
Fernandes Júnior et al. Genet Sel Evol           (2021) 53:27  
https://doi.org/10.1186/s12711-021-00622-5

RESEARCH ARTICLE

Imputation accuracy to whole‑genome 
sequence in Nellore cattle
Gerardo A. Fernandes Júnior1*  , Roberto Carvalheiro1,2, Henrique N. de Oliveira1,2, Mehdi Sargolzaei3,4, 
Roy Costilla5, Ricardo V. Ventura6, Larissa F. S. Fonseca1, Haroldo H. R. Neves7, Ben J. Hayes5 and 
Lucia G. de Albuquerque1,2* 

Abstract 

Background:  A cost-effective strategy to explore the complete DNA sequence in animals for genetic evaluation pur-
poses is to sequence key ancestors of a population, followed by imputation mechanisms to infer marker genotypes 
that were not originally reported in a target population of animals genotyped with single nucleotide polymorphism 
(SNP) panels. The feasibility of this process relies on the accuracy of the genotype imputation in that population, par-
ticularly for potential causal mutations which may be at low frequency and either within genes or regulatory regions. 
The objective of the present study was to investigate the imputation accuracy to the sequence level in a Nellore beef 
cattle population, including that for variants in annotation classes which are more likely to be functional.

Methods:  Information of 151 key sequenced Nellore sires were used to assess the imputation accuracy from bovine 
HD BeadChip SNP (~ 777 k) to whole-genome sequence. The choice of the sires aimed at optimizing the imputa-
tion accuracy of a genotypic database, comprised of about 10,000 genotyped Nellore animals. Genotype imputation 
was performed using two computational approaches: FImpute3 and Minimac4 (after using Eagle for phasing). The 
accuracy of the imputation was evaluated using a fivefold cross-validation scheme and measured by the squared cor-
relation between observed and imputed genotypes, calculated by individual and by SNP. SNPs were classified into a 
range of annotations, and the accuracy of imputation within each annotation classification was also evaluated.

Results:  High average imputation accuracies per animal were achieved using both FImpute3 (0.94) and Minimac4 
(0.95). On average, common variants (minor allele frequency (MAF) > 0.03) were more accurately imputed by Mini-
mac4 and low-frequency variants (MAF ≤ 0.03) were more accurately imputed by FImpute3. The inherent Minimac4 
Rsq imputation quality statistic appears to be a good indicator of the empirical Minimac4 imputation accuracy. Both 
software provided high average SNP-wise imputation accuracy for all classes of biological annotations.

Conclusions:  Our results indicate that imputation to whole-genome sequence is feasible in Nellore beef cattle since 
high imputation accuracies per individual are expected. SNP-wise imputation accuracy is software-dependent, espe-
cially for rare variants. The accuracy of imputation appears to be relatively independent of annotation classification.
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Background
Compared to the use of genotypes from single nucleo-
tide polymorphism (SNP) panels, genotypic information 
from whole-genome sequencing may improve prediction 
accuracies of breeding values for economically relevant 
traits since it potentially includes causal mutations for 
all phenotypes [1–3]. In spite of the drastic reduction in 
genome sequencing costs that has occurred in the last 
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years, it is still cheaper to genotype rather than sequence 
the animals. An alternative and cost-effective strategy for 
obtaining sequence information for many animals is to 
sequence a small proportion of the population, and use 
it as reference to impute sequence data of animals geno-
typed with array technology [4].

Besides the potential benefit of improving the predic-
tion accuracy of breeding values, sequence informa-
tion can improve quantitative trait loci (QTL) mapping 
in genome-wide association studies [3, 5]. However, 
the benefits depend on how accurate is the sequence 
imputation process. Whereas the use of variants that 
are imputed with low accuracy can lead to obviously 
biased estimates, a more precise QTL mapping could be 
achieved with highly accurate sequence imputation [5, 
6]. Accuracy of sequence imputation has been mainly 
assessed in single or multi-breed dairy cattle populations 
[5, 7–9]. Studies in this field are lacking for Bos indicus 
populations. Compared to taurine breeds, B. indicus pre-
sents, in general, lower levels of linkage disequilibrium 
(LD) between genetic markers at short distances [10] and 
a historically larger effective population size [11], which 
could make imputation more difficult.

In Brazil, Nellore (Bos indicus) is the predominant 
breed used for beef production, and various Nellore 
breeding programs started independently and have cre-
ated reference populations based on high-density SNP 
arrays [12]. Using sequence data of influential Nellore 
bulls, which may allow the identification of about 36 
million SNPs [13], all these reference databases can be 
imputed to the segregating DNA sequence. With the use 
of whole-genome sequence variants in genomic selec-
tion, the persistence of prediction accuracy can be main-
tained over several generations due to high LD of SNPs 
with causative mutations [1]. It is worth mentioning that 
increases in prediction accuracy with sequencing data 
have been achieved by adding preselected sequenced 
variants using GWAS to a regular SNP array [2, 14, 15]. 
However, in general, genomic prediction accuracies using 
all sequenced variants have been similar or slightly lower 
than those based on traditional SNP arrays [16–18].

The objective of the present study was to investigate 
the imputation accuracy to the sequence level in a Nel-
lore beef cattle population, to verify the feasibility of the 
imputation process in this breed, which could contribute 
to defining the best strategy to impute sequence data to 
the existing sets of animals that were originally geno-
typed using commercial marker panels. Two imputation 
software, FImpute3 [19] and Minimac4 [20], were com-
pared. FImpute3 uses family and/or population-based 
algorithms to infer and phase haplotypes and impute 
missing genotypes. Minimac4 is a population-based 
method that uses previously phased haplotypes, e.g. 

using the Eagle software [21], as input in both reference 
and target populations. We also investigated the accuracy 
of imputation of different functional annotation classes, 
with the hypothesis that functional variants may be more 
difficult to impute, as they might be more recent muta-
tions (not yet removed by selection) and therefore in 
lower LD with array SNPs.

Methods
Whole‑genome sequencing dataset
In total, 151 influential Nellore sires were chosen with 
the aim to optimize the imputation accuracy of our gen-
otype database, comprised of about 10,000 Nellore ani-
mals genotyped with medium- (~ 35  k) to high-density 
(~ 777 k) SNP panels. For this, a k-means cluster analysis 
was performed using the genomic relationship matrix of 
the genotyped animals. The number of clusters was set 
equal to 151 and, within each cluster, the sire with the 
largest number of genotyped progenies was chosen for 
sequencing. A genomic relationship representation of the 
sequenced and genotyped animals is provided in [Addi-
tional file 1: Figure S1] with a PCA plot of the genomic 
relationship matrix.

The whole-genome sequencing of the sires was per-
formed using the Illumina sequencing-by-synthesis tech-
nology at an overall average sequence coverage, after 
quality control (described below), of 14.5×, ranging from 
7.8 to 26.3×. Fifty-two animals were sequenced using the 
Illumina HiSeq X™ Ten platform and 99 animals were 
sequenced using the Illumina NovaSeq™ platform.

Variant calling and genotype quality control
Variant calling procedures were carried out following 
the guidelines provided by the 1000 bull Genomes Pro-
ject, available at http://www.1000b​ullge​nomes​.com/
doco/1000b​ullsG​ATK3.8pipe​lineS​pecif​icati​ons_Run8_
Revis​ion_20191​101.docx. Both SNPs and insertion/
deletion mutations were identified, but only SNPs were 
considered for this imputation study. After generating 
a variant call format file containing SNP information 
for each of the 151 sires, a quality control filtering step 
was implemented, using the VariantFiltration tool from 
the GATKv3.8 software [22], using the exclusion crite-
ria suggested by [23]: quality by depth—QD < 2.0; Fisher 
Strand test—FS > 60.0; root mean square of the map-
ping quality score—MQ < 40.0; ranked sum test for the 
distance of alleles from the end of the reads—ReadPos-
RankSum <  − 8.0; mapping qualities of reads—MQRank-
Sum <  − 12.5; and SOR > 3.0. Next, the VCFtools 
software [24] was used to exclude non-biallelic markers 
and also those with a minor allele frequency lower than 
0.01. Marker genotypes with a phred-scaled confidence 
(a genotype quality score) less than 15 were treated as 

http://www.1000bullgenomes.com/doco/1000bullsGATK3.8pipelineSpecifications_Run8_Revision_20191101.docx
http://www.1000bullgenomes.com/doco/1000bullsGATK3.8pipelineSpecifications_Run8_Revision_20191101.docx
http://www.1000bullgenomes.com/doco/1000bullsGATK3.8pipelineSpecifications_Run8_Revision_20191101.docx
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missing and those SNPs with missing values for more 
than 40 individuals (26.5% of the total population) were 
removed from the analyses. After genotype quality con-
trol, 30,394,484 SNPs located on autosomes remained. As 
150 of the sequenced sires had also been genotyped with 
the Illumina BovineHD Beadchip (~ 777  K), we verified 
the rate of concordance between the genotypes obtained 
from the genotyping and from the sequencing, and found 
an average of 99.6% of genotype concordance, ranging 
from 97.3 to 99.9%.

Assessment of imputation accuracy
Imputation for the sequence level variants was carried 
out using two software: FImpute v3 [19] and Minimac4 
[20]. FImpute3 was run considering only the population-
based algorithm, which uses a deterministic approach to 
phase the haplotypes and to impute all the missing geno-
types. It is worth mentioning that we have also run FIm-
pute3 including the pedigree information and the results 
(not shown) were quite similar to those without pedigree. 
For Minimac4, reference and validation datasets were 
phased, separately, using the Eagle v2.4.1 software [21]. 
In contrast to FImpute, both Eagle and Minimac require 
reference and validation datasets split by chromosome. 
Also, in order to be more computationally efficient than 
its older versions, Minimac4 requires reference panels 
in M3VCF format, which were obtained using Mini-
mac3 (see https​://genom​e.sph.umich​.edu/wiki/Minim​
ac4). FImpute, Eagle and Minimac were run with default 
parameters in an Intel® Xeon® server with 1 TB of RAM 
memory and 72-core processors running at 2.70 GHz. To 
evaluate the software processing time efficiency in a simi-
lar multi-core system, each software was run parallelizing 
the 29 chromosomes in 58 processors (2 processors per 
chromosome).

The accuracy of imputation was investigated using a 
fivefold cross-validation scheme. The 151 animals with 
sequence information were randomly divided into five 
groups. Thus, five imputations were performed in such a 
way that a different group (target population) has all their 
genotypes masked except those that overlapped with the 
high-density (HD) SNP panel (~ 777  K). Table  1 shows 
the distribution of variants per chromosome.

The squared Pearson’s correlation between observed 
and imputed genotypes ( R2 ) and the percentage of cor-
rectly imputed genotypes (PERC), averaged across the 
fivefold cross-validation, were used to assess imputa-
tion accuracy. Both statistics, calculated by individual 
and by SNP, were computed only for the imputed SNPs 
(29,829,449 SNPs). In addition, we evaluated the rela-
tionship between the empirical imputation accuracies 
and the Minimac4 (Rsq) statistic, which represents the 
squared correlation between imputed genotypes and true 

unobserved genotypes (https​://genom​e.sph.umich​.edu/
wiki/Minim​ac3_Info_File). According to [25], the Mini-
mac Rsq corresponds to an estimate of the imputation 
accuracy.

SNP‑wise imputation accuracy by minor allele frequency 
class and functional annotation
The minor allele frequency (MAF) was computed by 
using Plink v1.9 [26]. Ensembl variant effect predic-
tor (VEP) [27] was used to annotate all the SNPs to 
their functional effect. For each variant, the VEP identi-
fies all the overlapping transcripts and then predicts the 
effects that each allele of the variant may have on each 
transcript. Variants were classified according to their 

Table 1  Distribution of SNPs by chromosome

Number of SNPs reference: the overall and per chromosome number of SNPs 
present in the reference animals; Number of SNPs target: the overall and per 
chromosome number of SNPs present in the validation (target) animals

Chr Length (Mb) Number of 
SNPs reference

Number of 
SNPs target

%SNPs to 
be imputed

1 158.44 1,965,500 36,424 98.15

2 136.15 1,594,559 30,832 98.07

3 121.00 1,396,284 28,583 97.95

4 119.86 1,514,666 26,434 98.25

5 120.05 1,350,367 25,150 98.14

6 117.80 1,461,356 28,480 98.05

7 110.64 1,297,470 25,926 98.00

8 113.24 1,309,174 26,848 97.95

9 104.64 1,281,310 25,088 98.04

10 103.26 1,219,761 22,454 98.16

11 106.98 1,246,742 24,204 98.06

12 87.20 1,121,539 19,004 98.31

13 83.45 947,897 17,794 98.12

14 82.37 991,359 20,322 97.95

15 84.96 1,120,179 18,849 98.32

16 80.98 974,221 18,626 98.09

17 73.15 928,571 17,803 98.08

18 65.81 753,566 14,541 98.07

19 63.42 713,820 13,370 98.13

20 71.96 910,476 16,074 98.23

21 69.84 857,266 16,234 98.11

22 60.76 729,871 13,479 98.15

23 52.50 774,175 12,292 98.41

24 62.30 790,397 14,192 98.20

25 42.34 521,876 9,425 98.19

26 51.98 655,622 11,869 98.19

27 45.61 642,015 10,030 98.44

28 45.91 636,577 9,991 98.43

29 51.09 687,868 10,717 98.44

Overall 2487.69 30,394,484 565,035 98.14

https://genome.sph.umich.edu/wiki/Minimac4
https://genome.sph.umich.edu/wiki/Minimac4
https://genome.sph.umich.edu/wiki/Minimac3_Info_File
https://genome.sph.umich.edu/wiki/Minimac3_Info_File
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functional impact in proteins as follows: (1) high: variants 
that cause premature stop codons, loss of function or 
trigger nonsense-mediated decay; (2) moderate: non-dis-
ruptive variants that might change protein effectiveness; 
(3) low: variants mostly harmless or unlikely to change 
protein behavior; and (4) modifier: non-coding variants 
or variants that affect non-coding genes, for which pre-
dictions are difficult or there is no evidence of impact.

Results and discussion
Imputation accuracies per animal were high and consist-
ent across methods and statistics (Table 2). The average 
(minimum and maximum) for the R2 and PERC statistics 
were, respectively, 0.94 (0.89 to 0.97) and 96.57 (93.97 to 
98.55) using FImpute3 and 0.95 (0.91 to 0.98) and 97.14 
(94.97 to 98.88) using Minimac4. These results are in line 
with the literature since moderate to high whole-genome 
sequence imputation accuracies have been reported for 
different populations. Defining the accuracy of imputa-
tion as the correlation (r) between observed and imputed 
genotypes, Van Binsbergen et al. [9] reported mean accu-
racies from the BovineHD panel per individual of 0.93, 
0.94, and 0.95, depending on the scenario, in Holstein 
Friesian cattle; values from 0.90 to 0.95 were found for 
Fleckvieh and Holstein cattle [7]; and accuracies up to 
0.97 were reported for sheep [25].

One of the main issues in imputing sequence from 
low- or even high-density SNP panels in any population 
is the huge number of SNPs that have to be imputed. The 
accuracy of imputation tends to decrease as the number 
of SNPs from the lower density SNP panel decreases. 
This leads to an increased distance between the SNP 
to be imputed and the nearest SNP on the lower den-
sity marker panel. In this sense, there is a consensus in 

the literature [9, 25] that imputation from a low-density 
SNP panel to the sequence level should be done using a 
stepwise strategy. First, imputation is performed from 
the lowest- to the next highest-density SNP panel, etc. 
and finally to the sequence. Since a previous study in 
Nellore cattle [28] had shown that an imputation accu-
racy higher than 0.97 could be achieved for imputa-
tions from a variety of low-density SNP panels, i.e. 15K, 
20K, 50K, and 75K, to the high-density (~ 777 K), in this 
study, we focused only on the imputation accuracy from 
the BovineHD panel (~ 777  K) to the whole-genome 
sequence data.

Considering the total number of imputed variants 
(29,829,449 SNPs), the average imputation accuracy 
per SNP indicated by the PERC and R2 statistics were, 
respectively, 96.5% and 0.85 using FImpute3 and 97.1% 
and 0.90 using Minimac4. It is important to mention 
that, unlike PERC that was computed for all the imputed 
genotypes, the R2 statistic could not be calculated for the 
159,153 SNPs and 665,854 SNPs in FImpute3 and Mini-
mac4 results, respectively, due to the lack of variability of 
the imputed genotypes within SNPs. These variants are 
spread across the 29 autosomes and the majority of them 
(148,452 in FImpute3 and 420,681 in Minimac4) have an 
original MAF lower than or equal to 0.03, which suggests 
that FImpute3 is more sensitive in capturing the natural 
low variability of rare variants than Minimac4. To better 
investigate the differences in SNP-wise imputation accu-
racies between software, in the remaining analysis only 
the variants with an R2 calculated for both FImpute3 and 
Minimac4 (29,115,307 SNPs) were used to compare the 
results. Considering these 29,115,307 markers, the aver-
age values of the PERC and R2 statistics were, respec-
tively, 96.7% and 0.86 using FImpute3, and 97.3% and 
0.88 using Minimac4.

The imputation of rare variants is one of the most 
important issues that affect the average imputation accu-
racy in a specific population. This is especially true for 
whole-genome sequence imputation since it usually relies 
on imputing a high proportion of rare variants [8]. Here, 
the MAF distribution exhibited a high frequency of SNPs 
with a low MAF (Fig. 1), and the number of variants with 
a MAF ≤ 0.03 represented 13.5% of the total number. 
The average empirical accuracy of imputation by MAF 
[see Additional file 2: Figure S2] showed that, on the one 
hand, the lowest R2 values were associated with the low-
est MAF, and on the other hand, SNPs with a low MAF 
tended to show higher PERC. As stated by [29], PERC is 
a measure of how well genotypes are imputed whereas 
R
2 is a measure of how well the allele dosage is imputed. 

Thus, for low MAF variants, the concordance rate will be 
high because most genotypes are for reference homozy-
gous animals, however it is very difficult to correctly 

Table 2  Imputation accuracy per animal from the Bovine HD 
BeadChip (~ 777 K) to whole-genome sequence in Nellore cattle 
using two imputation software and the average of fivefold cross-
validation

R
2 , Squared Pearson’s correlation between observed and imputed genotypes; 

PERC, percentage of genotypes correctly imputed; SD, standard deviation; Min, 
minimum value; Max, maximum value

FImpute3 Minimac4

R
2

 Mean (SD) 0.94 ± 0.014 0.95 ± 0.011

 Min 0.89 0.91

 Max 0.97 0.98

PERC

 Mean (SD) 96.57 ± 0.76 97.14 ± 0.66

 Min 93.97 94.97

 Max 98.56 98.88
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impute alleles for animals that are heterozygous or alter-
nate homozygous. Since R2 is a statistic that is less allele-
frequency dependent than PERC [30], henceforth, we will 
focus on the R2 measure to evaluate imputation accuracy.

Plotting the Minimac4 Rsq statistic together with the 
empirical imputation accuracy ( R2 ) by MAF (Fig.  2) 
shows that the Minimac Rsq measure is a good indicator 

of the empirical imputation accuracy achieved by using 
the Minimac4 software, although it slightly underesti-
mates accuracy across all MAF but more particularly for 
the lower MAF. This result concurs with that of Bolor-
maa et al. [25], who found that the Rsq Minimac statistic 
was a reasonable proxy of the empirical imputation accu-
racy in sheep. This statistic (Rsq) that reports the qual-
ity of imputation is a notable useful feature of Minimac 
and enables the filtering out of poorly imputed variants 
before any further analysis [25, 31].

Comparing the R2 statistics only (Fig.  2), we found 
that Minimac4 outperformed FImpute3 for the most 
common variants but not for the rarest variants. It is 
worth pointing out, that in sequence data, there is a 
large number of rare variants, and it has been suggested 
that many causal mutations for complex traits may be 
present at low frequency [32, 33]. Our result that FIm-
pute3 performs better for rare variants corroborates 
the results of Ma et al. [34] who reported a higher accu-
racy for rare variants with FImpute for imputation from 
54 to 777  K in comparison to Beagle, Impute2, find-
hap, and AlphaImpute. In addition, Sargolzaei et  al. 
[19] found that FImpute was able to call low-frequency 
variants with higher accuracy than Beagle and Impute2. 
According to [19], the observed advantage of FImpute 
for imputing SNPs with a low MAF could be due to 
the fact that most rare variants are recent and located 
within long haplotypes, which are quite efficiently 

Fig. 1  Minor allele frequency distribution in Nellore cattle at the 
sequence level

Fig. 2  Smoothed conditional means (see http://searc​h.r-proje​ct.org/libra​ry/ggplo​t2/html/geom_smoot​h.html) of the SNP-wise imputation 
accuracies by minor allele frequency (MAF). FImpute3 and Minimac4 methods correspond to the squared Pearson’s correlation between observed 
and imputed genotypes; and Rsq_Minimac4 method is an estimate of the squared correlation between imputed genotypes and true, unobserved 
genotypes (see https​://genom​e.sph.umich​.edu/wiki/Minim​ac3_Info_File)

http://search.r-project.org/library/ggplot2/html/geom_smooth.html
https://genome.sph.umich.edu/wiki/Minimac3_Info_File
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exploited by the FImpute imputation algorithm. It is 
worth mentioning that our findings do not agree with 
those of Pausch et al. [7] who reported higher imputa-
tion accuracies for low-frequency variants with Mini-
mac3 than with FImpute2 in dairy cattle.

On the one hand, the FImpute algorithm starts the 
phasing and imputation processes by exploiting the 
close relationships between individuals and by search-
ing for the longest shared haplotypes that usually have 
a lower frequency in the population. By using an over-
lapping sliding window (OSW) approach, FImpute cap-
tures first the more accurate information from the close 
relatives by moving long windows along a chromosome 
and then exploits information from more distant rela-
tionships by gradually shrinking the window size in 
each chromosomal sweep [19]. Essentially, the longer 
is the shared haplotype (close relatedness), the more 
accurate is the imputation [35], which makes FImpute 
quite efficient in imputing rare variants even without 
pedigree information [19]. On the other hand, Mini-
mac implements an algorithm based on a probabilistic 
model using a hidden Markov method that exploits sim-
ilarities between haplotypes in small genomic segments 
[36]. In this case, to accurately impute rare variants, a 
large reference population is needed. Das et  al. [36] 
reported that the imputation quality of sequenced rare 
variants using Minimac3 increased from R2 = 45.3% to 
R
2 = 77.2% by increasing the reference panel from 1092 

to 32,390 animals.
In terms of computational performance, FImpute is 

known to be an extremely fast software. In their study 
[7], Pausch et al. have run Eagle v2.3 and Minimac3 on 10 
processors per chromosome and FImpute v2.2 on a single 
processor and found that the computing costs to impute 
sequence variants using Eagle-Minimac were more than 
ten times higher than using FImpute. In our study, paral-
lelizing the imputation of the 29 bovine autosomes using 
58 processors, FImpute3 took around 18 min for phasing 
and imputing each run of the fivefold imputation analy-
sis, whereas the Eagle-Minimac4 approach took approxi-
mately 7.4  h (6.7  h for phasing using Eagle; 40  min to 
convert VCF to M3VCF using Minimac3; and 55  s for 
imputing with Minimac4).

Achieving high imputation accuracy is crucial for an 
effective use of imputed sequence genotypes in genetic 
evaluations of a specific population and the first priority 
is to choose a group of animals for which the number of 
haplotypes present in the reference population is maxi-
mized [4]. Efficient computational approaches in terms of 
accuracy and speed are also of relevance due to the chal-
lenge of imputing millions of SNPs, many with low-fre-
quency minor alleles that are more difficult to accurately 
impute. In our application on beef cattle, we imputed 

whole-genome sequence variants with high accuracy 
with a relatively small reference group, which suggests 
that many of the haplotypes in the Nellore breed are cap-
tured in the group of influential Nellore sires selected for 
sequencing.

Regardless of the imputation approach, quality con-
trol of pre-imputation genotypes plays an important role 
for reaching a high imputation accuracy of sequenced 
variants. As shown in [Additional file  3: Figure S3], the 
imputation efficiency of both FImpute3 and Minimac4 
decreased under a less strict genotype filtering scenario 
(same quality control procedure as described in the 
Methods section, except that the phred-scaled confi-
dence score was not used). [Additional file 3: Figure S3] 
also shows that FImpute3 results were more affected by 
such a less conservative genotype filtering than Mini-
mac4, given that we observed no difference in the impu-
tation of rare variants between software and that the 
Minimac4 superiority for the most common variants was 
consistently higher. Slightly higher overall accuracies of 
imputed sequencing genotypes have been reported in 
cattle [7] and sheep [25] by combining Eagle and Mini-
mac in comparison to FImpute. It should be noted that 
the FImpute algorithm is designed for high-quality geno-
types that are obtained from DNA array technology [19]. 
Therefore, more strict quality checks on input genotypes 
driven from next-generation sequence data can be very 
effective in increasing imputation accuracy of FImpute3 
[see Additional file  3: Figure S3]. The approach using 
Eagle and Minimac was less sensitive to the pre-imputa-
tion genotype quality check than FImpute.

As in [7, 25], average imputation accuracies were com-
puted for successive 1-Mb windows across each chro-
mosome to identify possible intra-chromosomal poorly 
imputed regions. Although high imputation accuracies 
have been achieved across the genome, some genomic 
regions presented a pronounced decrease in average 
accuracies [see Additional file 4: Figure S4]. Such intrin-
sically hard-to-impute genomic regions using sequencing 
data have been reported in humans [37], cattle [7], and 
sheep [25]. Their existence could be related with poly-
morphism and heterozygosity level, GC content, segmen-
tal duplications, assembly errors, and density of HD and 
sequencing variants [5, 7, 25, 37].

In Fleckvieh cattle, Pausch et al. [7] detected segments 
with high imputation errors on chromosomes 5, 10, 12, 
15, and 23 at positions where the bovine genome con-
tains large segmental duplications. Interestingly, in our 
study we detected the same hard-to-impute segments 
reported in [7] but with higher imputation accura-
cies. For instance, according to [7] the regions between 
70 and 77  Mb on chromosome 12 and between 25 and 
30  Mb on chromosome 23 could not be imputed using 
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FImpute2 and were wrongly imputed using Minimac3 
due to the presence of large segmental duplications asso-
ciated with a low HD SNP coverage and high sequence 
variant density. Here, these regions were imputed with 
a moderate average accuracy using both FImpute3 and 
Minimac4, except the position 73  Mb on chromosome 
12 that was imputed with a low accuracy [see Additional 
file 4: Figure S4]. Such a better imputation at consistently 
hard-to-impute genomic regions could be due to the use 
of the newest and improved reference genome assembly 
(ARS-UCD1.2) in our study. By providing a significant 
improvement in per-base accuracy over previous cattle 
assemblies [38], using the ARS-UCD1.2 genome assem-
bly for aligning and variant calling might contribute to 
an overall higher imputation accuracy across the genome 
including regions that are intrinsically difficult to accu-
rately impute. In addition, as observed in [7, 25], intra-
chromosomal imputed segments with low accuracy often 
present low HD SNP coverage and high sequence variant 
density [see Additional file 5 Figure S5]. However, in con-
trast to these studies, we did not observe such a higher 
than usual density of sequence variants at these lower 
imputed regions [see Additional file 5: Figure S5], which 
could also be related to the use of an improved reference 
genome assembly.

Figure  3 displays the imputation accuracy of whole-
genome sequence genotypes by classes of annotation. 
The imputed variants were grouped according to their 
impact (high, moderate, low, and modifier) in transcripts. 
Variants with a ‘high’ impact include splice acceptor and 

splice donor, start- and stop-lost, and stop-gained vari-
ants. The missense variants are grouped into the ‘mod-
erate’ class. ‘Low’ impact variants include synonymous, 
stop retained and splice region variants. Intergenic, 
intronic, up- and down-stream, and UTR variants are 
grouped as ‘modifier’. Additional file  6: Figure S6 shows 
the imputation accuracy for the variants from the ‘modi-
fier’ group divided by classes, in addition to the missense 
variants.

The observed high median with a relatively low inter-
quartile range (Fig.  3) highlighted that high imputation 
accuracies were achieved by using both FImpute3 and 
Minimac4 for all classes of annotation. Interestingly, 
the Minimac4 Rsq statistic exhibited a larger dispersion 
compared to the empirical imputation accuracies, espe-
cially for the variants of high and moderate impact. The 
imputation accuracy of variants into these two func-
tional classes is especially relevant since they incorpo-
rate variants that may directly influence the expression 
of phenotypes. However, as they usually include a high 
proportion of low-frequency mutations, these types of 
variants may be more difficult to impute accurately [25]. 
Indeed, approximately 15% of the variants from the ‘high’ 
and ‘moderate’ functional classes present MAF ≤ 0.03 
and, as shown in Table 3, there was an overall trend for 
increased average accuracy moving from high to low 
impact variants. Taking only the low-frequency variants 
into account, higher imputation accuracies were achieved 
using FImpute3 for all classes of annotation, compared 
with Minimac4 (Table 3).

Fig. 3  SNP-wise imputation accuracy by annotation class. High: variants that cause premature stop codons, loss of function or trigger 
nonsense-mediated decay; Low: variants that are mostly harmless or unlikely to change protein behavior; Moderate: non-disruptive variants that 
might change protein effectiveness; Modifier: non-coding variants or variants that affect non-coding genes, for which predictions are difficult or 
there is no evidence of impact
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As shown by Druet et al. [4], compared to SNP arrays, 
the use of sequenced variants can significantly increase 
the prediction accuracy in genomic evaluation when 
the QTL has a low MAF. Therefore, non-synonymous 
polymorphisms such as missense variants are of para-
mount importance since they are more likely associated 
with complex traits in cattle [39] and, usually, present 
a high proportion of low-frequency variants which are 

more difficult to impute accurately [25]. However, in 
practice, most of the total genetic variation for complex 
traits is explained by the common sequence variants 
[33]. Thus, our results indicate that, for GWAS, two 
separate whole genome searches on imputed genotypes 
from FImpute3 and Minimac4 could be complementary 
with regard to rare and common variants. For routine 
genomic evaluation where the overall accuracy per 

Table 3  SNP-wise imputation accuracy from the Bovine HD BeadChip (~ 777 K) to whole-genome sequence in Nellore cattle using 
FImpute3 and Minimac4 by classes of MAF and functional annotation

High, variants that cause premature stop codons, loss of function or trigger nonsense-mediated decay; low, variants mostly harmless or unlikely to change protein 
behavior; moderate, non-disruptive variants that might change protein effectiveness; modifier, non-coding variants or variants affecting non-coding genes, where 
predictions are difficult or there is no evidence of impact

Min 1st Qu Median Mean 3rd Qu Max

High

 Overall

   FImpute3 0.00 0.70 0.90 0.78 0.97 1.00

   Minimac4 0.00 0.76 0.92 0.79 0.98 1.00

   Rsq_Minimac4 0.00 0.62 0.87 0.75 0.96 1.00

 MAF ≤ 0.03

   FImpute3 0.00 0.49 0.79 0.69 1.00 1.00

   Minimac4 0.00 0.35 0.74 0.65 1.00 1.00

   Rsq_Minimac4 0.11 0.34 0.48 0.49 0.63 1.00

Moderate

 Overall

   FImpute3 0.00 0.73 0.91 0.80 0.98 1.00

   Minimac4 0.00 0.78 0.92 0.81 0.98 1.00

   Rsq_Minimac4 0.00 0.65 0.87 0.77 0.96 1.00

 MAF ≤ 0.03

   FImpute3 0.00 0.56 0.83 0.74 1.00 1.00

  Minimac4 0.00 0.49 0.74 0.69 1.00 1.00

   Rsq_Minimac4 0.03 0.35 0.50 0.50 0.65 1.00

Low

 Overall

   FImpute3 0.00 0.80 0.93 0.85 0.99 1.00

   Minimac4 0.00 0.83 0.94 0.86 0.99 1.00

  Rsq_Minimac4 0.00 0.76 0.91 0.81 0.97 1.00

 MAF ≤ 0.03

   FImpute3 0.00 0.66 0.85 0.78 1.00 1.00

   Minimac4 0.00 0.50 0.79 0.71 1.00 1.00

   Rsq_Minimac4 0.02 0.37 0.52 0.52 0.66 1.00

Modifier

 Overall

    FImpute3 0.00 0.81 0.92 0.86 0.98 1.00

   Minimac4 0.00 0.85 0.94 0.88 0.98 1.00

  Rsq_Minimac4 0.00 0.79 0.92 0.84 0.97 1.00

 MAF ≤ 0.03

   FImpute3 0.00 0.61 0.83 0.75 1.00 1.00

   Minimac4 0.00 0.49 0.74 0.70 1.00 1.00

   Rsq_Minimac4 0.00 0.37 0.52 0.52 0.66 1.00
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animal and computing efficiency are more important, 
FImpute3 might have an advantage.

Conclusions
High imputation accuracy to whole-genome sequence 
was achieved in Nellore beef cattle. In general, common 
variants were imputed with higher accuracy by using 
Eagle-Minimac4, but, in terms of computational effi-
ciency and higher imputation accuracy for low-frequency 
variants, there were advantages in using FImpute3.
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