd 
sizes are small, the herd effects are treated as random 
to increase sharing of information between herds and 
increase accuracy compared to treating them as fixed 
[7, 18, 21, 22]. In the extreme case of a single animal 
per herd, modelling herds as random is, in fact, the 
only possible approach [7]. In addition, including other 

factors and covariates in the statistical models is a way 
of including information in the model that can further 
enhance the separation of genetic and environmental 
effects.

Environmental effects can be on management (herd) 
level, or a larger scale, likely shared by herds in close 
distance. Examples of environmental effects on man-
agement level are education, age, and experience of the 
farmer, use of natural mating or artificial insemination 
etc. Some of these effects can be similar for herds in 
proximity. Feed quality is likely similar in nearby farms 
and veterinary practices are likely to vary with local, 
regional or national government policies. Farmers with 
higher levels of education and experience will likely be 
more skilled and positively affect phenotype. Age is usu-
ally also related to experience. Examples of large-scale 
environmental effects are climate effects, proximity to 
roads, markets and towns, and government policies. 
Many of the environmental effects can be assumed to 
be spatially correlated. We will refer to the environmen-
tal effects on management level as herd effects, and the 
large-scale environmental effects as spatial effects.

There are multiple spatial models that could be used in 
an animal breeding context. A prerequisite for this is that 
data are geographically referenced. Geographical location 
can be described coarsely with regions or precisely with 
point coordinates. For an application of region-based 
models in an animal breeding context see [23], where vet-
erinary district was modelled  as an environmental effect 
with covariance between neighbouring districts [24, 25]. 
We focus on coordinate-based models (often referred 
to as geostatistical models [25–28]) to account for fine-
grained spatial relationships between smallholder farms. 
The only requirement for a coordinate-based model is 
that we collect herd coordinates and then all data per-
taining to a herd is point-referenced. For a herd i, we 
define a tuple wi that typically contains two-dimensional 
coordinates (latitude and longitude), but note that further 
extensions are possible [29, 30]. The observation at spe-
cific locations and locations themselves can vary continu-
ously over a geographical region. A common model for 
such continuous spatial processes is a Gaussian random 
field where we model observations at a set of locations 
(y(w1), ..., y(wn)) with a multivariate normal distribution 
with mean µ and a distance based covariance matrix � 
[25]. The same approach can also be used as a model 
component in the context of a linear mixed model [25], as 
is the case with genetic effects, but in the spatial context, 
we account for relationships between locations. There are 
multiple possible covariance functions for spatial model-
ling. Most of them assume stationarity and isotropy, so 
that µ(w) = µ and spatial covariance between locations 
is a function of Euclidian distance between locations and 
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model parameters, such as variance. The most commonly 
used is the Matérn covariance function [31].

Modelling with continuously indexed Gaussian random 
fields is computationally challenging because they give 
rise to dense precision (covariance inverse) matrices that 
are numerically expensive to factorise [25], as is the case 
with genomic models [32, 33]. Gaussian Markov random 
fields approximate Gaussian random fields by assuming 
conditional independence, which increases sparsity of the 
precision matrix and reduces computational complexity. 
Lindgren et al. [29] showed how to construct an explicit 
link between some Gaussian random fields and Gauss-
ian Markov random fields via a solution of stochastic 
partial differential equations. They also proposed use of 
a finite element method to further reduce computational 
complexity. This approach allows the implementation of 
computationally efficient numerical methods for spatial 
modelling of large-scale point-referenced data. Assum-
ing conditional independence to scale genomic modelling 
has also been proposed recently [34, 35].

This study aimed at evaluating the potential of spatial 
modelling in addition to modelling independent herd 
effects to improve genetic evaluation in smallholder sys-
tems, and to determine if the impact depended on the 
genetic connectedness across the herds, and the use of 
pedigree or genomic data. In addition, we tested whether 
adding environmental covariates was beneficial beyond 
the simple distance-based relationships between herds.

We performed a simulation study that resembled 
smallholder systems that are commonly observed in East 
Africa with small herd sizes. We evaluated scenarios with 
different genetic connectedness across herds, herd distri-
bution and spatial variation. The results showed that spa-
tial modelling improved genetic evaluations, especially 
with weak genetic connectedness. We also analysed real 
dairy cattle data and the results indicated that the stand-
ard and spatial models separated the genetic and envi-
ronmental effects in different ways for animals living in 
areas with larger spatial effects.

Material and methods
We first introduce the data used in the analyses; a simu-
lated smallholder dairy cattle data, and a real dairy cat-
tle data. Then, we present the statistical models used for 
genetic evaluation and how we fitted and evaluated the 
models. Scripts for data simulation and model fitting are 
available in Additional file 1.

Simulation
We used simulation to evaluate the potential of spa-
tial modelling to improve genetic evaluation. The simu-
lated data resembled the smallholder systems commonly 
observed in East Africa with small herds clustered in 

villages and a varying level of genetic connectedness. We 
simulated phenotype observations yi as:

where µ is population mean, gi is the additive genetic 
effect of individual i, hi ∼ N (0, σ 2

h ) is the herd effect with 
σ 2
h = 0.25 , si is the spatial effect, and ei ∼ N (0, σ 2

e ) is an 
independent residual with σ 2

e = 0.25 . Below, we describe 
the simulation of genetic and spatial effects. In Fig.  1, 
we show a conceptual illustration of the simulation. The 
top left panel shows the phenotypes, and the remaining 
panels show the genetic, herd and spatial effects. Note 
the most bottom-right village (cluster) with high genetic 
merit animals, but intermediate phenotypes due to nega-
tive spatial effects.

We simulated the data under three scenarios of genetic 
connectedness, from weak genetic connectedness 
between herds from different villages to strong genetic 
connectedness across all herds regardless of the village. 
We generated 60 independent data sets for each scenario 
of genetic connectedness.

Simulation of founders
First, we simulated a genome consisting of 10 chro-
mosome pairs with cattle genome and demography 
parameters [36]. To this end, we used the Markovian 
Coalescent Simulator [37] and AlphaSimR [38, 39] to 
simulate genome sequences for 5000 founder individu-
als, which served as the initial parents. For each chro-
mosome, we randomly chose segregating sites in the 
founders’ sequences to serve as 5000 single-nucleotide 
polymorphisms (SNPs) and 1000 quantitative trait loci 
(QTL) per chromosome, yielding 50,000 SNPs and 10,000 
QTL.

Then, we simulated a single complex trait with addi-
tive architecture by sampling QTL allele substitution 
effects from a standard normal distribution. We multi-
plied these with individuals’ QTL and summed them to 
the true breeding value. Then we simulated phenotypes 
with different heritabilities for cows ( h2 = 0.3 ) and bulls 
( h2 = 0.8 ) to reflect different amounts of information 
per gender. These phenotypes were used for the initial 
assignment of bulls and their selection throughout the 
evaluation phase.

Population simulation
We created 100 villages, each consisting of 20 herds, with 
herd sizes generated from a zero truncated Poisson dis-
tribution with parameter � = 1.5 . The 110 best males 
from the founder individuals (based on true genetic 
values) were assigned as breeding bulls, 100 as natu-
ral mating or artificial insemination bulls depending on 
the scenario, and 10 as artificial insemination bulls. The 

(1)yi = µ+ gi + hi + si + ei,
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remaining founders were considered as cows and were 
randomly placed in the herds. Since the herd sizes were 
sampled, we did not have the same number of individu-
als in each replicate. On average, there were 3860 cows in 
total, and the cows not assigned to a herd were discarded.

We positioned the 100 villages by assuming a square 
country and sampled village coordinates in the north-
south and east-west direction from a uniform distri-
bution on (0,  1). We then positioned the 2000 herds by 
sampling their coordinates w ∈ R

2 from a bi-variate 
normal distribution with mean from the corresponding 
village coordinates and location variance 3.5 · 10−4

I2×2 . 
This clustered the herds around village centres. We chose 
the location variance to achieve reasonable spread and 
clustering. We tested the sensitivity of results to this sim-
ulation parameter.

We tested three levels of genetic connectedness by con-
trolling the breeding strategy. To achieve weak genetic 
connectedness, each village used their own natural mat-
ing bull, meaning that the cows were strongly related 

within the village and nominally unrelated between vil-
lages. However, there was still some base level genetic 
relationship due to the shared population history. To 
achieve intermediate genetic connectedness, each vil-
lage used their own bull for mating in 75% of the herds, 
while the remaining herds in the village used one of the 
ten artificial insemination bulls at random, meaning that 
cows were still strongly related within villages, and some-
what related between villages. To achieve strong genetic 
connectedness, 100 artificial insemination bulls were ran-
domly mated to cows across all herds and villages, mean-
ing that cows were equally related within and between 
villages. For this last scenario, we used the 100 artificial 
insemination bulls instead of the ten artificial insemina-
tion bulls in order to maintain a relatively high degree of 
genetic diversity, and with this, a more challenging situa-
tion for separation of environmental and genetic effects.

The three scenarios were then simulated over 12 discrete 
generations. Within each farm, we replaced the current 
cows by their newborn female calves. The cows with male 
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Fig. 1  Illustration of the simulation. Each point denotes an animal, their location in a country and colour of the point denotes value of phenotype 
and underlying genetic, herd and spatial effects (residual not shown)
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calves were not replaced, and their calves were candidates 
for natural mating if they came from a farm using natural 
mating, or for artificial insemination if they came from a 
farm using artificial insemination.

In the 11th generation, we scaled the true breeding val-
ues to have mean 0 and variance σ 2

g = 0.1 , and used them 
as genetic effects in the model for phenotype observation 
yi in Eq. (1), with 3860 records on average. In addition, the 
female calves in the 12th generation were kept for predic-
tion purposes. To ease the computations with the genome-
based model, we predicted breeding values for randomly 
chosen 200 calves in the 12th generation.

Simulation of spatial effects
We simulated spatial effects from multiple Gaussian ran-
dom fields to mimic several sources of environmental 
effects. We imagined that these different sources could be 
temperature, precipitation, elevation, land size, proxim-
ity to markets and towns, availability of extension services, 
vaccine use, local and regional policies etc. We simulated 
the effects of eight such processes vk , k = 1, . . . , 8 at the 
herd locations from a Gaussian random field with mean 0 
and a Matérn covariance function [31]. The Matérn covari-
ance function between locations wi,wj ∈ R

d is:

where Kν is the modified Bessel function of the sec-
ond kind and the order ν > 0 determines the mean-
square differentiability of the field. The parameter κ can 
be expressed as κ =

√
8ν/ρ , where ρ > 0 is the range 

parameter describing the distance where correlation 
between two points is near 0.1, and σ 2 is the marginal 
variance. We varied these parameters to simulate pro-
cesses on large and small scales and with different prop-
erties. Specifically, we sampled the range parameter ρ for 
each of the processes vk from a uniform distribution on 
(0.1, 0.5), set the marginal variance σ 2 to either 0.2 or 0.3 
with equal probability, and fixed the parameter ν to 1.

We finally summed the eight   processes to obtain the 
total spatial effect (Fig. 1) for all herd locations s , with s(wi) 
being the total spatial effect at location wi . We differentially 
emphasised some processes according to:

with the weights α,β ∼Uniform(− 0.5, 0.5) . We scaled 
the spatial effects to have mean 0 and variance σ 2

s = 0.4.

(2)

Cov(wi,wj) =
σ 2

2ν−1Ŵ(ν)

(

κ�wj − wi�
)ν
Kν

(

κ�wj − wi�
)

,

s =
3

∑

k=1

vk +
6

∑

k=4

vk(1+ αk)+
8

∑

k=7

vk(1+ αk + βk)

Environmental covariates
We assumed that some spatial processes could be 
observed as environmental covariates at herd loca-
tions, possibly with some noise. We took the eight real 
processes and sampled two more (with mean 0 and a 
Matérn covariance function) that did not affect the 
phenotype.

For the spatial processes v1 , v2 , and v3 , we assumed that 
we could observe the spatial covariates perfectly without 
error, which could be reasonable for some covariates, 
such as temperature and precipitation.

For the spatial processes v4 , v5 , and v6 , we assumed that 
we could  not observe them accurately, so we added nor-
mal distributed error with mean 0 and variance equal to 
10% of the process marginal variance. This could be rea-
sonable for some covariates that are difficult to measure 
or that vary with time; it could, for example, be challeng-
ing to quantify the amount and quality of feed.

For the spatial processes v7 and v8 , we assumed that we 
could only observe categorical realisations of the con-
tinuous effects, for example, distance to markets and 
towns could be categorised as either a rural or urban 
area. For the process v7 , we created a two-level factor 
by sampling a threshold from a uniform distribution 
between one standard deviation from the mean of v7 in 
both negative and positive directions. Values of v7 above 
the threshold were assigned one level, and values below 
were assigned the other level. For the process v8 , we cre-
ated a three-level factor by sampling two thresholds. The 
lower threshold was sampled from a uniform distribu-
tion between two standard deviations below the mean of 
v8 and the mean of v8 . The upper threshold was sampled 
from a uniform distribution between the mean of v8 and 
two standard deviations above the mean of v8 . The values 
of v8 were then assigned one of three levels depending on 
thresholds.

Changing the proportion of spatial variance and herd 
clustering
To evaluate how the models performed when there 
was no or little spatial effect on the phenotype, we cre-
ated scenarios with different proportions of spatial 
variance relative to the sum of herd effect variance and 
spatial variance so that the total variation between 
herds was constant. We kept σ 2

s + σ 2
h = 0.65 , and let 

σ 2
s /(σ

2
s + σ 2

h ) = {0, 0.2, 0.4, 0.6, 0.8, 1} . This was repeated 
for 30 of the data sets.

We also evaluated the importance of how tightly the 
herds were clustered around village centres. We varied 
the location variance of the bi-variate distribution for 
the herd coordinates w ∈ R

2 from 1.0 · 10−4
I2×2 (strong 

clustering), 3.5 · 10−4
I2×2 (intermediate clustering) to 
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9.0 · 10−4
I2×2 (weak clustering). This was repeated for 

each of the 60 data sets.

Real dairy cattle data
We then analysed phenotypic data for 30,314 Brown-
Swiss cattle data from Slovenia collected between 2004 
and 2019, from 2012 herds. The data included a body 
conformation measure, year and scorer, cow’s age, stage 
of lactation, year and month of calving, herd and the 
farm’s coordinates. In addition, the data contained a ped-
igree for 56,465 animals including the phenotyped cows. 
We analysed the body conformation, which we standard-
ised by subtracting the phenotypic mean and dividing by 
the phenotypic standard deviation.

The average herd size was approximately 15 cows per 
herd, and most cows were in herds with more than five 
animals. To imitate data typical of smallholder systems, 
with few individuals per herd, we used a subset of the 
full data. We sampled 3800 individuals without replace-
ment, with sampling probability equal to the inverse herd 
size, meaning that larger herds had fewer records in the 
data subset. The subset contained cows from 1838 herds, 
and the average herd size was about 2 cows per herd. The 
herds were spread over most of Slovenia (see Additional 
file 2: Figure S2).

Statistical models
The following model was fitted to the observed pheno-
type yi of individual i = 1, ..., n:

where β is a vector containing contemporary group 
effects, including a common intercept, with known 
covariate vector xi and β ∼ N (0, σ 2

β ) , ai is the additive 
genetic effect (breeding value), hi is the herd effect with 
h ∼ N (0, Iσ 2

h ) , si is the spatial effect for the herd at loca-
tion wi ∈ R

2 modelled with a Gaussian Markov random 
field with µ = 0 and Matérn covariance function as given 
in Eq. (2), and ei is a residual effect with e ∼ N (0, Iσ 2

e ) . 
Although the data generation model (1) and this statis-
tical model (3) are similar, we note that the statistical 

(3)yi = xiβ + ai + hi + si + ei,

model is not “aware” of the 10,000 true QTL effects and 
the eight true spatial processes.

We modelled the genetic effect (breeding value) 
using a relationship matrix based either on pedigree or 
genome data. For the pedigree-based model, we assumed 
a ∼ N (0,Aσ 2

a ) , where A is the pedigree relationship 
matrix [40]. We used pedigree for the phenotyped indi-
viduals (11th generation), their offspring (12th genera-
tion), and three previous generations (8–10th). For the 
genome-based model, we assumed a ∼ N (0,Gσ 2

a ) , 
where G is the genomic relationship matrix calculated 
from G = ZZ

T /k , Z was a column-centered SNP matrix, 
and k = 2�lql(1− ql) with ql being allele frequency of 
marker l [32].

Prior distributions for hyper‑parameters
We used a full Bayesian analysis which requires prior 
distributions for all model parameters. For the intercept 
and fixed effects, we assumed σ 2

β = 1000 , and for the 
remaining variance parameters and the spatial range, 
we assumed penalised complexity priors [41], which are 
proper priors that penalise model complexity to avoid 
over-fitting. The penalised complexity prior for variance 
parameters can be specified through a quantile u and a 
probability α which satisfy Prob(σ > u) = α , and the 
penalised complexity prior for the spatial range param-
eter through a quantile u and a probability α which satisfy 
Prob(ρ < u) = α . For the variances and spatial range, we 
assumed penalised complexity prior distributions with 
quantiles u and probabilities α (Table 1).

Fitted models to the simulation data
We fitted five models to the simulated data: G, GH, 
GS, GHS and GHSC. All models had an intercept β0 , a 
genetic effect ai , and a residual effect ei . Model GH had 
in addition a herd effect hi , GS had in addition a spatial 
effect si , GHS had in addition both a herd effect and a 
spatial effect, and GHSC had in addition a herd effect, 
a spatial effect and the environmental covariates zi . The 
models are summarised as:

Table 1  Parameters u and α for the penalised complexity priors of hyper-parameters by fitted models to the simulated 
and real data (see "Prior distributions for hyper-parameters" section)

a  Simulated data
b  Real data

Model ue , αe ua, αa uh, αh us, αs uρ , αρ
a

uρ , αρ
b

G 0.30, 0.50 0.10, 0.50 – – – –

GH 0.15, 0.50 0.10, 0.50 0.25, 0.50 – – –

GS 0.15, 0.50 0.10, 0.50 – 0.25, 0.50 0.60, 0.95 50, 0.80

GHS 0.15, 0.50 0.10, 0.50 0.15, 0.50 0.10, 0.50 0.60, 0.95 50, 0.80
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where zi is the vector of environmental covariates for 
individual i and βz ∼ N (0, 1000I) is a vector of environ-
mental covariate effects. The other effects were assumed 
distributed as described above for Eq. (3).

Model evaluation for simulated data
We will refer to the mean posterior genetic effect for 
phenotyped individuals as the estimated breeding val-
ues, and the mean posterior genetic effect for non-phe-
notyped individuals as the predicted breeding values. We 
evaluated the models using three measures: first, with 
the Pearson correlation (accuracy) between the true and 
estimated/predicted breeding values for all individuals; 
second, with the Spearman’s rank correlation between 
the true and estimated/predicted breeding values for the 
top 100 individuals; and third, with the continuous rank 
probability score (CRPS) [42], comparing the whole pos-
terior distribution of breeding values to the true breeding 
values. The CRPS compares both the location and spread 
of the posterior distribution to the true value. The CRPS 
is negatively oriented, which means that lower CRPS val-
ues indicate more accurate predictions.

Fitted models to the real dairy cattle data
We fitted four models to the real dairy cattle data that 
were structurally the same as models fitted to the simu-
lated data: G, GH, GS, and GHS. The only difference was 
in fixed effects that are part of the routine genetic evalua-
tion for the analysed trait and population; an intercept β0 , 
three factors (year and scorer, cow’s age and stage of lac-
tation, and year and month of calving). The genetic effect 
was estimated using the available pedigree. For the vari-
ances and spatial range, we assumed penalised complex-
ity prior distributions with quantiles u and probabilities α 
shown in Table 1.

We used the deviance information criterion (DIC) 
[43] to compare the fit of the models. The DIC is widely 
used to compare model fit between different hierarchical 
Bayesian models while also assessing the model complex-
ity. Lower values of the DIC indicate a better model fit.

Inference
For inference, we used the Bayesian numerical approxi-
mation procedure known as the Integrated Nested 
Laplace Approximations (INLA) introduced by [44], with 
further developments described in [45, 46] and imple-
mentation available in the R-INLA package. INLA is 

G: yi = β0 + ai + ei,

GH: yi = β0 + ai + hi + ei,

GS: yi = β0 + ai + si + ei,

GHS: yi = β0 + ai + hi + si + ei,

GHSC: yi = β0 + ai + hi + si + ziβz + ei,

suited for the class of latent/hierarchical Gaussian mod-
els, which includes generalised linear (mixed) models, 
generalised additive (mixed) models, spline smoothing 
methods, and models used in this study. INLA calculates 
marginal posterior distributions for all model parameters 
(fixed and random effects, and hyper-parameters) and 
linear combinations of effects without sampling-based 
methods such as Markov chain Monte Carlo (MCMC).

Results
In this section, we present the results from fitting the 
models to the simulated and real data. For simulation, we 
compare accuracy and CRPS of estimated and predicted 
breeding values for the tested models. For the real data, 
we present posterior variances, DIC, estimated spatial 
effects, and how estimated breeding values differ with 
and without spatial modelling. All results indicate that 
spatial modelling improves genetic evaluation.

Simulated data
This section presents the results from the simulation 
study, where the models G, GH, GS, GHS and GHSC 
were fitted to data with three different genetic connect-
edness. Overall, the results showed that in smallholder 
systems (i) spatial modelling increased accuracy of esti-
mating and predicting breeding values, (ii) environmen-
tal covariates did not improve accuracy substantially 
beyond the distance-based spatial model, (iii) for the 
models without spatial effects, the accuracy of separat-
ing genetic and environmental effects was low, (iv) the 
benefit of spatial modelling was largest when genetic 
and environmental effects were strongly confounded, (v) 
spatial modelling in addition to the independent random 
herd effect did not decrease accuracy even when there 
was no spatial effects, and (vi) when environmental and 
genetic effects were confounded the accuracy improved 
when herds were weakly clustered rather than strongly 
clustered.

Spatial modelling increases accuracy
Spatial modelling increased accuracy of estimated and 
predicted breeding values. Table 2 presents the accuracy 
for all models and genetic connectedness scenarios. Set-
ting the model GHSC aside for later, we observed the 
highest accuracy with model GHS across all scenarios. 
The second best was model GS, third was GH, and the 
worst was G. As expected genomic data improved the 
accuracy compared to using pedigree, and estimated 
breeding values were more accurate than the predicted. 
With weak genetic connectedness, the accuracy was low 
and comparable between estimation and prediction, and 
the pedigree models has an accuracy almost as high as 
the genomic models.
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Table 3 presents the average CRPS. The trends in the 
CRPS were the same as for the accuracy, with model 
GHS having the lowest (best) CRPS. Again, as expected 
genomic data improved the CRPS compared to using 
pedigree, and in most cases, average CRPS was lower 
for estimation than for prediction, but in some cases 
the average CRPS for prediction was slightly lower than 
for estimation. This improved CRPS for prediction was 
observed for models that did not model environmental 
variation and had lower accuracy (Table 2), so the lower 
(better) CRPS indicates that those models underesti-
mated prediction uncertainty.

The rank correlations for the top 100 individuals were 
in line with accuracy (Table 2) and CRPS (Table 3) results 
for all individuals. We show this in Additional file  3: 
Table S1. These results show that spatial modelling (mod-
els GS, GHS and GHSC) improved accuracy of ranking 
the top individuals compared to no spatial modelling 
(models G and GH).

Including environmental covariates
The environmental covariates did not improve the results 
substantially beyond the simple distance-based rela-
tionships between herds. This is shown for accuracy in 

Table 2  Average accuracy of  estimated breeding values (EBV) and  predicted breeding values (PBV) by  genetic 
connectedness (weak, intermediate and strong) and model with intermediate clustering of herds

Standard error for most values had an order of magnitude 10−3 with few an order of magnitude 10−2

Weak Intermediate Strong

EBV PBV EBV PBV EBV PBV

Pedigree

 G 0.33 0.28 0.32 0.18 0.32 0.20

 GH 0.36 0.29 0.41 0.22 0.42 0.25

 GS 0.52 0.50 0.56 0.34 0.55 0.35

 GHS 0.54 0.52 0.58 0.36 0.57 0.37

 GHSC 0.57 0.55 0.59 0.36 0.58 0.37

Genomic

 G 0.33 0.32 0.40 0.29 0.42 0.32

 GH 0.36 0.33 0.51 0.38 0.59 0.46

 GS 0.58 0.56 0.70 0.54 0.72 0.57

 GHS 0.63 0.60 0.74 0.57 0.75 0.60

 GHSC 0.64 0.62 0.74 0.58 0.75 0.60

Table 3  Average CRPS of  estimated breeding values (EBV) and  predicted breeding values (PBV) by  genetic 
connectedness (weak, intermediate and strong) and model with intermediate clustering of herds

Standard error for all values had an order of magnitude 10−3

Weak Intermediate Strong

EBV PBV EBV PBV EBV PBV

Pedigree

 G 0.54 0.43 0.65 0.40 0.70 0.37

 GH 0.41 0.37 0.34 0.28 0.33 0.25

 GS 0.17 0.17 0.17 0.18 0.18 0.18

 GHS 0.16 0.16 0.17 0.18 0.18 0.18

 GHSC 0.16 0.16 0.16 0.18 0.17 0.18

Genomic

 G 0.39 0.39 0.32 0.30 0.30 0.26

 GH 0.36 0.37 0.22 0.22 0.18 0.18

 GS 0.15 0.15 0.13 0.15 0.13 0.15

 GHS 0.14 0.15 0.12 0.15 0.12 0.14

 GHSC 0.14 0.14 0.12 0.15 0.12 0.14
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Table  2 and CRPS in Table  3. The accuracy and CRPS 
were only marginally better for the GHSC model com-
pared to the GHS model in some cases, and in the 
remaining cases, they were comparable. Because of this, 
we focused on the sufficient models and excluded model 
GHSC in the remaining results. Some additional results 
with model GHSC are given in Additional file 3.

Separating genetic and spatial (environmental) effects
The models without spatial effects were not able to 
accurately separate genetic and spatial (environmental) 
effects. In Table  4, we present the correlations between 
the estimated breeding values and the true spatial effects 
by model and genetic connectedness. Models G and GH 
had a high correlation, which suggests that estimated 

breeding values captured parts of the spatial effects. 
Models GS and GHS had correlations closer to zero, 
which suggests that these models separated genetic and 
spatial effects more accurately. This, together with the 
correlation results in Table 2 and CRPS results in Table 3, 
suggests that the herd effect alone is not sufficient to 
account for all environmental effects in smallholder 
systems.

Comparing genetic connectedness scenarios and genetic 
models
The benefit of spatial modelling was largest when spatial 
and genetic effects were difficult to separate. In Addi-
tional file 2: Figure S1, we show the relative improvement 
in accuracy and CRPS between models GH and GHS by 
genetic connectedness. With both the genome and pedi-
gree data, the improvement was largest with weak genetic 
connectedness (about 50% to 80%), second with inter-
mediate genetic connectedness (about 35% to 65%), and 
third with strong genetic connectedness (about 20% to 
45%). These settings range between strongly confounded 
genetic and spatial effects, to separable genetic and spa-
tial effects. With weak genetic connectedness, there was 
little difference in improvement between models using 
genomic or pedigree data, whereas with intermediate and 
strong genetic connectedness there was a tendency for 
the improvement to be largest with the pedigree data.

Changing proportion of spatial variance
Spatial modelling, in addition to an independent random 
herd effect even when there were no spatial effects, did 
not decrease the accuracy. In Fig. 2, we present the accu-
racy and CRPS for estimated breeding values when using 

Table 4  Average correlation between  estimated breeding 
values and  true spatial effect by  genetic connectedness 
(weak, intermediate and strong) and model

Standard error for all values had an order of magnitude 10−3

Weak Intermediate Strong

Pedigree

 G 0.68 0.64 0.64

 GH 0.70 0.60 0.58

 GS 0.11 0.06 0.06

 GHS 0.12 0.06 0.06

Genomic

 G 0.84 0.74 0.69

 GH 0.83 0.63 0.50

 GS 0.16 0.05 0.04

 GHS 0.21 0.05 0.04
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genomic data under intermediate genetic connectedness. 
The x-axis goes from all environmental variance cov-
ered by herd effects to all covered by spatial effects. For 
models G and GH, the accuracy and CRPS worsened as 
the proportion of spatial variance increased, whereas for 
models GS and GHS the accuracy and CRPS improved. 
Overall, model GHS had the highest accuracy and lowest 
(best) CRPS for all spatial variance proportions. It was as 
good as model GH when there was no spatial variation 
and as model GS when there was no herd effect variation.

From the results so far, we have seen that model GS had 
better accuracy and CRPS than model GH. However, this 
is not always the case. When most of the environmen-
tal variation was due to herd effects rather than spatial 
effects, model GH gave better estimates than model GS.

The same tendencies were seen for the predicted breed-
ing values for both genomic and pedigree-based models, 
and in other genetic connectedness scenarios, as shown 
in the tables presented in Additional file 3.

Changing the herd clustering
When spatial and genetic effects were confounded, the 
accuracy of estimation improved when herds were weakly 
clustered rather than strongly clustered. When simulat-
ing the data, we varied the distribution of herd locations, 
from strongly clustered to less clustered around each vil-
lage centre. In Fig. 3, we present the accuracy and CRPS 
for estimated breeding values using genomic data under 
weak genetic connectedness for the three clustering 
levels. Figure  3 shows that as herds were less clustered, 
the accuracy and CRPS improved across all models. We 
observed the same trend for predicted breeding values 
and using pedigree data, but not with intermediate and 

strong genetic connectedness, where the genetic and 
spatial effects were less confounded. Tables showing the 
accuracy and CRPS between true and inferred breeding 
values and the correlation between inferred breeding 
values and the true spatial effects for all levels of genetic 
connectedness and herd clustering are in Additional 
file 3.

Real data
In this section, we present the results from fitting the 
models to the subset of real dairy cattle data. We present 
the posterior distributions of the hyper-parameters, the 
DIC, the estimated spatial field from model GHS, and 
compare the estimated breeding values from models GH 
and GHS. The corresponding results for the full data set 
are in Additional file  2 and Additional file  3: Table  S15. 
Overall, the results showed that (i) models GH and GHS 
explained most of the variation in the data and had the 
best fit, (ii) the data had a spatially dependent structure 
captured by models GS and GHS, and (iii) the two mod-
els with the best fit, GH and GHS, separated the genetic 
and environmental effects differently for animals living in 
areas with relatively large spatial effects.

Explained variation and model fit
Models GH and GHS explained most of the variation in 
the data and had the best fit according to DIC. In Fig. 4, 
we show the posterior distributions for the model hyper-
parameters. Figure  4 has five panels showing additive 
genetic variance σ 2

a  , residual variance σ 2
e  , herd effect vari-

ance σ 2
h  , spatial variance σ 2

s  , and spatial range ρ in km.
The posterior additive genetic variance was similar 

between models GH and GHS, larger in model GS, and 
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even larger in model G. The same tendency was seen for 
the posterior residual variance. The posterior herd effect 
variance was smaller in model GHS than in model GH, 
which was reasonable since the herd effect in model GH 
captured the spatial component of the phenotype, which 
model GHS assigned to the spatial effect. The posterior 
spatial variance in model GS was larger than in model 
GHS since model GS captured herd effects. Finally, the 
posterior spatial range was smaller in model GS than in 
model GHS, since model GS captured herd effects in the 
spatial effects, which means shorter range of dependency 
between spatial locations. The mean posterior range from 
model GHS indicated that herds more than 22 km apart 
had close to independent (large scale) environments.

Since model G cannot separate variation due to herd 
or other environmental effects, it is possible that some 
of the estimated genetic effects were confounded with 
other effects, which explains the high estimate found 
for the additive genetic variance with this model. A 
similar reasoning could be used for model GS, which 
assigned variation due to herd effects, either to genetic, 
spatial or residual effects. From Fig.  4 it seems that the 
variation from herd effects was distributed to all other 
effects, which explains why the estimated additive genetic 
variance and estimated residual variance were larger 
in model GS than in models GH and GHS, and why the 
estimated spatial variance was larger than in model GHS. 

It seems that models GH and GHS distributed variation 
similarly except for the herd effect, which is expected to 
be higher in model GH than in model GHS.

Table  5 shows the DIC for each model and indicates 
that model GHS had the best fit, followed by model GH, 
then model GS and finally model G. These numbers 
are in line with the estimated hyper-parameters, that 
showed that models GHS and GH could explain most 
of the variation in the phenotype. Although model GS 
also has the potential to explain much of the variation, it 
is forced to assign herd effects either to genetic or spa-
tial effects. We saw from the results with the simulated 
data that model GS had a worse model fit than model 
GH when most of the environmental variation was due 
to herd effects, which seems to be the case here consid-
ering the small posterior spatial variance. Finally, model 
G was not able to separate genetic and environmental 
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Fig. 4  Posterior distributions of hyper-parameters from models G, GH, GS and GHS fitted to the real data

Table 5  Deviance information criterion (DIC) by  model 
fitted to the real data

Model DIC

G 10,494

GH 9795

GS 10,233

GHS 9759
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effects, which leads to a poor model fit. A rule of thumb 
is that a complex model should be preferred over a less 
complex model if the DIC is reduced by more than ten 
units. When it comes to choosing between models GH 
and GHS, model GHS should be preferred, as its DIC was 
36 units smaller.

The estimated spatial effects
The data had a spatially dependent structure captured by 
models GS and GHS, and the estimated spatial field from 
model GHS is shown in Fig.  5. Figure  5 shows the esti-
mated mean (posterior mean), in panel (a), and uncer-
tainty (posterior standard deviation) in panel (b). The 
axes show coordinates in the Transverse Mercator coor-
dinate system in km using datum WGS84.

In the western part of Slovenia, model GHS suggests 
two environmental regions with a mean different from 
zero, one with a positive effect, and one with a negative 
effect. In the central part of Slovenia, there are several 
smaller regions with either a positive or negative effect. 
In the northeast part of Slovenia, there were not many 
observations, so there is only a small region with a posi-
tive effect, and zero effects otherwise. These estimates are 
in line with the natural geographic conditions in Slove-
nia. The magnitude of these spatial effects ranges from 
− 2.2 to 1.7 posterior spatial standard deviations. The 
uncertainty was lowest where observations were available 
and was highest where there were no observations.

Comparing breeding values from models GH and GHS
The two models with the best fit, models GH and GHS, 
separated the genetic and environmental effects differ-
ently for animals living in areas with relatively large spa-
tial effects.

The DIC in Table  5 and the estimated hyper-parame-
ters in Fig. 4, indicated that models GH and GHS had the 
best model fit and a similar decomposition of the genetic 
and environmental variation. Furthermore, the estimated 
breeding values from models GH and GHS were highly 
correlated, with a correlation of about 0.995.

To evaluate how well models separated genetic and 
environmental effects, we computed the correlation 
between estimated breeding values from models GH and 
GHS with estimated spatial effects from model GHS. For 
model GH, this correlation was about 0.14, whereas for 
model GHS it was about 0.07. This suggests that there 
were some effects that were assigned as genetic effects in 
model GH, but assigned as spatial effects in model GHS.

Figure  6, presents the differences in estimated breed-
ing values between models GH and GHS as boxplots 
according to estimated spatial effects from model GHS. 
This shows that the difference was correlated with spatial 
effect from model GHS. When estimated spatial effects 
were negative, estimated breeding values from model GH 
were smaller than from model GHS. When estimated 
spatial effects were positive, estimated breeding values 
from model GH were larger than from model GHS. The 
magnitude of the difference ranged from − 0.2 to 0.2 
posterior genetic standard deviations, which indicates 
confounding for animals living in areas with large spatial 
effects. The figure also shows how many cows were used 
in each boxplot, which indicates that, for a majority of 
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the cows, the difference in estimated breeding values was 
not large.

The correlation between differences in estimated 
breeding values and estimated spatial effects from model 
GHS was about 0.62. This is in line with what we saw 
from the simulation results, and suggests that although 
the two models had highly correlated estimated breeding 
values, there were differences between estimated breed-
ing values for animals in regions with large spatial effects.

We also compared the top 10 and 20 ranked cows 
and bulls from the models GH and GHS, to see if a dif-
ference in estimated breeding value influenced ranking. 
We found that the difference was not critical for ranking 
since the top cows and bulls were present in areas with 
relatively small spatial effects. For the cows, we had an 
overlap of 7 (18) cows when comparing the top 10 (20) 
from each model. For the bulls, we had an overlap of 9 
(18) bulls when comparing the top 10 (20).

Discussion
The results show that spatial modelling improves genetic 
evaluation in smallholder systems. In particular, it 
increases the accuracy of genetic evaluation under weak 
genetic connectedness by establishing environmental 
connectedness, and with this, more accurate separa-
tion of genetic and environmental effects. These obser-
vations highlight two broad points for discussion: (i) 
why does spatial modelling improve genetic evaluation 
and (ii) what are the limitations of this study and future 
possibilities.

Why spatial modelling improves genetic evaluation
Spatial modelling improves genetic evaluation because 
it separates environmental variation that is common to 
nearby herds more accurately from the other effects on 
the phenotype. Since spatial effects are estimated jointly 
for all herds and other effects, this induces environmental 
connectedness and, in turn, enhances separation of envi-
ronmental and genetic effects. Animal breeders are very 
aware of the data structure that is required for accurate 
genetic evaluation [7–9] and there are formal methods 
to assess genetic connectedness between contemporary 
groups [14, 15, 47–49]. An interesting future work would 
be to extend these methods to account for environmental 
connectedness. Achieving sufficient genetic connected-
ness is particularly difficult when contemporary groups 
are small and there is limited genetic connectedness 
between them.

A way to increase genetic connectedness is to use 
genomic data, although this was not sufficient in our 
case. Using genomic data reveals more genetic connect-
edness than pedigree data because animals likely share 
at least some alleles, and this has been shown to increase 

the accuracy of genetic evaluation [7, 50, 51]. However, 
our targeted setting consisted of smallholder herds, 
which are an extreme case of challenging data structure 
for genetic evaluation. Furthermore, we varied genetic 
connectedness between herds and villages. We found 
that across all genetic connectedness scenarios, spatial 
modelling increased accuracy more than using genomic 
data instead of pedigree data. Furthermore, with the 
weakest genetic connectedness, genomic data was not 
effective at all, while spatial modelling was. This is, in a 
way, not surprising because our herds were so small that 
we had strong confounding between genetic and envi-
ronmental effects, as well as weak genetic connectedness. 
Genomic data could not separate genetic and environ-
mental effects, since herds were too small for accurate 
estimation of their effect, even with random effects. In 
this case, spatial modelling, at least environmentally, con-
nected nearby herds and created effective contemporary 
groups. These results show that in addition to genomics 
other tools are also needed to improve smallholder sys-
tems [52]. As expected accuracy was low in this extreme 
setting, although surprisingly not very low (see the next 
sub-section on possible reasons). These scenarios might 
seem too extreme, but they are a reflection of real situa-
tions in many countries around the world, e.g. [11].

Spatial modelling has a long tradition and has already 
been used in animal breeding, e.g. [23, 53]. We have used 
it in the extreme scenario of small herds and for this rea-
son we used the geostatistical approach that accounts for 
the fine-grained herd coordinate information. An alter-
native approach could be to cluster herds into village 
groups and possibly further cluster villages into region 
groups. In this case, we could model the village groups 
as an independent fixed or random effect to account for 
small scale environmental (management) effects, and 
possibly further model the region groups as a dependent 
random effect accounting for covariance between neigh-
bouring regions to account for large-scale environmental 
effects [24, 25]. An issue with this approach is that we 
lose the ability to model each individual herd, and that 
administrative regions often do not represent correctly 
geography and other environmental effects. Given that 
the clustering approach has trade-offs, that there are effi-
cient geostatistical models that adapt to data, and that 
efficient and easy to use implementations exist, we rec-
ommend the use of geostatistical models.

We recommend routine use of spatial modelling in 
quantitative genetic models. Namely, collected data will 
always come from some area with likely variation in envi-
ronmental effects. Our results show that spatial model-
ling is robust even when there is no spatial variation. The 
observed gains from this study will likely be smaller in 
cases with larger herds, but even in those cases, spatial 
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modelling can induce environmental connectedness, 
and it can also provide estimates of spatial effects. These 
estimates could be used to target interventions or poli-
cies. Importantly, our analysis of simulated and real data 
indicates that spatial modelling can separate environ-
mental and genetic effects more accurately. Such mod-
elling improvements will also be very useful beyond 
animal breeding populations; for example, in quantitative 
genetic analyses of human populations and wild popu-
lations. These populations also have similarly challeng-
ing data structure with rampant population structure 
(genetic disconnectedness) [54, 55] and the existence of 
biases in estimated genetic effects in line with geographic 
variation has been reported [56].

In line with the potential of spatial modelling to 
account for spatial variation, we recommend a geograph-
ically broad collection of data to train robust models. 
Genomics is revolutionising breeding in developed and 
developing countries [6, 7, 32]. To deliver its full poten-
tial, breeding organisations should ensure broad geo-
graphic coverage when collecting data. This will avoid 
bias towards a specific region, in particular with genomic 
prediction. Spatial modelling can account for variation 
between and within regions, but it needs data from the 
regions to estimate optimal model parameters.

In relation to data collection guidance, we were sur-
prised to find that environmental covariates did not 
improve the accuracy of genetic evaluation beyond sim-
ple distance-based relationships between herds. Here, 
we simulated the total spatial effect as a sum of eight 
spatial processes with a range of model parameters that 
made the processes quite different and we assumed that 
we could observe these with some noise. Our hypoth-
esis was that modelling the observed environmental 
covariates would reveal the underlying spatial processes 
and increase accuracy in the same way that the use of 
genomic data reveals the underlying genetic process 
behind the pedigree expectations [32, 33]. There are at 
least three possible explanations for this. First, we simu-
lated a small number of spatial processes, and the dis-
tance-based relationships were sufficient to model spatial 
variation. Second, the noise in observations was larger 
than the signal or our data set was too small to capture 
the signal. Third, the two-dimensional form of the space 
constrains the value of environmental covariates for 
increasing accuracy beyond the distance-based relation-
ships. More studies are needed to address this question.

The limitations of this study and future possibilities
There is a huge number of possible scenarios and param-
eter combinations that we could have tested. For example, 
we assumed the absence of non-additive genetic effects, 
genotype-by-environment interaction, data errors, 

heterogeneous variances and considered only a single 
trait and breed. Furthermore, the animals were initially 
distributed to herds randomly, and the farms using artifi-
cial insemination were chosen randomly. Such simplifica-
tions are likely to yield higher accuracies than expected 
in real smallholder systems. However, the analysis of real 
data corroborates the main conclusions from the simu-
lations. Future studies could, for example, consider non-
random distribution of animals among herds as well as 
the use of artificial insemination and the best bulls. These 
non-random associations are real since well-resourced 
farmers are more likely to use artificial insemination and 
the best bulls [22]. With the real data analysis, we tried 
to mimic a smallholder setting by using only a subset of 
the data. However, it should be noted that this data has 
a much higher level of artificial insemination than most 
smallholder systems, even in the strong genetic connect-
edness scenario in our simulation.

Genotype-by-environment interactions have been 
modelled in several studies [53, 57–60] and such interac-
tions are likely to be substantial in smallholder systems, 
in particular when native and exotic breeds are used [6]. 
We ignored these interactions in our study. Of particu-
lar notice regarding these interactions and in relation 
to our work is the study of [53]. They used geographical 
location and weather data in addition to herd summaries 
to describe environmental conditions in genetic evalua-
tions, with and without genotype-by-environment inter-
actions and concluded that the farming environment 
explained variation in the data, as well as the genotype-
by-environment component. Further work is needed to 
embrace the rich set of tools from the spatial statistics 
community to address genotype-by-environment inter-
actions [61, 62].

Yet another important source of phenotypic variation 
that we ignored are heterogeneous variances, which are 
also likely to be substantial in smallholder systems. There 
are multiple models and methods used by breeders and 
geneticists to account for such variation, e.g. [63–65]. We 
note that there is also a rich spatial literature on models 
that can deal with non-stationarity in dependency and 
variance, e.g. [29, 30, 66–68], which for example could 
enable the modelling of directional dependence based 
on local anisotropy, e.g. [69]. Using and benefitting from 
non-stationary models can be challenging due to com-
putational costs and the amount of data needed to fit 
these models [70]. However, this will become increas-
ingly possible and desired as data sets increase in size 
with the progression of the digital revolution in agricul-
ture and more computationally efficient methods become 
available.

Breeding programmes interested in spatial modelling 
will have to invest in software modification. This is not 
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a limitation of this study, but interested breeding pro-
grammes would either have to use the R-INLA package 
[44] or implement an extension of their existing soft-
ware. While the R-INLA package is a mature project, it 
does not support all animal breeding models, most nota-
bly multi-trait models. However, it handles a rich set of 
likelihoods (Gaussian, Poisson, Bernoulli, Weibull, etc.), 
link functions, independent or correlated random effects 
(time-series, regions, points, generic such as pedigree, 
etc.) and priors. It uses the same key underlying linear 
algebra routines as standard genetic evaluation soft-
ware [25, 71–73], and enables both full Bayesian analy-
sis with fast and very accurate approximate algorithm 
[74] or even faster empirical Bayesian analysis. We have 
used the R-INLA package extensively for standard quan-
titative genetic studies [75–77], accounting for selection 
[78], spatial modelling of plant and tree trials [79] and for 
modelling of phenotypes on phylogeny [80]. While the 
R-INLA package is fast for models with a sparse struc-
ture (time-series, spatial regions or points and pedigree), 
it does not fare well for genomic models that have dense 
a structure [32, 33]. However, use of recently proposed 
approximate genomic models [34, 35] and sparse-dense 
libraries would help [81, 82]. A simple alternative for spa-
tial modelling with standard software such as [83, 84], 
would be to force the setup and inversion of the spatial 
covariance matrix using Gaussian model. This would suf-
fice for a few thousand well-dispersed herds, but might 
lead to numeric issues with nearby herds (near matrix 
singularity) or much larger numbers of herds that will 
soon become a reality with the digital revolution of 
agriculture.

Furthermore, since INLA does a full Bayesian analy-
sis, the user has to set prior distributions for all model 
parameters. This is not always straightforward, but set-
ting a prior based on the knowledge about the process 
is likely to improve inference substantially, particularly 
when data is sparse. There is a number of ways to set 
mildly informative priors. We used penalised complexity 
priors [41] since these avoid over-fitting and can accom-
modate prior knowledge about the relative importance of 
different effects [85, 86].

Conclusions
The take-home message from this study is that spatial 
modelling can improve genetic evaluation in smallholder 
systems by inducing environmental connectedness, and 
with this can enhance separation of genetic and environ-
mental effects beyond an independent herd effect. We 
have demonstrated this with simulated data with differ-
ent levels of genetic connectedness, proportions of spa-
tial to management (herd) variation, herd clustering and 
pedigree or genomic modelling. These results have to be 

further corroborated with a range of smallholder datasets 
for which we also have to account for multiple breeds and 
their crosses, genotype-by-environment interactions and 
heterogeneous variances. We expected that environmental 
covariates would improve spatial modelling following the 
analogy of genetic modelling with observed genomic ver-
sus expected pedigree data, but this was not the case in our 
simulations. Based on all these results, we suggest routine 
spatial modelling in genetic evaluations, particularly for 
smallholder systems. Spatial modelling could also have a 
major impact in studies of human and wild populations.
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