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Bayesian genomic models boost prediction 
accuracy for survival to Streptococcus agalactiae 
infection in Nile tilapia (Oreochromus nilioticus)
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Abstract 

Background:  Streptococcosis is a major bacterial disease in Nile tilapia that is caused by Streptococcus agalactiae 
infection, and development of resistant strains of Nile tilapia represents a sustainable approach towards combating 
this disease. In this study, we performed a controlled disease trial on 120 full-sib families to (i) quantify and charac-
terize the potential of genomic selection for survival to S. agalactiae infection in Nile tilapia, and (ii) identify the best 
genomic model and the optimal density of single nucleotide polymorphisms (SNPs) for this trait.

Methods:  In total, 40 fish per family (15 fish intraperitoneally injected and 25 fish as cohabitants) were used in the 
challenge test. Mortalities were recorded every 3 h for 35 days. After quality control, genotypes (50,690 SNPs) and 
phenotypes (0 for dead and 1 for alive) for 2472 cohabitant fish were available. Genetic parameters were obtained 
using various genomic selection models (genomic best linear unbiased prediction (GBLUP), BayesB, BayesC, BayesR 
and BayesS) and a traditional pedigree-based model (PBLUP). The pedigree-based analysis used a deep 17-generation 
pedigree. Prediction accuracy and bias were evaluated using five replicates of tenfold cross-validation. The genomic 
models were further analyzed using 10 subsets of SNPs at different densities to explore the effect of pruning and SNP 
density on predictive accuracy.

Results:  Moderate estimates of heritabilities ranging from 0.15 ± 0.03 to 0.26 ± 0.05 were obtained with the different 
models. Compared to a pedigree-based model, GBLUP (using all the SNPs) increased prediction accuracy by 15.4%. 
Furthermore, use of the most appropriate Bayesian genomic selection model and SNP density increased the predic-
tion accuracy up to 71%. The 40 to 50 SNPs with non-zero effects were consistent for all BayesB, BayesC and BayesS 
models with respect to marker id and/or marker locations.

Conclusions:  These results demonstrate the potential of genomic selection for survival to S. agalactiae infection in 
Nile tilapia. Compared to the PBLUP and GBLUP models, Bayesian genomic models were found to boost the predic-
tion accuracy significantly.
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Background
Nile tilapia is an important aquaculture species because 
of its wide range of trophic and ecological adaptations, 
which allows it to be farmed in different environments 
around the world. Farming of Nile tilapia is one of the 

fastest-growing aquaculture activities in more than 
120 countries and, in 2017, it accounted for 5.3% of the 
global aquaculture production. Nile tilapia ranks 4th 
among the top ten aquaculture species in terms of both 
production quantity and value [1, 2]. For the last three 
decades, the tilapia sector has seen a rapid increase 
(11% per year) in global production, which is higher 
than the average growth for other aquaculture species 
[3, 4]. Intensification of tilapia farming results in high 
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stocking densities and poorer water quality which, cou-
pled with sub-optimal temperatures and mishandling of 
the fish and water, are a cause of stress on the animals 
throughout the growing period [5]. Because of these 
conditions, farmed tilapia are more exposed to various 
bacterial, viral, fungal, and parasitic diseases than wild 
tilapia [6].

Streptococcosis is a disease caused by the pathogens 
Streptococcus agalactiae and Streptococcus iniae and 
is considered one of the most significant bacterial dis-
eases in Nile tilapia based on socio-economic impact and 
zoonotic potential [7]. Of these two Streptococcus spe-
cies, S. agalactiae is the most prevalent [8] and causes 
significant morbidity and mortality [9], with mortal-
ity rates over 50% for acute infections [10]. In 2019, the 
losses were estimated to reach up to 1.5 billion USD per 
year in China alone, the largest producer of tilapia [11]. 
Symptoms of Streptococcosis are lethargy, erratic swim-
ming, hyper-pigmentation of the skin, exophthalmia with 
haemorrhagic eyes, splenomegaly, abdominal distension, 
and diffused haemorrhage in the operculum, around the 
mouth and anus, and at the base of the fins [12–14].

Various short-term strategies to contain S. agalac-
tiae using antibiotics and vaccines are deployed around 
the world [15–17], each with their own deficiencies. For 
example, use of antibiotics is expensive and complex 
because of the long withdrawal period and the increas-
ing concerns about anti-microbial resistance in both fish 
and humans [6, 15, 18]. Development of resistant tila-
pia strains represents one of the long-term sustainable 
strategies to control this disease [19]. Selection against 
infectious diseases has been widely and successfully 
implemented in aquaculture species such as Atlantic 
salmon [20–22], and has motivated similar developments 
in various species, including against S. agalactiae in Nile 
tilapia [23–26].

Genetic selection for survival to S. agalactiae infection 
in GST® Nile tilapia using classical selection methods, 
in which resistance is assayed in siblings of the selection 
candidates, has resulted in strains/products that have 
a nearly two-thirds lower risk of mortality compared to 
the non-selected line [26]. Classical selection through 
sib-testing allows only the between-family variation to 
be used, which limits the accuracy of selection [27]. In 
addition, with restrictions on inbreeding, selection based 
on sib-testing hampers the rate of genetic gain because 
of limits on selection of closely-related individuals. The 
use of genomic selection methods has the potential to 
increase the rate of genetic improvement by allowing the 
use of within-family genetic variation, thereby increasing 
the accuracy of selection [27, 28]. Previous studies [29–
33] have shown the benefits of using genomic selection 
for commercially important traits in Nile tilapia.

Our objectives were to: (i) to evaluate and characterize 
the potential of genomic selection for S. agalactiae con-
trol in Nile tilapia; (ii) explore the effect of pruning and 
density of single nucleotide polymorphisms (SNPs) on 
the prediction accuracy of different models for survival 
to S. agalactiae infection in Nile tilapia; and (iii) identify 
the best genomic prediction model for implementation of 
genomic selection for survival to S. agalactiae infection 
in Nile tilapia.

Methods
Study population
The breeding program for GenoMar Supreme Tilapia 
(GST®) in the Philippines is a continuation of the Geneti-
cally Improved Farmed Tilapia (GIFT) program at the 
commercial level. The genetic base of GIFT was formed 
by the systematic admixture of eight wild and commer-
cial strains of Nile tilapia [34]. GenoMar bought genera-
tion 10 of the GIFT strain and since then has bred this 
line for growth, fillet yield, and robustness [29].

Each generation of the GST® line used in this study 
consists of 250 families distributed across eight batches 
that follow a revolving breeding scheme [30]. The fami-
lies within each batch are created by mating the selected 
parents in a 1:1 mating design, where one male and one 
female are placed in a small breeding hapa. After mating, 
eggs are collected and the families are kept separate until 
the challenge test. The fish used in this study originated 
from four batches of generation 27 of the GST® strain.

Challenge test
A controlled disease challenge test was performed using 
the Streptococcus agalactiae Ib strain. Overall, 108 full-
sib families from generation 27 of the GST® strain were 
challenged in four batches. The dose (LD50) used was 
based on a previous study [35], in which it caused a 50% 
mortality rate in intra-peritoneal (IP)-challenged fish (i.e. 
injection of the pathogen directly in the intra-peritoneal 
region of the fish). Before the challenge test, each fam-
ily was kept in separate tanks until individuals reached 
an average weight of 8 to10 g. A random 40 fish per fam-
ily were tagged for the challenge test, of which a random 
15 fish were IP injected (0.05 mL of bacterial strain) and 
then placed into a family tank along with the remaining 
25 fish, which were used as cohabitants. Mortalities were 
monitored every 3 h, with the identity of each dead fish 
recorded and a fin clip collected. After 35 days, no mor-
talities had occurred for three consecutive days and the 
experiment was terminated by euthanizing the surviv-
ing fish and collecting their identification and fin clips. 
The survival phenotype at the end of the experiment was 
coded as a binary trait: 0 for the fish that died during the 
experiment and 1 for those that survived to 35 days.
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Genotypes
To reduce genotyping costs, only the 2700 cohabitant fish 
were genotyped since they were considered to best mimic 
the conditions of a disease outbreak in farm conditions. 
Genomic DNA was isolated from fin clip samples and 
genotyping was performed using the Onil50 Affymetrix 
Axiom Custom Array [36]. The genotypes were subjected 
to several quality control (QC) filters. Only SNPs identi-
fied as PolyHighResolution and NoMinorHomozygous 
by Affymetrix’s Axiom Analysis Suite software [37], were 
selected. In addition, individuals with a genotype call 
rate lower than 90% were removed. After quality control, 
2472 animals genotyped for 50,690 SNPs were available 
for analysis (see Additional file 1: Table S1).

Statistical analysis
Pedigree best linear unbiased prediction (PBLUP)
DMU [38] was used to fit the following univariate mixed 
linear PBLUP model using restricted maximum likeli-
hood (REML) analysis to estimate the variance compo-
nents and breeding values:

where y is the vector of phenotypes coded as 0 for dead 
fish and 1 for surviving fish after the challenge test, β is 
a vector of fixed batch effects (4 levels), a is a vector of 
random additive genetic effects, e is a vector of random 
residuals, and X and Z are design matrices. Vectors a and 
e were assumed to be multivariate normally distributed 
with a mean of zero and variances:

where σ 2
A and σ 2

E are the additive genetic variance and 
error variance, respectively, A is the numerator relation-
ship matrix, and I is an identity matrix of appropriate 
size. The numerator relationship matrix was calculated 
using a 17-generation pedigree in the breeding nucleus, 
which was established based on parentage assignment 
using microsatellites, as described in [39]. The pheno-
typic variance was calculated as σ 2

P = σ 2
A + σ 2

E , and the 
narrow sense heritability ( h2 ) was calculated σ 2

A/σ
2
P.

Genomic models
Genomic BLUP (GBLUP) is the most commonly used 
genomic model for routine genetic evaluation because 
of its simplicity and low computation cost. The approach 
has been shown to be statistically equivalent to marker-
effects BLUP model, SNP-BLUP [40–43]. The distinc-
tion between GBLUP and SNP-BLUP is that GBLUP 
estimates genomic estimated breeding values (GEBV) 

y = Xβ+ Za + e,

Var

[

a
e

]

=

[

Aσ 2
A 0

0 Iσ 2
E

]

,

directly, while SNP-BLUP estimates marker effects. The 
underlying assumption for both GBLUP and SNP-BLUP 
is a normal prior with the same variance for all marker 
effects, with the relative contribution of each marker to 
the prior depending on its minor allele frequency [42, 44, 
45].

The model fitted for GBLUP is the same as that for 
PBLUP, except that the pedigree relationship matrix A 
is replaced by the genomic relationship matrix G , which 
was constructed as follows [45]:

where M is a centered marker matrix, the sum in the 
denominator is over all loci and pi is the allelic frequency 
at locus i.

Bayesian models
The assumption that all the markers explain the same 
amount of the variance in GBLUP may not be suitable for 
traits that are less polygenic or controlled by some loci 
with major effects   [48,  49]. Hence, GCTB2.0   [50] was 
used to fit four genomic Bayesian mixed models: BayesB 
[51], BayesC [52], BayesR [46], and BayesS [50] . The fol-
lowing marker-effects model was fitted:

 where Z is a diagonal matrix with diagonal elements 
0/1 for SNPs excluded/included in the model, s is a vec-
tor of allele substitution effects for each SNP, and M is 
the (centered) marker matrix. All other parameters were 
as described for the PBLUP model. All Bayesian mod-
els used are variable selection models, with a prior that 
assumes that many SNPs have zero effect and the genetic 
variation is explained by a subset of markers (see  [47] for 
detailed explanation). The prior distribution of the vari-
ances of s differs among the Bayesian models, as follows.

BayesB: Each SNP effect is assumed to have an inde-
pendent and identically-distributed mixture prior of a 
scaled t-distribution t(0, τ2,υ) with probability π and a 
point mass at zero with probability 1− π , where τ2 and υ 
are prior hyperparameters  [51, 52].

BayesC: Each SNP effect is assumed to have an inde-
pendent and identically-distributed mixture prior of a 
normal distribution that has mean 0 and variance σ2 with 
probability π and a point mass at zero with probability 
1− π [52].

BayesR: Each SNP effect is assumed to have an inde-
pendent and identically-distributed mixture prior of mul-
tiple normal distributions that have mean 0 and variance 
γkσ

2
k with probability πk and a point mass at zero with 

probability 1−�kπk , where γk is a given constant  [46].

G =
MM

′

∑

2pi(1− pi)
,

y = Xβ+MZs+ e,
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BayesS: BayesS is similar to BayesC but the variance of 
SNP effects (for SNPs with non-zero effects) is related to 
minor allele frequency ( p ) through a parameter S , i.e. 
σ
2
j = [2pj

(

1− pj

)

]
S
σ
2  [50].

Model parameters and SNP effects in the Bayesian 
models were estimated using the Markov chain Monte 
Carlo (MCMC) sampling algorithm implemented in the 
GCTB2.01 software [48]. The default parameters were 
used to determine the length of the MCMC (21,000 
cycles), the number of cycles for burn-in (the initial 1000 
cycles were discarded), and the thinning interval (10). The 
value of π was estimated from the data using the default 
starting value of 0.05 (–pi 0.05). The default starting value 
of 0.5 was used for the sampling of SNP-based heritabil-
ity (–hsq 0.5). Convergence of the MCMC was verified by 
Geweke-Brooks plots [53] using R [54]. Because marker-
based models estimate SNP effects, PLINKv1.90b6.7 [55] 
was used to calculate GEBV by summing the product of 
the effect estimate and genotype (0/1/2) for each SNP for 
each individual.

Cross‑validation and prediction accuracy
The prediction accuracy of the models was estimated 
based on five replicates of a tenfold cross-validation 
scheme. In tenfold cross-validation, the phenotypes of 
10% of the animals are masked and then estimated using 
the phenotypes and genotypes of the remaining 90% ani-
mals. The dataset of genotyped animals with phenotypes 
was randomly divided into 10 subsets, predicting one 
subset (n = 247 or 248) at a time and using the pheno-
types of the remaining nine subsets (n = 2224 or 2225) 
for training.

The predictive ability of the models was calculated as 
the Pearson’s correlation between predicted GEBV (or 
EBV in the case of PBLUP) in one replicate using the 
complete dataset and phenotypes adjusted for the fixed 
effects using the complete dataset. Results were aver-
aged over the five replicates. The mean correlation value 
was converted into the expected prediction accuracy by 
dividing by the square root of the estimate of heritability 
based on PBLUP (0.15). The standard error of prediction 
accuracy was calculated [56] as:

The regression coefficient of phenotypes adjusted for 
fixed effects on (G)EBV was used to assess the bias of the 
predictions. The mean and standard error of the regres-
sion coefficient were calculated from the five replicates. 
A regression coefficient of 1 indicates unbiased predic-
tion, whereas values lower or higher than 1 indicate infla-
tion and deflation of (G)EBV, respectively.

1− prediction accuracy2
√

No. of validation animals − 1
.

Low‑density SNP subsets
Ten subsets of the SNP panel were created as described 
in the following, to assess the potential of using a lower 
density SNP set. For each SNP subset, prediction accu-
racies and biases were determined using the statistical 
analyses with the genomic models and cross-validations 
described in the previous sections.

Generally, selection of SNPs for a low-density chip 
should aim at including at least one SNP that is in strong 
linkage disequilibrium (LD) with each QTL for the trait. 
For this purpose, an LD-based SNP pruning method was 
used to select different subsets of SNPs. The LD between 
each pair of SNPs was calculated as the squared coeffi-
cient of correlation (r2) between 0/1/2 genotypes.

The set with all 50,690 SNPs will be referred to as the 
“All SNPs” panel. In the “only LG” subset, only SNPs 
assigned to linkage groups [36] were used, i.e. SNPs that 
are not assigned to a linkage group and those assigned to 
the mitochondrial genome [57] were removed. The SNPs 
in the “only LG” subset were pruned based on different 
LD value thresholds, using PLINKv1.90b6.7 [58]. The 
thresholds used for pruning were r2 ≤ 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8 and 0.9 and the subsets are named based 
on these thresholds. For example: in subset “LD0.1”, only 
one SNP in a pair or group of SNPs that had r2 values 
higher than 0.1 was kept. The number of SNPs available 
for analysis for each subset is in Table 1.

Results and discussion
To our knowledge, this is the first study that uses 
genomic data to investigate genetic resistance to any dis-
ease in Nile tilapia and to quantify and characterize the 
potential of genomic selection to control S. agalactiae in 
Nile tilapia.

Average mortality during the challenge test was 60.2% 
and ranged from 49.5 to 67% across the batches. The 
Kaplan–Meier curves [59] in Fig. 1 show the cumulative 
mortality over the test period (Fig. 1). Although mortal-
ity was recorded as a binary phenotype, a linear model 
was used in the analyses. While a threshold model would 
have been theoretically more appropriate, several stud-
ies have shown good agreement between breeding values 
that are estimated using these two models [60–62].

Genetic parameters
Heritability estimates for survival to Streptococcus infec-
tion in Nile tilapia using different models and SNP densi-
ties are in Table 1. A summary of the posterior mean of 
the key model parameters is in Additional file 2: Table S2. 
Using PBLUP, the estimated heritability was 0.15 ± 0.02, 
which is similar to that reported by Sukhavachana et al. 
[24] and slightly lower than the estimates reported by 
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Shoemaker et  al. [23]. The genomic models resulted in 
similar estimates of heritability for the “All SNPs” data-
set, ranging from 0.15 ± 0.03 to 0.26 ± 0.05 (Table 1). The 
moderate estimates of heritability indicate that the Nile 
tilapia breeding industry can benefit from the applica-
tion of selective breeding for survival to Streptococcus 
infection.

Differences in heritabilities estimated using different 
SNP densities are due to different amounts of genetic 
variation being captured by the SNPs. Heritability esti-
mates using the LD0.1 SNP-set were significantly differ-
ent from the estimates obtained by using the other SNP 
subsets (Table  1). As expected, very low SNP densities 
(i.e. using LD0.1 SNP-set) resulted in lower heritabilities 

for all genomic models (Table 1), because fewer SNPs are 
less likely to capture the majority of the genetic variance 
across the genome. Surprisingly, increasing the marker 
density had a different effect on estimates of heritability 
for GBLUP versus Bayesian models, potentially due to 
the presence of major QTL. For GBLUP, increasing the 
marker density should theoretically enable the model to 
more efficiently capture the majority of the genetic vari-
ance, resulting in higher heritability estimates. However, 
in our data, the heritability was highest (0.19) when the 
moderately pruned SNP-sets (LD0.4 to LD0.7) were used, 
compared to the highest SNP densities ( h2 = 0.15 for only 
LG / all SNPs subsets), although these estimates were not 
significantly different based on standard errors.

Table 1  Estimates of heritability for different models and SNP densities for Streptococcus resistance in Nile tilapia

The rows LD0.1 to LD0.9 represent the subsets obtained after pruning the SNPs based on LD values. For example: in subset “LD0.1” only one SNP in a pair or group of 
SNPs that had an LD value higher than 0.1 was kept

se = standard error of the heritability ( h2)

Sub-set Number of SNPs GBLUP BayesB BayesC BayesR BayesS

h
2 se h

2 se h
2 se h

2 se h
2 se

LD0.1 589 0.09 0.02 0.06 0.01 0.09 0.02 0.10 0.02 0.10 0.02

LD0.2 1544 0.16 0.03 0.17 0.02 0.18 0.02 0.17 0.02 0.18 0.02

LD0.3 3384 0.16 0.03 0.17 0.02 0.18 0.02 0.17 0.02 0.19 0.02

LD0.4 6229 0.19 0.03 0.22 0.02 0.21 0.03 0.20 0.03 0.23 0.02

LD0.5 10,004 0.19 0.03 0.22 0.03 0.21 0.03 0.19 0.03 0.23 0.02

LD0.6 14,563 0.19 0.03 0.22 0.03 0.21 0.03 0.19 0.03 0.23 0.03

LD0.7 19,873 0.19 0.03 0.25 0.03 0.23 0.03 0.19 0.03 0.23 0.03

LD0.8 25,693 0.18 0.03 0.24 0.03 0.25 0.02 0.19 0.03 0.23 0.03

LD0.9 32,077 0.17 0.03 0.23 0.03 0.26 0.03 0.17 0.02 0.23 0.03

Only LG 48,871 0.15 0.03 0.26 0.03 0.27 0.03 0.15 0.02 0.26 0.02

All SNPs 50,690 0.15 0.03 0.26 0.03 0.25 0.05 0.26 0.05 0.24 0.04

Fig. 1  Kaplan–Meier curves for survival of the fish in the challenge test a by batch and b in the entire population
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For the Bayesian models, reducing the number of SNPs 
by pruning, generally reduced the estimate of heritability 
compared to using all SNPs. For the Bayesian models, the 
prior genetic variance for a DNA segment is no longer 
a function of the total number of SNPs (i.e. for GBLUP) 
but rather depends on the number of SNPs that have an 
effect (and for some of the models, the variance of their 
effect). Hence, it is likely that these models will be able 
to capture loci with a large effect (provided that the data 
include SNPs in LD with the QTL). Furthermore, com-
pared to GBLUP the Bayesian models allow greater vari-
ance for some SNPs, which results in less shrinkage of the 
estimates [63].

Excluding the mitochondrial SNPs and the SNPs not 
assigned to any LG (“All SNPs” vs “Only LG”) either 
increased or did not affect the estimate of heritability but 
the change was not significant for most models, except 
for BayesR. For the BayesR model, a large decrease in the 
heritability estimate was observed using the “Only LG” 
subset of SNPs, compared to “All SNPs”.

Prediction accuracy
Prediction accuracies based on tenfold random cross-
validation for different models and SNP subsets are 
shown in Fig. 2a. Prediction accuracy was estimated to 
be 0.49 using the PBLUP model. Genomic models were 
found to increase prediction accuracy compared to 
the PBLUP model for almost all SNP subsets (Fig. 2a), 
except the LD0.1 SNP subset. The relative increases in 
prediction accuracy for genomic models compared to 
PBLUP are in Additional file 3: Figure S1. It should be 
noted that in the cross-validation approach used here, 
the prediction accuracy of breeding values is estimated 
assuming a certain heritability, which here was calcu-
lated based on pedigree data. Hence, if the assumed 
heritability is set to a too low value, the estimated accu-
racies will be overestimated (i.e., the Bayesian models 
estimate a higher heritability), but the relative perfor-
mance of the different models will not be affected.
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Fig. 2  Prediction accuracy and bias of estimated breeding values for S. agalactiae resistance using different models. a Prediction accuracy. The red 
horizontal line represents the prediction accuracy using the PBLUP model (0.49). b Prediction bias. The red horizontal line represents the prediction 
bias using the PBLUP model (1). The grey lines in the bar charts represent standard errors
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Accuracy with GBLUP
For the “All SNPs” subset, prediction accuracy of the 
GBLUP model (0.56) was 15.4% higher than with the 
PBLUP model (0.49). This increase in prediction accu-
racy by replacing the pedigree-based numerator relation-
ship matrix by the genomic relationship matrix has been 
well documented in various species (e.g.   [49,  64,  66]). 
This is because the GBLUP model can use both within- 
and between-family genetic variation for traits that can-
not be measured directly on the selection candidates, 
such as disease resistance [27, 28]. The PBLUP model, in 
contrast, can use only between-family genetic variation 
for such traits.

Accuracy with Bayesian models
For the “All SNPs” subset, prediction accuracy of the 
Bayesian models was higher than that of the GBLUP 
model (Fig.  2a), with the BayesC model resulting in the 
highest prediction accuracy (0.78), followed by BayesS 
(0.72), BayesB (0.67), and BayesR (0.65). The accuracy of 
genomic prediction depends on the model applied, which 
is representative of the architecture of the trait. Depend-
ing on the genetic architecture of the traits, one or the 
other class of models may perform better, because of 
their prior assumption about the SNP effects. Bayesian 

models assume that the genetic variation is explained by 
a small fraction of the SNPs, which may have an advan-
tage over the GBLUP model when the architecture of 
the trait is (partly or entirely) controlled by a number of 
major QTL  [67], for example for some disease resistance 
traits that are controlled by a few major QTL (e.g.   [67-
70]). However, if the architecture of the trait is polygenic, 
GBLUP models may be equally accurate, or in some cases 
even superior to the Bayesian models   [67]. In our case, 
the higher accuracy of the Bayesian models may indicate 
that the trait is controlled by a limited number of major 
QTL, which is further supported by the results in Fig. 3. 
Similar to S. agalactiae, it has been reported that resist-
ance to another strain of Streptococcus spp., S. iniae, is 
also affected by a major QTL  [71]. Thus, Bayesian mod-
els can result in higher accuracies of genomic prediction 
for survival to Streptococcosis.

Effect of SNP density on prediction accuracy
For almost all the models used here, we found that the 
prediction accuracy increased or remained constant 
when only the SNPs mapped to linkage groups were 
used and when mitochondrial or unmapped SNPs were 
removed (Fig.  2). However, simulation studies have 
shown that prediction accuracy decreases gradually as 

Fig. 3  Absolute values of the estimates of SNP effects and posterior inclusion probabilities of the SNPs (PIP) obtained using different Bayesian 
models using the “Only LG” subset. The shape of the points denotes different Bayesian models and the intensity of the colour of the points denotes 
the posterior inclusion probabilities of the SNPs (the darker the colour, the lower the value)
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the SNP density decreases  [72, 73], a result that has also 
been observed with real data [65, 75]. Mitochondrial 
DNA is haploid and exclusively maternally inherited. 
However, the standard SNP calling pipeline is adapted 
to diploid SNPs, which may affect the genotype quality 
of mitochondrial SNPs and thus may explain why their 
removal increases the prediction accuracy.

By pruning SNP density based on LD, the prediction 
accuracy of GBLUP gradually increased and peaked 
at ~ 10 K SNPs (LD0.5) (Fig. 2). For BayesB, BayesC and 
BayesS, pruning did not have a positive effect and pre-
diction accuracies were highest with the highest density 
of 48.9  K SNPs (“Only LG” SNP subset). However, for 
BayesR, pruning had little effect up to 6.2 K SNPs (LD0.4), 
and the prediction accuracy was reduced at lower den-
sities (≤ 3.4  K SNPs). Across models and densities, the 
BayesC model using the 48.9K SNP panel resulted in the 
highest prediction accuracy. Genomic models with as few 
as 600 SNPs (LD0.1) were found to achieve comparable 
prediction accuracies as PBLUP (Fig. 2).

For the Bayesian models, a smaller subset of the SNPs is 
actually used to model the genetic variance for each cycle 
of the MCMC. As expected, the value of π increased with 
decreasing SNP density in almost all cases for the Bayes 
B, C and S models (see Additional file  2: Table  S2). In 
contrast, BayesR uses four π values that sum to 1 and the 
number of SNPs having a non-zero effect was predicted 
to be larger with BayesR than with the other Bayesian 
models. Furthermore, the SNPs with a non-zero effect 
overlapped between the Bayesian models (Fig. 3). In the 
“Only LG” SNP subset, BayesB, BayesC and BayesS mod-
els consistently (with respect to marker id and/or marker 
locations) included 40 to 50 SNPs with non-zero effects. 
Thus, the trait, survival to S. agalactiae infection, is con-
trolled by several large QTL and our results  obtained 
with the required minimum number of SNPs likely do 
not generalise to more polygenic traits.

Prediction bias
Prediction biases obtained by tenfold random cross-
validation and the different models and SNP subsets are 
shown in Fig.  2b. The bias was lowest with the GBLUP 
models for all datasets, while the Bayesian genomic 
models resulted in inflated GEBV, as evidenced by the 
regression coefficients of predicted phenotypes on GEBV 
that were lower than 1. Among the Bayesian models, 
GEBV were most inflated for BayesS and least inflated 
for BayesR for almost all subsets of SNP densities. For 
GBLUP, the GEBV were slightly inflated when the num-
ber of SNPs was smaller than the number of animals 
(n = 2472) and the inflation increased slightly as marker 
density decreased (i.e. the inflation was greater for the 
LD0.1 than for the LD0.2 SNP subsets).

In Nile tilapia, selection takes place in a single gener-
ation of individuals and, as a result bias does not affect 
the ranking of selection candidates and is not a major 
concern  [74]. However, for other purposes such as esti-
mation of genetic gain, bias can influence the results.

Conclusions
Our results demonstrate the potential of genomic 
selection for survival to S. agalactiae infection in Nile 
tilapia breeding programs. Using a BayesC model and 
a 48.9K SNP subset, the prediction accuracy was 71% 
higher than using a pedigree-based model, but resulted 
in more biased estimated breeding values. However, 
genomic models with as few as 600 SNPs can achieve 
comparable prediction accuracies as PBLUP. Provided 
all management practices remain constant, the poten-
tial increase in genetic gain using genomic prediction 
is probably even higher, because more information is 
available to reduce the limitations due to inbreeding of 
the sibling-based selection methods based on PBLUP, 
i.e. individual vs. family ranking.
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