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Predicting the purebred‑crossbred 
genetic correlation from the genetic variance 
components in the parental lines
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Abstract 

Background:  The genetic correlation between purebred and crossbred performance ( rpc ) is an important parameter 
in pig and poultry breeding, because response to selection in crossbred performance depends on the value of rpc when 
selection is based on purebred (PB) performance. The value of rpc can be substantially lower than 1, which is partly due 
to differences in allele frequencies between parental lines when non-additive genetic effects are present. This relation-
ship between rpc and parental allele frequencies suggests that rpc can be expressed as a function of genetic parameters 
for the trait in the parental lines. In this study, we derived expressions for rpc based on genetic variances within, and the 
genetic covariance between parental lines. It is important to note that the variance components used in our expressions 
are not the components that are typically estimated in empirical data. The expressions were derived for a genetic model 
with additive and dominance effects (D), and additive and epistatic additive-by-additive effects (EAA). We validated our 
expressions using simulations of purebred parental lines and their crosses, where the parental lines were either selected 
or not. Finally, using these simulations, we investigated the value of rpc for genetic models with both dominance and 
epistasis or with other types of epistasis, for which expressions could not be derived.

Results:  Our simulations show that when non-additive effects are present, rpc decreases with increasing differences 
in allele frequencies between the parental lines. Genetic models that involve dominance result in lower values of 
rpc than genetic models that involve epistasis only. Using information of parental lines only, our expressions pro-
vide exact estimates of rpc for models D and EAA, and accurate upper and lower bounds of rpc for two other genetic 
models.

Conclusion:  This work lays the foundation to enable estimation of rpc from information collected in PB parental 
lines only.
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Background
Pig and poultry breeders benefit from heterosis and breed 
complementarity by mating animals from genetically-
distinct purebred parental lines to produce crossbred 
production animals [1, 2]. The aim of such breeding pro-
grams is to improve crossbred (CB) performance, while 

selection is within the parental lines, usually based on 
measurements of purebred (PB) performance. As a result, 
response to selection in CB performance depends partly 
on the genetic correlation between PB and CB perfor-
mance ( rpc ), which is generally lower than 1 for most traits 
in livestock populations [3–9]. Hence, rpc is an important 
parameter in breeding programs of pig and poultry.

Estimates of rpc can be obtained with models that use 
phenotypic information on both PB and CB perfor-
mance. Such models require either pedigree information 
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that links the CB to the PB animals [4, 10], or genotype 
information on both PB and CB animals [11]. Tracking 
pedigree in a crossbreeding system is often impractical, 
and collecting phenotypes and genotypes on CB ani-
mals may be difficult and costly. Furthermore, breeding 
companies may produce many different crosses between 
parental lines, which makes the effort of estimating all 
relevant rpc even more costly. To overcome these issues, 
it would be beneficial if rpc could be estimated based on 
data from the parental PB lines, instead of requiring CB 
data.

The rpc can be lower than 1 due to (1) differences in 
trait definition between PB and CB performance [12, 
13], (2) genotype-by-environment interactions (G × E) 
[10, 14], and (3) genotype-by-genotype interactions (G 
× G) in combination with differences in allele frequen-
cies between the parental lines at loci that affect the trait 
[9, 15, 16], i.e. the quantitative trait loci (QTL). G × G 
interactions result from non-additive genetic effects (i.e. 
dominance and epistasis). Here, we consider only the 
impact of G × G interactions on rpc , assuming that there 
are no G × E interactions. The impact of non-additive 
effects on rpc has been studied by Wei et al. [15] and Bau-
mung et al. [16], who derived expressions for rpc in terms 
of known additive, dominance, and epistatic genetic 
effects of loci, and as a function of differences in allele 
frequencies at these loci between the parental lines. 
These expressions were, however, limited to one- and 
two-locus models, and thus cannot be used to predict rpc 
for traits that are highly polygenic. Furthermore, genetic 
effects and allele frequencies at the QTL are usually 
unknown. Thus, for polygenic traits, there is a need for 
expressions of rpc that are based on observable param-
eters in the parental lines.

Previously, we investigated the impact of non-addi-
tive effects on the additive genetic correlation ( rg ) for 
a trait between breeding lines [17] and showed that rg 
decreases with increasing size of non-additive effects, 
and with increasing differences in allele frequencies at 
QTL between the lines. In the current study, we inves-
tigate the impact of non-additive effects on the relation-
ship between rg and rpc.

While estimation of rg between two PB lines is rela-
tively straightforward with a genomic relationship 
matrix [18], the interpretation of the resulting estimates 
requires careful consideration. Following Duenk et  al. 
[17], we define rg between line 1 and line 2 as the cor-
relation between additive genetic values of the individu-
als in line 1, for the trait expressed in lines 1 and 2. In 
other words, suppose we know the average effects of all 
QTL in lines 1 and 2, then we can calculate two addi-
tive genetic values for the individuals in line 1; one based 
on the average effects in line 1, and one based on the 

average effects in line 2. The rg between lines 1 and 2 
for line 1 is the correlation between these two additive 
genetic values:

In Eq.  (1), σ 2
1  is the ordinary additive genetic variance 

for PB performance in line 1; σ 2
1(2) is the additive genetic 

variance in line 1 for the trait expressed in line 2, which 
depends on the allele frequencies in line 1 and the average 
effects for performance in line 2; and, similarly, σ1,1(2) is 
the additive genetic covariance in line 1 between the trait 
expressed in line 1 and the trait expressed in line 2, which 
depends on allele frequencies in line 1 and the average 
effects for the trait in lines 1 and 2. Note that σ 2

1(2) differs 
from the ordinary additive genetic variance for purebred 
performance in line 2 (i.e. σ 2

2  ). Similarly, the covariance 
also differs between lines 1 and 2, i.e. σ1,1(2)  = σ2,2(1) ; 
while both covariances depend on the average effects in 
both lines, σ1,1(2) depends on the allele frequencies in line 
1 and σ2,2(1) depends on the allele frequencies in line 2. 
Therefore, rg for line 2 is a different parameter because it 
depends on allele frequencies in line 2. Here, we focus on 
rg for line 1, because we are interested in rpc for line 1.

Our aim was to derive expressions for the prediction 
of rpc in a two-way crossbred breeding program, based 
on genetic variances within the parental lines and the 
genetic covariance between the parental lines (i.e., the 
terms in Eq.  (1)). The resulting expressions predict the 
component of rpc that is due to non-additive effects. 
Expressions were derived for two genetic models; a 
genetic model with additive and dominance effects (D), 
and a genetic model with additive and additive-by-addi-
tive (A × A) epistatic effects between pairs of QTL (EAA). 
We validated our expressions using simulations of PB 
parental lines and their crosses, where the parental lines 
were either selected or not. Finally, using simulations, we 
also investigated the value of rpc for two genetic models 
for which expressions could not be derived: a model with 
both dominance and A × A epistatic effects (D + EAA) 
and a model with complementary epistatic effects (EC). 
We compared the results from these models with our 
predictions of rpc under models D and EAA.

Theory
We consider two PB parental lines (1 and 2) that are 
mated to produce CB individuals. The additive genetic 
correlation between PB and CB performance ( rpc ) in line 
1 is defined as the correlation between additive genetic 
values for PB and CB performance of members of line 1 
[15, 19]. For PB performance, the additive genetic value 
of individual i from line 1 is:

(1)
rg =

σ1,1(2)
√

σ 2
1

√

σ 2
1(2)
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where hi is a column vector of genotypes of individual 
i at all QTL (measured as allele counts minus the aver-
age allele count in line 1), and α1 is a column vector of 
average effects of allele substitution for PB performance 
at QTL in line 1. Similarly, the additive genetic value of 
individual i for CB performance is:

where α1(C) is a column vector of average effects of allele 
substitution for CB performance at QTL in line 1. Here 
and throughout the remainder of this paper, genotypes 
( hi ) are considered random variables, whereas the aver-
age effects ( α1 , α1(C) ) are considered fixed.

The rpc in line 1 is the correlation between the additive 
genetic values in Eqs. (2) and (3):

where σ1 is the additive genetic standard deviation for PB 
performance in line 1, σ1(C) is the additive genetic stand-
ard deviation for CB performance in line 1, and σ1,1(C) is 
the additive genetic covariance between PB and CB per-
formance in line 1.

Our aim is to express rpc in terms of genetic param-
eters in the parental lines. First, we derive expressions 
for α1 and α1(C) for a genetic model with additive and 
dominance effects (D), and for a model with additive and 
additive-by-additive epistatic effects (EAA). Second, we 
express α1(C) in terms of average effects of allele substi-
tution for PB performance in the parental lines ( α1 and 
α2 ). Third, we derive expressions for σ1,1(C) and σ1(C) , 
and finally for rpc , in terms of genetic parameters in the 
parental lines.

Derivation of average effects of allele substitution for PB 
and CB performance
The first step is to derive expressions for average effects 
of allele substitution in line 1 for PB and CB perfor-
mance. For CB performance, we are interested in the 
effect of alleles from line 1 on genotypic values of CB 
offspring (i.e., when line 1 is randomly mated to line 2). 
Hence, we want to express the average effects of allele 
substitution in terms of differences between genotypic 
values of CB offspring. Following Falconer [20], the aver-
age effect of an allele is the mean genotypic value of off-
spring produced by transmitting that allele, minus the 
mean genotypic value of the population. The average 
effect of allele substitution at a bi-allelic locus is equal to 
the difference between the average effects of its alleles. 

(2)vi,1 = h
′
iα1

(3)vi,C = h
′
iα1(C)

(4)

rpc = cor
(

vi,1, vi,C
)

=
cov

(

vi,1, vi,C
)

√

var
(

vi,1
)

√

var
(

vi,C
)

=
σ1,1(C)

σ1σ1(C)

Strictly speaking, this is the definition of average excess, 
but it is equivalent to the average effect under random 
mating [20]. Hence, if individuals of line 1 are mated at 
random to individuals of line 2, then the average effect 
and average excess are identical, even though the result-
ing CB population is not in Hardy–Weinberg equilib-
rium. In the following, we will use the term ‘average 
effect’ to refer to the average effect of allele substitution 
at a locus. Furthermore, we assume that the genetic addi-
tive, dominance, and epistatic effects are the same for 
PB and CB performance, and that for CB performance, 
these effects are independent of line origin. Statistical 
additive, dominance and epistatic effects, however, are 
line-dependent due to differences in allele frequencies. 
In other words, rpc values lower than one are the result of 
G × G interaction.

Dominance model (D)
Consider a locus that has an additive effect ( a ), a domi-
nance effect ( d ), and no epistatic interactions with other 
loci. The average effect for PB performance in line 1 
under this genetic model (D) is equal to:

where p1 is the frequency of the focal allele in line 1. The 
full derivation leading to this result can be found in Fal-
coner and Mackay [19], and the average effect for CB per-
formance in line 1 when mated to line 2 can be derived 
in a similar way. In contrast to alleles transmitted to PB 
animals, alleles from line 1 transmitted to crossbreds will 
always pair with an allele from line 2. Thus, the average 
effect for CB performance in line 1 under genetic model 
D depends on the allele frequency in line 2 only [21, 22]:

where p2 is the frequency of the focal allele in line 2. 
Thus, under genetic model D, the average effect for CB 
performance in line 1 when mated to line 2 is equal to the 
average effect for PB performance in line 2 ( αD

2  ) (see also 
Zeng et al. [23] and Vitezica et al. [24]).

Additive‑by‑additive epistasis model (EAA)
With additive-by-additive (A × A) epistasis (i.e. genetic 
model EAA), and without dominance or other types of 
epistasis, the average effect at a locus does not depend 
on the allele frequency at the focal locus, but on the 
allele frequency at the loci it interacts with. Consider a 
locus F with alleles F  and f  , which has an additive effect 
( a ), and an A × A epistatic interaction with locus G with 
alleles G and g . The epistatic effect between F and G is 
denoted as ǫ . For simplicity of presentation, we assume 
in the following derivation that locus G has no additive 

(5)αD
1 = a+ (1− 2p1)d

(6)αD
1(C) = a+ (1− 2p2)d
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effect, because the result for locus F does not depend on 
the additive effect at locus G. In addition, we only con-
sidered pairwise interactions between loci, as opposed to 
interactions between more than two loci. Table 1 shows 
the genotypic values for the two-locus genotypes, e.g. 
[25]. The genotypic values are the sum of the additive 
effect at locus F, and the epistatic effect between loci F 
and G. The sign in front of the additive effect depends on 
the genotype at locus F, whereas the sign in front of the 
epistatic effect depends on the genotype at both F and G.

The average effect at locus F for PB performance in line 
1 can be derived by computing the difference between the 
average effects of alleles F and f  . The average effect of an 
allele for PB performance of the same line is the mean 
genotypic value of offspring that inherited that allele from 
line 1, assuming the other allele was drawn at random 
from line 1. The average effect of allele F in line 1 is:

where PG
1  , HG

1  , and QG
1  are genotype frequencies at locus 

G in line 1 (Table 1), pF1  is the frequency of allele F  in line 
1, and pf1 = 1− pF1  . Similarly, the average effect of allele 
f  is:

The average effect at locus F for PB performance in 
line 1 under genetic model EAA then is:

where pG1  is the frequency of allele G in line 1. The aver-
age effect for PB performance in line 2 can be obtained by 
using the allele frequency in line 2 in Eq. (7).

The average effect for CB performance in line 1 can be 
derived similarly using the expected genotype frequen-
cies in CB offspring at locus G. This results in:

αF = pF1

(

PG
1 (a+ ǫ)+HG

1 (a)+ QG
1 (a− ǫ)

)

+ p
f
1

(

PG
1 (0)+HG

1 (0)+ QG
1 (0)

)

= pF1

((

PG
1 − QG

1

)

ǫ + a
)

αf = pF1

(

PG
1 (0)+HG

1 (0)+ QG
1 (0)

)

+ p
f
1

(

PG
1 (−a− ǫ)+HG

1 (−a)+ QG
1 (a+ ǫ)

)

= −p
f
1

((

PG
1 − QG

1

)

ǫ + a
)

(7)

αAA
1 = αF − αf = (pF1 + p

f
1
)((PG

1 − QG
1 )ǫ + a)

= a+ (PG
1 − QG

1 )ǫ = a−
(

1− 2pG1

)

ǫ

where pGC is the expected frequency of allele G in the CB 
offspring. Given the expressions for αAA

1  and αAA
2  (Eqs. (7) 

and (8)), and using pGC = 0.5
(

pG1 + pG2
)

 , the average effect 
of CB performance in line 1 under genetic model EAA can 
be written as the mean of average effects for PB perfor-
mance in lines 1 and 2:

Derivation of rpc
In the following, we use our derivations of α1 and α1(C) 
for genetic models D and EAA to derive the additive 
genetic variance for PB and CB performance in line 
1 ( σ 2

1  and σ 2
1(C) ), and the additive genetic covariance 

between PB and CB performance in line 1 ( σ1,1(C) ). 
Then, we use these derivations in an expression for rpc . 
In these derivations, we treat the genotypes of individ-
uals as random. We assume that there is no correlation 
between average effects at different loci, and that the 
average effect at a locus is independent from the geno-
types at that locus as a result of random allele coding 
(i.e., which allele is the focal allele is independent of the 
effect of the allele). Regardless of the genetic model, we 
define the additive genetic variance for PB performance 
in line 1 as:

where j denotes the locus.

Dominance model (D)
With dominance (model D), average effects for CB per-
formance in line 1 are equal to average effects for PB 
performance in line 2 (Eq.  (6)). Hence, with model D, 
the additive genetic variance for CB performance in line 
1 is:

(8)αAA
1(C) = a−

(

1− 2pGC

)

ǫ

(9)αAA
1(C) = 0.5(α1 + α2)

(10)

σ 2

1 = var
�

h
′
iα1

�

= var





�

j

hijα1j





= E









�

j

hijα1j









�

j

hijα1j









=
�

j

E
�

hijhij
�

α1jα1j =
�

j

2p1j
�

1− p1j
�

α2

1j
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where σ 2
α2

 is the variance of average effects for PB per-
formance in line 2. As mentioned in the Background 
section, it is important to note that σ 2

1(2) is the additive 
genetic variance in line 1 for the trait expressed in line 
2. This is evident from Eq. (11), where 

∑

j

(

2p1j
(

1− p1j
))

 
contains allele frequencies in line 1 and α2j is the average 
effect at locus j for the trait expressed in line 2 (see also 
Background and Discussion).

The additive genetic covariance between PB and CB 
performance in line 1 can be written as:

(11)

σ 2
1(C) = var

�

h
′
iα1(C)

�

= var





�

j

hijα2j





= E









�

j

hijα2j









�

j

hijα2j









=
�

j

E
�

hijhij
�

α2jα2j

=
�

j

2p1j
�

1− p1j
�

α2
2j = σ 2

1(2)

(12)

σ1,1(C) = cov
�

h
′
iα1,h

′
iα1(C)

�

= cov





�

j

hijα1j ,
�

j

hijα2j





= E









�

j

hijα1j









�

j

hijα2j







 =
�

j

E
�

hijhij
�

α1jα2j

=
�

j

2p1j
�

1− p1j
�

α1jα2j = σ1,1(2),

where σ1,1(2) is the additive genetic covariance for indi-
viduals in line 1 between the trait expressed in lines 1 and 
2.

As a result, with model D, rpc for line 1 can be written 
as:

Hence, for model D, rpc for line 1 is equal to the cor-
relation between additive genetic values of individuals 
in line 1 for the trait expressed in parental lines 1 and 2, 
which is equal to the genetic correlation between lines 
1 and 2, as defined in the Background section (Eq.  (1)). 
It is important to note, however, that this is different 
from the correlation between average effects for PB per-
formance in the parental lines (e.g., Xiang et  al. [26]), 
because Eq.  (1) is a weighted correlation between aver-
age effects, where weights are computed based on geno-
type frequencies in line 1.

Additive‑by‑additive epistasis (model EAA)
With A × A epistatic interactions (model EAA), the aver-
age effect for CB performance in line 1 is equal to the 
mean of the average effects for PB performance in the 
two parental lines (Eq.  (9)). Thus, the additive genetic 
variance for CB performance in line 1 can be written as:

The additive genetic covariance between PB perfor-
mance and CB performance in line 1 can be derived as:

(13)rDpc = cor
(

h
′
iα1,h

′
iα2

)

=
σ1,1(2)

σ1σ1(2)

(14)

σ 2
1(C) = var

�

h
′
iα1(C)

�

= var





�

j

hij0.5
�

α1j + α2j
�





= E









�

j

hij0.5
�

α1j + α2j
�









�

j

hij0.5
�

α1j + α2j
�









=
�

j

E
�

hijhij
��

0.5
�

α1j + α2j
��2

= 0.25
�

j

2p1j
�

1− p1j
�

�

α2
1j + α2

2j + 2α1jα2j

�

= 0.25(σ 2
1 + σ 2

1(2) + 2σ1,1(2))

Table 1  Genotypic values of two locus (F and G) genotypes 
with additive-by-additive (A × A) epistasis (model EAA)

The genotypic values are the sum of the additive effect at locus F, and the 
epistatic effect between loci F and G. The sign in front of the additive effect 
depends on the genotype at locus F, whereas the sign in front of the epistatic 
effect depends on the genotype at loci F and G. For simplicity, it is assumed that 
G has no additive effect

PX , HX, and QX denote the genotype frequencies at locus X, a denotes the 
additive effect at locus F, and ǫ denotes the epistatic effect between loci F and G

Frequency PF HF QF

FF Ff ff

PG GG a+ ǫ 0 −a− ǫ

HG Gg a 0 −a

QG gg a− ǫ 0 −a+ ǫ
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Hence, rpc for line 1 with genetic model EAA is equal to:

Thus, for genetic model EAA, rpc is a function of the 
additive genetic covariance in line 1 between the trait 
expressed in line 1 and line 2 ( σ1,1(2) ), and the additive 
genetic variances in line 1 for the trait expressed in line 1 
( σ 2

1  ) and in line 2 ( σ 2
1(2) ). The expressions in Eqs. (13) and 

(16) show that the value of rpc due to G × G interactions 
can be determined based on genetic parameters within 
the parental lines.

Expressions as bounds of rpc
As evident from our derivations (e.g. Equations  (2) and 
(3)), rpc depends on the difference between average 
effects at QTL for PB and CB performance ( �α ). With 
model D, it follows from the difference between Eqs. (5) 
and (6) that �α increases by 2(p1 − p2) per unit increase 
in the magnitude of the dominance effect. This is because 
with model D, α1(C) at a locus depends on the allele fre-
quency in the mated line, whereas α1 depends on the 
allele frequency in line 1. With model EAA, in contrast, 
�α increases by 2(p1 − pC) = ( p1 − p2 ) per unit increase 
in the epistatic effect, based on the difference between 
Eqs. (7) and (8). This is because with model EAA, α1(C) of 
a locus depends on the allele frequency of the interacting 
locus in the cross, rather than in the mated line. Hence, 
for each unit increase in the magnitude of non-additive 
effects, �α increases twice as fast with genetic model D 
as with model EAA.

(15)

σ1,1(C) = cov
�

h
′
iα1,h

′
iα1(C)

�

= cov





�

j

hijα1j , hij0.5
�

α1j + α2j
�





= E









�

j

hijα1j









�

j

hij0.5
�

α1j + α2j
�









=
�

j

E
�

hijhij
�

α1j0.5
�

α1j + α2j
�

= 0.5
�

j

2p1j
�

1− p1j
�

�

α2
1j + α1jα2j
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rAApc =
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)

Because any non-additive interaction involves either 
dominance, epistasis, or both, models D and EAA may 
represent extremes, where rpc either depends on (1) the 
difference in allele frequency between the parental lines 
(model D), or (2) half of that difference (model EAA). 
With other genetic models, rpc may depend on (1), (2), 
or both. However, it is unlikely that other genetic mod-
els will lead to much lower rpc than model D, because 
the maximum �α is bounded by the difference in allele 
frequencies between parental lines. In addition, it is 
unlikely that other genetic models will lead to higher rpc 
than predicted with model EAA, because the minimum 
�α is bounded by the difference in allele frequencies 
between line 1 and the cross. Hence, we can expect that 
rpc lies somewhere in between rDpc and rAApc  for other non-
additive genetic models. To tests this hypothesis, we 
used simulation to evaluate rpc for two other non-addi-
tive genetic models, as described in the following.

Methods
Simulation was used to validate the derived expressions 
for rpc (i.e. Equations  (13) and (16)). For that purpose, 
we simulated seven purebred lines that were either pos-
itively (P), negatively (N), or randomly selected (R) for 
the trait of interest. Both positive and negative selec-
tion were considered, such that pairs of lines were either 
selected in the same direction (convergent) or in oppo-
site directions (divergent), resulting in pairs of lines with 
small and large differences in allele frequencies at QTL. 
We considered four scenarios that differed in the type 
of non-additive effects simulated (Fig. 1); (1) only domi-
nance (D), (2) only additive-by-additive (A × A) epistasis 
(EAA), (3) both dominance and A × A epistasis (D + EAA), 
and (4) complementary epistasis (EC). The latter was 
chosen because it is expected to result in substan-
tial non-additive variance of all types (i.e. dominance, 
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Fig. 1  Epistatic contrasts for two functional epistatic configurations. ǫ 
is the epistatic effect between loci F and G
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additive-by-additive, dominance-by-additive, additive-
by-dominance, and dominance-by-dominance) [27]. For 
each scenario and each pairwise cross between parental 
lines, we computed the realized (i.e. true) rpc and com-
pared it with the predicted rpc based on Eqs. (13) and 
(16).

Simulation
Population
We simulated QTL genotypes of animals from seven 
breeding lines that originated from a common historical 
population using QMSim [28], such that the number of 
generations that separated pairs of lines ranged from 10 
to 100 (Fig.  2). First, a historical population was simu-
lated by randomly mating 600 females with 100 males 
for 200 generations. During the following 200 genera-
tions, the population size was gradually decreased to 300 
females and 50 males, to generate linkage disequilibrium 

(LD). Then, mating continued with a constant popula-
tion size for another 200 generations. In the last histori-
cal generation (generation 0), the population size was 
increased to 1500 males and 1500 females by creating lit-
ters of 10 offspring per mating. The effective population 
size ( Ne ) between generations −  600 and 0 was ~ 234, 
calculated as the harmonic mean of 4NmNf

Nm+Nf
 in each his-

torical generation, where Nm is the number of males and 
Nf  is the number of females that become parents in a 
generation [19].

From the last historical generation, three breed-
ing lines (P50, R and N50) were created by sampling 
300 females and 50 males for each of the lines, without 
replacement. Within each line, mating continued for 
50 generations, by selecting 50 males and 300 females 
in each generation using truncation selection based on 
own performance records with a broad sense heritability 
of 0.3. In line P50, selection was for high performance 

genera�on

600 ♀ 100 ♂ -600

600 ♀ 100 ♂ -400

300 ♀ 50 ♂ -200

300 ♀ 50 ♂ 0

1

300 ♀ 50 ♂ 300 ♀ 50 ♂

300 ♀ 50 ♂
25

300 ♀ 50 ♂ 300 ♀ 50 ♂

300 ♀ 50 ♂
40

300 ♀ 50 ♂ 300 ♀ 50 ♂ 300 ♀ 50 ♂

50

N=1500

N=1500

N=1500

N=1500

N50N10

N=1500

N25

N=1500

N=1500

DP25 P10

N=1500

P50

N=1500

N=1500

Fig. 2  Overview of the simulation of seven breeding lines. Green lines indicate positive selection based on own performance records and red lines 
indicate negative selection based on own performance. Blue lines indicate random selection
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(positive selection, P), in line N50 for low performance 
(negative selection, N), and in line R, selection was ran-
dom. Similar to lines P50 and N50, two additional lines 
(P25 and N25) were created by randomly sampling and 
mating 50 males and 300 females from line R in genera-
tion 25, again without replacement. Within each of these 
lines, mating continued for 25 generations with positive 
(P25) or negative (N25) selection. Finally, another two 
lines (P10 and N10) were created by randomly sampling 
and mating 50 males and 300 females from line R in gen-
eration 40. Within these lines, mating continued for 10 
generations with positive (P10) or negative (N10) selec-
tion. Litter size was kept constant at 10 offspring (5 male 
and 5 female) in each of the breeding lines, and mating 
of selected parents was always at random. The average 
Ne within the breeding lines was around ~ 115, which 
was calculated as 1/(2�F) , where �F  is the inbreeding 
rate estimated using pedigree [19]. The simulated lines 
resemble real livestock breeding lines that are under 
selection, with a rate of inbreeding of about 0.5%.

Genome
The genome consisted of 10 chromosomes of 1 Mor-
gan each. Each chromosome had 5000 randomly posi-
tioned bi-allelic loci. In the first historical generation, 
allele frequencies of these loci were sampled from a uni-
form distribution. During the historical generations, the 
mutation rate was 5.0 × 10–5, while there was no muta-
tion after the historical generations. In generation 0 
(i.e., after the last historical generation), the distribution 
of allele frequencies was U-shaped, and we randomly 
selected 1000 loci from those that segregated to become 
QTL. We did not simulate markers, because our interest 
was in the true value of rpc , not in its estimation.

Functional genetic effects
The additive effect ( a ) of each of the 1000 QTL was 
sampled from a normal distribution with mean 0 and 
variance 1. The size of non-additive effects at QTL was 
assumed to depend on the size of additive effects at these 
QTL. To achieve this, independently sampled domi-
nance and epistatic coefficients for a QTL were scaled by 
the already sampled additive effects. Dominance coeffi-
cients ( δ ) were sampled from a normal distribution with 
a mean of 0.2 and a standard deviation of 0.3, following 
empirical observations by Bennewitz and Meuwissen 
[29] and Sun and Mumm [30]. Dominance effects ( d ) 
were then computed by element-wise multiplication of 
δ and |a| . Epistatic interactions limited to pairs of QTL 
and each QTL had an epistatic interaction with five 
randomly sampled QTL. Epistatic interactions between 
pairs of QTL followed either the additive-by-additive 
(EAA) configuration, or the complementary (EC) con-
figuration (Fig.  1), depending on the scenario. Epistatic 
coefficients ( γ ) were sampled from a normal distribu-
tion with a mean of 0, because epistatic effects are likely 
non-directional [31]. The standard deviation of epistatic 
effects was set such that the total functional epistatic 
variance per QTL was comparable to the total func-
tional dominance variance per QTL in scenario D. The 
total functional dominance variance at a QTL is equal to 
the squared mean dominance coefficient, plus the vari-
ance of dominance coefficients. Because each QTL was 
involved in five epistatic interactions but had only one 
dominance effect, the standard deviation of epistatic 
coefficients was set to 

√

(0.22 + 0.32)/5 ≈ 0.16 . Epistatic 
effects ( ǫ ) were computed as γkl

√
|akal | for all pairwise 

interactions between QTL k and l .
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Fig. 3  Realized rpc (y-axis) for crosses between lines that were divergently selected for 10 (P10-N10), 25 (P25-N25), or 50 generations of selection 
(P50-N50) (x-axis). Panels refer to the simulated genetic model
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Average effects and additive genetic values
For a single locus, the average effect for PB perfor-
mance in line 1 ( α1 ) was computed from the functional 
genetic effects ( a , d, and ǫ ), and genotype frequencies 
in that line, as described in Duenk et al. [17], using the 
natural and orthogonal interactions (NOIA) model 
[32, 33]. The average effect for CB performance in 
line 1 when mated with line 2 ( α1(C) ) was computed 
by the same procedure but with a small adjustment, as 
explained in Appendix 1.

Additive genetic values for PB performance in line 1 
were computed as:

where H1 is the (nxm) QTL genotype matrix of animals in 
line 1 and α1 is the (mx1) column vector of average effects 
for PB performance in line 1, where n is the number of 
animals and m is the number of QTL. Genotypes in H1 
for individual i at QTL j were coded as in hi (Eq.  (2)), 
with elements:

where pj is the frequency of allele F  at QTL j in line 1. 
Additive genetic values for CB performance of animals 
in line 1 (when mated to line 2) ( vC ) were computed by 
replacing α1 with α1(C) in Eq. (17).

Parameters of interest
The true value of rpc in line 1 when it is mated to line 
2 was computed as the correlation between additive 
genetic values for PB ( v1 ) and CB performance ( vC ) of 
animals in line 1, i.e. we did not estimate rpc from the 

(17)v1 = H1α1

(18)hij =
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
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2− 2pj
1− 2pj
0− 2pj

for genotypes,







FF
Ff
ff

,

simulated data. Note that this rpc is not the same as the 
rpc in line 2 when it is mated to line 1, because differ-
ences in allele frequencies between lines 1 and 2 lead to 
differences in contributions of QTL to the (co)variance 
of additive genetic values. In addition, average effects for 
CB performance in line 1 can differ from those in line 
2 (e.g. based on Eqs. (5) and (6) for genetic model D). 
Thus, we computed rpc for all 7× (7− 1) = 42 combina-
tions of breeding lines. All simulations were replicated 
20 times, resulting in 42× 20 = 840 realized rpc values 
for each scenario.

We compared each of the realized rpc values with the 
theoretical predictions of rpc under genetic models D 
( rDpc , Eq. (13)) and EAA ( rAApc  , Eq. (16)). We expected that 
rDpc and rAApc  would exactly predict rpc in scenarios D and 
EAA, respectively. For scenarios D + EAA and EC, rpc could 
not be expressed in terms of genetic parameters in the 
parental lines (see Discussion), but, as argued above, we 
expected that rDpc may represent a lower bound and rAApc  
an upper bound of realized rpc . Thus, it may be possible 
to predict the realized rpc for these two scenarios with a 
multiple regression model with rDpc and rAApc  as covariates.

Results
Figure  3 and Table  S1 [see Additional file  1: Table  S1] 
show the realized rpc for all crosses between lines that 
were divergently selected for either 10, 25, or 50 gen-
erations (i.e., crosses P10-N10, P25-N25, and P50-N50). 
For all scenarios (i.e. the four simulated genetic models), 
the realized rpc decreased with increasing generations of 
divergent selection, as expected. For each cross shown 
in Fig.  3, the lowest realized rpc was observed when 
both dominance and epistasis were simulated (scenario 
D + EAA), and the highest realized rpc was observed when 
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Fig. 4  Predicted rpc (y-axis) for a genetic model with only dominance ( rDpc , red circles) and with only additive by additive epistasis ( rAApc  , blue crosses), 
plotted against the realized rpc (x-axis) in simulated scenarios. Panels refer to the simulated genetic model. The dashed lines show y = x, indicating 
where predictions are equal to the realized rpc
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only epistasis was simulated (scenarios EAA and EC). Dif-
ferences in rpc between scenarios were caused by differ-
ences in the genetic models between scenarios, rather 
than by differences in allele frequencies between lines, 
because mean differences in allele frequencies between 
lines were similar across scenarios (results not shown). 
This agrees with Duenk et al. [17].

Figure 4 shows the theoretical predictions of rpc from 
our expressions, plotted against the realized rpc from the 
simulations, for all replicates and for all combinations 
of parental lines within each replicate. For scenarios D 
and EAA, our expressions for rpc based on parameters in 
the purebred parental lines provided exact predictions 
of realized rpc (left two panels in Fig.  4). For scenarios 
D + EAA and EC, our expressions for rpc were expected to 
provide upper ( rAApc  ) and lower ( rDpc ) bounds for realized 
rpc . However, for scenario EC, realized rpc was lower than 
the lower bound ( rDpc ) in 12% of the cases, for which real-
ized rpc was about ~ 0.01 lower than rDpc . For both scenar-
ios D + EAA and EC, the gap between the predicted lower 
and upper bounds (i.e. the difference between rAApc  and 
rDpc ) increased with decreasing realized rpc.

Discussion
The aim of this study was to derive expressions for rpc 
for a purebred line when it is mated to another purebred 
line, based on genetic variances within, and the genetic 
covariance between the two parental lines. These expres-
sions were derived for a genetic model with additive and 
dominance effects (model D), and for a genetic model 
with additive and additive-by-additive (A × A) epistatic 
effects (model EAA). The results showed that our expres-
sions provide exact predictions of rpc for scenarios that 
were simulated based on models D and EAA, respectively. 
For scenarios with both dominance and A × A epistasis 
(D + EAA), and for models with complementary epistasis 
(EC), theoretical predictions could not be derived but the 
expressions for models D and EAA provide approximate 
upper and lower bounds for rpc , respectively. For the 
simulated D + EAA scenario, the realized rpc always fell 
between these bounds, while for the simulated EC sce-
nario, the realized rpc was slightly lower than the lower 
bound in 12% of the cases.

The results of our simulations showed that the real-
ized rpc decreased for all scenarios (i.e. the four genetic 
models simulated) when the number of generations of 
divergent selection between the parental lines increased. 
This was as expected because, with divergent selec-
tion, the difference in allele frequencies between paren-
tal lines increases over time, causing an increase in the 
differences between the average effects for PB and CB 
performance within each parental line [15, 16]. The real-
ized rpc was lower for scenarios that involved dominance 

compared to scenarios that involved only epistasis. 
Across scenarios, the realized rpc ranged from 0.60 to 
0.99, covering a large proportion of empirical estimates 
of rpc for livestock [3–9].

Predicting rpc in practice
The expressions derived in this study suggest that the rpc 
can be predicted without CB information when certain 
variance components for the parental lines are known. 
Recent developments in genome-wide marker panels 
have made accurate estimation of the required variance 
components within and the covariances between dis-
tantly related lines feasible [18, 34, 35]. To validate our 
expressions as bounds for the rpc for a parental line, we 
attempted to apply them to empirical estimates reported 
in the literature. However, to our knowledge, only one 
study presents both an estimate of rpc based on PB and 
CB data, and of the corresponding genetic variances 
within, and of the covariances between the parental 
lines [36]. In that study, the estimate of rpc in the York-
shire breed when mated to the Landrace breed was 0.67 
with a standard error of 0.10. Based on the PB estimates 
presented in that paper, the predicted lower bound of 
rpc based on Eq.  (13) was 0.30 and the predicted upper 
bound based on Eq.  (16) was 0.84. These results sug-
gest that it is unlikely that dominance is the only rea-
son for the estimate of rpc in this study to be lower than 
1, because the estimated rpc was higher than the lower 
bound. Thus, it is likely that epistasis or GxE is present.

Although our expressions appeared to predict lower 
and upper bounds for the above example, there are two 
important issues that arise when our expressions are 
applied to empirical data. First, rpc may be lower than 
the predicted lower bound given by Eq. (13), because our 
expressions do not account for G × E interactions. G × E 
interactions may be present in the study of Xiang et al. 
[36] because the PB and CB animals used in that study 
were housed in different environments. However, this 
implies that the results of our study can be used to evalu-
ate the relative contributions of G × E and G × G to rpc by 
comparing estimates of rpc from PB and CB data with the 
predicted lower bound. For example, when the estimate 
of rpc is much lower than the predicted lower bound of 
rpc , the contribution of G × E is likely large compared to 
the contribution of non-additive effects and differences 
in allele frequencies.

Second, the estimates of variance components 
obtained from empirical data are usually different from 
those used in Eqs. (13) and (16). In Xiang et al. [36] for 
example, a bivariate model was used to estimate genetic 
parameters within and between the two parental lines 
(say line 1 and 2). With such a model, the estimate of the 
genetic variance in line 2 refers to the variance in line 2 
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for the trait expressed in line 2 (i.e. σ 2
2  ). However, when 

the aim is to predict the bounds of rpc in line 1, we need 
the genetic variance in line 1 for the trait expressed in 
line 2 (i.e. σ 2

1(2) in Eqs. (13) and (16)). Similarly, the 
covariance between lines 1 and 2 that is estimated 
from PB data from the two lines ( σ1,2 ) is not the same 
as the covariance between lines used in our expressions 
( σ1,1(2) ). Thus, as shown by our expressions, rpc based on 
genetic model D is different from to the genetic correla-
tion between parental lines that is usually estimated in 
empirical studies (e.g., Xiang et al. [36]).

To predict rpc in line 1 when it is mated to line 2, there 
is no obvious way to directly estimate the variance ( σ 2

1(2) ) 
and covariance ( σ1,1(2) ) that are required for the expres-
sions for rpc , simply because the trait expressed in line 
2 is not observed for individuals from line 1, but it may 
be possible to approximate them. One possible approach 
would be to estimate marker effects using genotype and 
phenotype data from line 2 and multiply them with the 
marker genotypes from line 1, resulting in genomic esti-
mated breeding values (GEBV) for the animals in line 
1 for the trait expressed in line 2. Parameter σ 2

1(2) can 
then be approximated by the variance of these GEBV 
and parameter σ1,1(2) by the covariance between these 
GEBV and the usual GEBV for PB performance in line 
1. Although this approach appears straightforward, there 
are at least two issues that must be addressed. First, the 
LD between markers and QTL may be different in the 
parental lines, which leads to differences in estimated 
marker effects even when the QTL effects are not differ-
ent [37]. Second, the estimated marker effects are subject 
to shrinkage to a degree that depends on the number of 
phenotypic records and the minor allele frequency of the 
marker. As a result, the variance of the estimated marker 
effects is smaller than the variance of the “true” marker 
effects. The effect of these issues on the predicted rpc 
requires further investigation.

Three‑ and four‑way crosses
The predictions of rpc presented here are valid for 
purebred parental lines that produce a two-way cross-
bred (i.e. from mating with one other purebred paren-
tal line). However in practice, commercial animals 
are usually three- or four-way crossbreds. The rpc for 
three- and four-way crosses under genetic models D 
and EAA can also be expressed in terms of variances 
and covariances within and between parental lines. 
Derivation of these expressions is presented in Appen-
dix 2. With genetic model D, rpc for the two dam lines 
that are involved in a three-way cross is equal to the 
rpc for two-way CB performance when the respective 
lines are mated directly to the sire line. This is because, 

alleles at a locus that are transmitted to a three-way 
cross from each of the dam lines will always pair with 
an allele from the sire line. Hence, following Eq.  (13), 
rpc of a dam line for three-way CB performance is equal 
to the correlation between additive genetic values of 
the dams for the trait expressed in the dam line and in 
the sire line. For all other scenarios with three- or four-
way crosses, the derivations of rpc result in expressions 
that differ from the expressions for two-way crosses 
(Appendix 2).

Validity of predicted bounds of rpc
We hypothesized that the predicted rpc under the domi-
nance model ( rDpc ) yields a lower bound for realized rpc 
because the difference between average effects for PB 
and CB performance is maximized with model D, since 
the average effect for CB performance at a QTL is a 
function of allele frequencies in the mated line. Our sim-
ulations showed that this lower bound was indeed cor-
rect for most cases, apart from a few replicates for the 
scenario of complementary epistasis (model EC). This 
is probably because, with model EC, the average effect 
for CB performance at a QTL involves a multiplication 
between the allele frequency of the same locus in the 
mated line, and the allele frequencies of the interacting 
loci in the cross. In contrast, for model D, the expression 
for the average effect for CB performance only involves 
the allele frequency of the same locus in the mated line 
(Eq. 6). As a consequence, with model EC, a difference in 
the allele frequency between parental lines at a QTL can 
result in differences in average effects between PB and 
CB performance at two QTL, instead of at only one QTL 
with model D.

Conclusions
We derived expressions for rpc in purebred parental 
lines of two-, three-, and four-way crosses based on 
the genetic variances within and the genetic covari-
ance between parental lines, noting that these variance 
components are not those that are typically estimated 
using empirical data. The expressions were derived for 
a genetic model with additive and dominance effects 
(model D), and for a model with additive and epistatic 
additive-by-additive effects (model EAA). Results showed 
that these expressions provide exact predictions of rpc for 
models D and EAA, and accurate upper and lower bounds 
of rpc for genetic models with both dominance and addi-
tive-by-additive epistatic effects (model D + EAA), or 
with complementary epistatic effects (model EC). This 
work lays the foundation for estimation of rpc based on 
information collected on the PB parental lines, without 
requiring CB information.
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Appendices
Appendix 1
With non-additive genetic effects (i.e. dominance and 
epistasis), average effects of QTL are a function of gen-
otype frequencies and functional genetic effects. The 
procedure to obtain average effects for PB performance 
from known genotype frequencies and functional addi-
tive, dominance, and epistatic effects, was described in 
Duenk et al. [17]. In short, the procedure involves apply-
ing the natural and orthogonal interactions (NOIA) 
model [32] for each epistatic interaction between two 
loci in a population with given allele frequencies, result-
ing in statistically orthogonal terms that contribute to 
the average effects of the two loci. Consider for exam-
ple two loci, k and l  , that have an epistatic interaction 
between them. The functional epistatic values for each 
possible two-locus genotype can be partitioned into nine 
statistical genetic effects, using Eq. 2 in Duenk et al. [17]. 
For average effects for PB performance, the frequen-
cies used in Dkl, Wk and Wl are those in the PB line. 
The procedure immediately leads to two terms ( αk

kl and 
αl
kl ) that contribute to the average effects of loci k and 

l  . For example, in a two-locus model where locus k has 

an interaction with locus l  only, the average effect for PB 
performance of locus k in line 1 is:

where ak is the functional additive effect of locus k , pk1 
is the allele frequency of locus k in line 1, and dk is the 
functional dominance effect of locus k . For PB perfor-
mance, the average effect at locus k depends on geno-
type frequencies of k in line 1, because alleles of locus k 
transmitted to PB animals always pair with an allele from 
the same line origin. Furthermore, the average effect of 
k depends on genotype frequencies of locus l in line 1, 
because alleles of locus k transmitted to PB animals will 
be expressed in the genetic background of line 1.

The same procedure can be used to obtain aver-
age effects for CB performance for line 1, by making a 
small modification. The alleles of locus k transmitted to 
two-way crossbreds always pair with an allele from line 
2 and they will be expressed in the genetic background 
of crossbreds. Hence, the average effect for CB perfor-
mance of locus k depends on genotype frequencies 
of k in line 2, and on genotype frequencies of l  in the 
crossbreds. Thus, to obtain the average effect at locus k 
for CB performance, Wk needs to be constructed using 
the genotype frequencies of k in line 2, Wl needs to be 
constructed using the genotype frequencies of l  in cross-
breds, and Dkl is a (9 × 9) diagonal matrix of two-locus 
genotype probabilities, constructed using genotype fre-
quencies of k in line 2 and frequencies of l  in crossbreds. 
Then, the average effect at locus k for CB performance in 
line 1 is:

where pk2 is the allele frequency of locus k in line 2. For 
the same epistatic interaction, the procedure needs to be 
repeated for locus l , because the average effect at locus 
l for CB performance depends on genotype frequen-
cies of l in line 2 and on genotype frequencies of k in the 
crossbreds.

Appendix 2
Dam line of a three‑way crossbred
Under genetic model D, the average effect at locus F for 
three-way CB performance for line 2 (or 3) is:

where p1 is the allele frequency of allele F  in the sire line 
(line 1). The value 0.5 is because an allele from this dam 
line has a probability of 0.5 to be transmitted to the final 

αk
1 = ak +

(

1− 2pk1

)

dk + αk
kl

αk
1(C) = ak +

(

1− 2pk2

)

dk + α
′k
kl

αD
2(C) = 0.5(a+ (1− 2p1)d)

https://doi.org/10.1186/s12711-021-00601-w
https://doi.org/10.1186/s12711-021-00601-w
https://git.wageningenur.nl/duenk002/predicting_rpc
https://git.wageningenur.nl/duenk002/predicting_rpc
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crossbred. Given the expressions for average effects for 
PB performance, the average effect for CB performance 
for line 2 is:

The additive genetic variance for three-way CB perfor-
mance for line 2 under model D is:

The additive genetic covariance between PB and three-
way CB performance for line 2 under model D is:

Hence, rpc for line 2 with genetic model D is equal to:

This result shows that the rpc for a dam line of a three-
way cross is equal to the genetic correlation between the 
traits for lines 1 and 2, as expressed in line 2. This result 
is similar to the expression of rpc in a sire line of a two-
way cross.
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Under genetic model EAA, the average effect at locus 
F for three-way CB performance for dam line 2 (or 3) is:

where pGC is the allele frequency of allele G in cross 
1(23). Given the expressions for average effects 
for PB performance in lines 1, 2, and 3, and using 
pGC = 0.5pG1 + 0.25pG2 + 0.25pG3  , the average effect for 
three-way CB performance for line 2 under genetic 
model EAA can be written as:

The additive genetic variance for three-way CB perfor-
mance for line 2 with genetic model EAA is:

Note that σ2(1),2(3) is the additive genetic covariance for 
individuals from line 2, between the trait expressed in 
lines 1 and 3.

The additive genetic covariance between PB perfor-
mance and three-way CB performance for line 2 is:
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Hence, the rpc for line 2 under genetic model EAA is:

Sire line of a 3‑way crossbred
Under genetic model D, the average effect at locus F for 
three-way CB performance for line 1 is:

 where p23 is the allele frequency of allele F  in cross 23. 
Given the expressions for average effects for PB perfor-
mance, and using p23 = (p2 + p3)/2 , the average effect 
for CB performance for line 1 is:

The additive genetic variance for three-way CB perfor-
mance for line 1 under model D is:
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The additive genetic covariance between PB and three-
way CB performance for line 1 under model D is:

Hence, the rpc for a sire line of a three-way cross with 
genetic model D is equal to:

Under genetic model EAA, the average effect at locus F 
for three-way CB performance for line 1 is:

where pGC is the allele frequency of allele G in cross 
1(23). Given the expressions for average effects 
for PB performance for lines 1, 2, and 3, and using 
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Hence, the rpc for line 1 for three-way CB performance 
under genetic model EAA is equal to:

Four‑way cross
Under genetic model D, the average effect at locus F for 
four-way CB performance for line 1 is:

 where p34 is the allele frequency of allele F  in cross 34. 
The 0.5 is because an allele from this parental line has a 
probability of 0.5 to be transmitted to the final crossbred. 
Given the expressions for average effects for PB perfor-
mance, and using p34 = (p3 + p4)/2 , the average effect 
for CB performance for line 1 is:

The additive genetic variance for four-way CB perfor-
mance for line 1 under model D is:
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The additive genetic covariance between PB and four-
way CB performance for line 1 under model D is:

Hence, the rpc for line 1 under genetic model D is equal 

to:
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This shows that, under genetic model D, the rpc for 
four-way CB performance is similar to the rpc for three-
way CB performance for a sire line.

Under genetic model EAA, the average effect at locus F 
for four-way CB performance for line 1 is:

where pGC is the allele frequency of allele G for cross 
(12)(34). Given the expressions for average effects 
for PB performance in lines 1, 2, 3, and 4, and using 
pGC = 0.25pG1 + 0.25pG2 + 0.25pG3 + 0.25pG4  , the aver-
age effect for four-way CB performance for line 1 under 
genetic model EAA can be written as the average of aver-
age effects for PB performance:

The additive genetic variance for four-way CB perfor-
mance for line 1 can be written as:

while defining that σ 2
1(1) = σ 2

1  , and that 
σ1(1),1(2) = σ1,1(2) . The above notation is the sum of all 
variances and covariances for individuals from line 1 for 
the traits expressed in the four parental lines.

The additive genetic covariance between PB and four-
way CB performance for line 1 is:
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1 .

Hence, the rpc for line 1 with genetic model EAA is 
equal to:

 Additional file 1: Table S1. Minimum, mean, and maximum values of 
realized r_pc for crosses between lines that were divergently selected for 
10 (P10-N10), 25 (P25-N25), or 50 generations of selection (P50-N50).
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