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Abstract 

Background:  There is an increasing need to account for genotype-by-environment (G × E) interactions in livestock 
breeding programs to improve productivity and animal welfare across environmental and management conditions. 
This is even more relevant for pigs because selection occurs in high-health nucleus farms, while commercial pigs 
are raised in more challenging environments. In this study, we used single-step homoscedastic and heteroscedastic 
genomic reaction norm models (RNM) to evaluate G × E interactions in Large White pigs, including 8686 genotyped 
animals, for reproduction (total number of piglets born, TNB; total number of piglets born alive, NBA; total number of 
piglets weaned, NW), growth (weaning weight, WW; off-test weight, OW), and body composition (ultrasound muscle 
depth, MD; ultrasound backfat thickness, BF) traits. Genetic parameter estimation and single-step genome-wide asso‑
ciation studies (ssGWAS) were performed for each trait.

Results:  The average performance of contemporary groups (CG) was estimated and used as environmental gradient 
in the reaction norm analyses. We found that the need to consider heterogeneous residual variance in RNM mod‑
els was trait dependent. Based on estimates of variance components of the RNM slope and of genetic correlations 
across environmental gradients, G × E interactions clearly existed for TNB and NBA, existed for WW but were of smaller 
magnitude, and were not detected for NW, OW, MD, and BF. Based on estimates of the genetic variance explained by 
the markers in sliding genomic windows in ssGWAS, several genomic regions were associated with the RNM slope 
for TNB, NBA, and WW, indicating specific biological mechanisms underlying environmental sensitivity, and dozens of 
novel candidate genes were identified. Our results also provided strong evidence that the X chromosome contributed 
to the intercept and slope of RNM for litter size traits in pigs.

Conclusions:  We provide a comprehensive description of G × E interactions in Large White pigs for economically-
relevant traits and identified important genomic regions and candidate genes associated with GxE interactions 
on several autosomes and the X chromosome. Implementation of these findings will contribute to more accurate 
genomic estimates of breeding values by considering G × E interactions, in order to genetically improve the environ‑
mental robustness of maternal-line pigs.
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Background
In recent years, increased attention has been directed 
towards the genetic evaluation of genotype-by-environ-
ment (G × E) interactions for economically important 
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traits in livestock [1–3]. In pigs, dissecting G × E interac-
tions is even more important because breeding programs 
are usually conducted independently in nucleus farms, 
which differ considerably from commercial farms in 
terms of environmental conditions (e.g., climate, health 
status, nutrition, and management practices). Such het-
erogeneous environments can decrease the accuracy of 
estimated breeding values when G × E interactions are 
not accounted for in the genetic evaluation models [4]. 
Furthermore, the magnitude or ranking of estimated 
breeding values of selection candidates could differ 
between environments due to G × E interactions, which 
means that the animals that are selected based on their 
estimated breeding values for a certain environment 
might not perform well under divergent environmental 
conditions. Selective breeding of animals that perform 
well across environments is expected to improve pro-
ductivity, health, and welfare of the animals and, there-
fore, the profitability of the swine industry [5–8].

From a technological point of view, the evaluation of 
G × E interactions has been facilitated by recent advances 
in genomic technologies and analytical methods [9, 10], 
because it no longer requires the recording of phenotypes 
on close relatives in multiple environments (e.g. geograph-
ically distributed paternal half-sib offspring [11]). To date, 
only a few studies on genomic evaluation accounting for 
G × E interactions have been published for maternal-line 
pigs [12–14]. The selection indexes for terminal sire and 
maternal line pigs are different, and therefore, the biologi-
cal mechanisms that underlie heat tolerance could also 
differ (e.g., greater metabolic heat production in breeds 
selected for higher milk production, i.e., larger litters).

Analysis of G × E interactions can be accomplished 
by two main approaches [2]. The first approach consid-
ers that phenotypic measurements obtained in different 
environments are different but genetically-correlated 
traits, with analyses using multiple-trait methods. This 
approach is preferentially applied for categorical envi-
ronmental descriptors, such as temperate versus tropical 
climates [15], or organic versus conventional produc-
tion systems [16]. In the second approach, G × E interac-
tions are directly modeled using a reaction norm model 
(RNM), which is recommended for continuous environ-
mental descriptors, such as the temperature-humidity 
index (THI) [12, 13] or the estimated average perfor-
mance of contemporary groups (CG) [14, 17]. In RNM, 
the phenotypic values of each animal are regressed on 
the environmental variable to estimate breeding values 
for the regression intercept and slope for each animal [18, 
19]. The RNM approach can also be used to model non-
linear G × E interactions [20]. The RNM has been used 
for the genomic evaluation of G × E interactions in pigs 
[12–14, 21] and in dairy and beef cattle [20, 22, 23].

In the swine industry, environmental variation can be 
described in terms of quantitative differences in envi-
ronmental THI, nutrition, management practices, health 
status, and other unknown factors, noting that accurately 
quantifying environmental variation regarding nutrition 
and management practices is not easy, because these 
cannot be summarized in an index such as THI [12]. An 
alternative and commonly applied method is to use an 
estimate of the average performance of CG as a proxy for 
overall differences in environmental conditions [13].

In early studies of G × E interactions in livestock, indi-
viduals recorded in different environments were usually 
connected based on breed origin, sire progeny groups, or 
pedigree records [2]. In the genomics era, the single-step 
genomic best linear unbiased prediction method (ssG-
BLUP) is typically used for genomic evaluation because 
it can combine pedigree and genotype information in a 
single analysis [24, 25]. As a result, combining the ssGB-
LUP method with RNM (i.e., single-step genomic RNM) 
is also becoming popular in the evaluation of G × E 
interactions in livestock [12–14]. Within the ssGBLUP 
framework, the single-step genome-wide association 
study (ssGWAS) approach has been successfully used 
to include phenotypic information from non-genotyped 
individuals [26]. Thus, inclusion of single nucleotide pol-
ymorphism (SNP) genotypes in the evaluation of G × E 
interactions enables the detection of SNPs that are asso-
ciated with environment-robust or environment-sensi-
tive characteristics [20, 23].

Due to its specific gene content and dosage regulation, 
the X chromosome can have substantial effects on the 
reproductive performance of both female and male mam-
mals [27]. However, SNPs located on the X chromosome 
tend to be ignored in genomic analyses of complex traits, 
mainly because of the analytical challenges and biological 
considerations [28–30]. Recently, the inclusion of the X 
chromosome in such analyses was suggested to improve 
the accuracy of genomic prediction in both dairy and 
beef cattle [28, 31]. To the best of our knowledge, SNPs 
located on the X chromosome have rarely been included 
in genomic analyses of the pig, especially of G × E inter-
actions based on reproduction traits, and, thus, limited 
information is available on genomic polymorphisms and 
functional genes on the X chromosome that are associ-
ated with reproduction traits [13, 14, 32]. Therefore, our 
main objectives were to: (1) provide a comprehensive 
description of G × E interaction effects for various repro-
duction, growth, and body composition traits in Large 
White pigs, including SNPs on the X chromosome; (2) 
dissect the genomic regions that have effects on the RNM 
slope for G × E interaction effects; and (3) reveal candi-
date genes involved in the biological mechanisms that 
underlie G × E interactions in maternal-line pigs.
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Methods
Trait definition and data editing
All the datasets analyzed in this study were provided by 
Smithfield Premium Genetics (Rose Hill, NC, USA). 
Phenotypic records were collected on Large White pigs 
born from January 2004 to December 2019 on 33 farms 
that were geographically distributed across North Amer-
ica. Seven traits were analyzed [see Additional file  1: 
Table S1], including three reproduction traits (total num-
ber of piglets born, TNB; total number of piglets born 
alive, NBA; and total number of piglets weaned, NW), two 
growth traits (weaning weight, WW; and off-test weight, 
OW), and two body composition traits (ultrasound mus-
cle depth, MD; and ultrasound backfat thickness, BF). 
Off-test weight was defined as the body weight recorded 
at the end of the test period, when the animals were on 
average (±SD, standard deviation) 151 ± 17 days old. CG 
were defined by concatenating farrowing year, season, and 
farm for the reproduction traits, and birth year, season, 
and farm for the growth and body composition traits. CG 
with less than 10 records were removed from the analyses. 
Outliers were discarded if they deviated by more than 3.5 
SD from the trait mean. Descriptive statistics of the phe-
notypic data and CG are in Table 1.

Genomic datasets
After phenotypic quality control, the raw pedigree file 
included 265,943 animals across more than 10 genera-
tions. Ten generations were traced back when calculat-
ing the genetic and genomic relationships. In total, 
8992 animals were initially genotyped using the Porcin-
eSNP10K (8652 SNPs for 886 animals), PorcineSNP50K 
(50,549 SNPs for 5706 animals), PorcineSNP60K (57,019 

SNPs for 865 animals), or PorcineSNP80K (64,577 SNPs 
for 1535 animals) Bead Chips (Illumina, San Diego, CA, 
USA). Animals with genotyping call rates lower than 90% 
were discarded (N = 224 animals). For animals that were 
genotyped with more than one SNP panel (N = 82), the 
data from the higher-density SNP panel were kept for 
further analysis. Finally, 8686 animals (7017 females and 
1669 males) with genotype information remained in the 
dataset.

We imputed the genotypes from low- to high-density 
SNP panels using the FImpute software with default 
parameters [33] based on the following two steps: (1) 
imputation from the 10K panel (6111 SNPs) to the 50K 
panel (49,944 SNPs); and (2) imputation from the 50K 
or 60K (39,567 SNPs) panels to the 80K panel (64,577 
SNPs). Prior to imputation, SNPs that were exclusively 
included in the lower density panels were removed, 
including 2541 SNPs in the PorcineSNP10K, 605 SNPs 
in the imputed PorcineSNP50K, and 26,139 SNPs in 
the PorcineSNP60K panels. The accuracy of genotype 
imputation was not investigated here, but high impu-
tation accuracies were obtained for the same breed 
and based on a smaller reference population, even 
when imputing from much lower SNP panel densities 
[34]. After imputation, the SNP data was subjected to 
quality control using the BLUPF90 programs during 
the genomic analyses [35, 36] by requiring a call rate 
higher than 0.90, a minor allele frequency higher than 
0.01, and a difference between observed and expected 
heterozygote frequencies smaller than 0.15. In the end, 
55,375 informative SNPs on 18 autosomes (N = 53,031, 
95.8%) and the X chromosome (N = 2344, 4.2%) for 
8686 animals were included in subsequent analyses.

Table 1  Descriptive statistics for trait phenotypes and effects included in the mixed model for each trait

TNB, total number of piglets born; NBA, number of piglets born alive; NW, number of piglets weaned; WW, weaning weight (kg); OW, off-test weight (kg); MD, 
ultrasound muscle depth (mm); BF, ultrasound backfat thickness (mm)

Number of records, number of phenotypic records after quality control; SD: standard deviation; CG, contemporary group; the effects of CG are the standardized 
ranges

FP, farrowing parity; BP, birth parity; CG_R, reproduction contemporary group; CG_G, growth contemporary group

fAge, linear effect of farrowing age; fAge2, quadratic effect of farrowing age; wAge, linear effect of weaning age; wAge2, quadratic effect of weaning age; oAge, linear 
effect of off-test age; oAge2, quadratic effect of off-test age

a, additive genetic effect; pe, animal permanent environmental effect across parities; ce, litter effect

Trait Descriptive statistics Effects included in the mixed models

Number of records SD Number (estimates) of CG Fixed effects Covariates Random effects

TNB 186,189 3.41 474 (− 2.90–3.50) FP, CG_R fAge, fAge2 a, pe, ce

NBA 185,824 3.22 474 (− 3.04–3.26) FP, CG_R fAge, fAge2 a, pe, ce

NW 8164 2.74 140 (− 3.69–2.70) FP, CG_R fAge, wAge, wAge2 a, pe, ce

WW 27,412 1.87 75 (− 1.49–2.80) Sex, BP, CG_G wAge a, ce

OW 101,541 25.63 256 (− 1.93–2.01) Sex, BP, CG_G oAge, oAge2, wAge, wAge2 a, ce

MD 20,149 6.45 86 (− 1.92–2.84) Sex, BP, CG_G oAge, oAge2, wAge, wAge2 a, ce

BF 20,175 4.13 87 (− 2.72–2.46) Sex, BP, CG_G oAge, oAge2, wAge a, ce
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Model development, environmental descriptors, 
and genetic analyses
All recorded categorical fixed effects (i.e., sex, parity, 
and CG) and covariates (linear and quadratic effects 
for farrowing age, weaning age, and off-test age) were 
selected for inclusion in the model based on the back-
ward elimination procedure (P < 0.05) of the lm func-
tion in the R software [37], separately for each trait. 
Three random effects were subjected to model com-
parisons on the basis of the Akaike Information Crite-
rion (AIC) values, using the AIREMLF90 software [35, 
36]: an animal (additive genetic) effect ( a ), a permanent 
environmental effect across parities ( pe ), and a lit-
ter effect ( ce ). The final model for each trait is given in 
Table 1 and Additional file 1: Table S2.

Similar to recent studies in dairy and beef cattle [20, 
23], the average performance (or effect) of CG was 
estimated by ssGBLUP and used as environmental 
descriptors. Thus, for each trait, the effect of each CG 
was estimated using a linear model containing all the 
systematic effects described above and the best linear 
unbiased estimator (BLUE) method. Estimates of CG 
were standardized to have a zero mean and a SD equal 
to 1 for each trait, and CG that deviated by more than 
3.5 SD from the mean were removed. The standardized 
estimates of CG were used as environmental gradients 
for the genetic evaluation of G × E interactions, follow-
ing previous studies [14, 20, 23, 38].

Genetic analyses were performed using ssGBLUP and 
RNM, the fixed and random effects listed in Table  1, 
and under homogenous and heterogeneous residual 
variances. The first RNM (RNM1), which considered a 
homogenous residual variance, was defined as:

where yij is the phenotypic observation of animal j in CG 
i ; β is the vector of fixed effects/covariates described in 
Table 1, together with its row incidence vector x′

j ; θ̂i is the 
estimated effect of CG i from the previous step, b is the 
overall fixed regression coefficient of yij on θ̂i ; n0j and n1j 
are the RNM intercept and slope of animal j regressed 
on θ̂i for random effect n ( n ∈ {a, pe, ce} , as described 
in Table  1 for each trait); and eij is the random residual 
of animal j in CG i . The assumed covariance structures 
were as follows:

and

yij = x
′

jβ+ bθ̂i +
∑

(n0j + n1j θ̂i)+ eij ,

[
a0
a1

]
∼ N

(
0, H⊗

[
σ 2
a0

σa0a1
σa0a1 σ 2

a1

])
,

where σ 2
n0

 , σ 2
n1

 and σn0n1 are the variance of coefficient 
n0j , the variance of coefficient n1j , and the covariance 
between n0j and n1j , respectively. a , pe , and ce are the 
vectors of the direct genetic, permanent environment, 
and common environment effects, respectively, for the 
intercept (“0”) and slope (“1”) terms. H is the hybrid rela-
tionship matrix that combines pedigree and genomic 
relationships [39], and I is an identity matrix. The inverse 
of H ( H−1) was computed as [24]:

where A−1 is the inverse of the numerator relationship 
matrix A , A−1

22  is the inverse of A for the genotyped ani-
mals, and G−1 is the inverse of the genomic-based rela-
tionship matrix G.

The second RNM (RNM2) was similar to RNM1, except 
that heterogeneous residual variances replaced the homog-
enous residual variance. Similarly to a previous report [40], 
the residual variance in CG i was exponentially regressed 
on the estimated CG effect of θ̂i as: σ 2

ei
= exp

(
d0 + d1θ̂i

)
 , 

where d0 and d1 are the intercept and regression coeffi-
cients for fitting the residual variance [41]. All variance 
components were estimated using the average-information 
restricted maximum likelihood (REML) method imple-
mented in the AIREMLF90 software [35, 36]. The optimal 
RNM for each trait was chosen based on the AIC values.

Heritabilities and genetic correlations 
between environments
The heritability for CG i was calculated as follows [38]:

where σ̂ 2
ui

 is the estimate of the additive genetic variance, 
which was computed as σ̂ 2

ui
= σ̂ 2

a0
+ 2σ̂a0a1 θ̂i + σ̂ 2

a1

(
θ̂i

)2
 , 

and the denominator is the estimate of the phenotypic 
variance, with 

∑
σ̂ 2
ni
=

∑
σ̂ 2
n0

+ 2σ̂n0n1 θ̂i + σ̂ 2
n1

(
θ̂i

)2
 , 

where n refers to the random effects fitted for each trait 
(see Table  1). For RNM2, the component σ̂ 2

e  was calcu-
lated as σ̂ 2

ei
= exp

(
d0 + d1θ̂i

)
.

The genetic correlation for a trait between CG i and i′ 
( rii′ ) was calculated as follows:




pe0
pe1
ce0
ce1
e


 ∼ N



0, I⊗




σ 2
pe0

σpe0pe1 0 0 0

σpe0pe1 σ 2
pe1

0 0 0

0 0 σ 2
ce1

σce0ce1 0

0 0 σce0ce1 σ 2
ce1

0

0 0 0 0 σ 2
e






,

H−1 = A−1

[
0 0

0 G−1−A−1
22

]
,

h2i =
σ̂ 2
ui∑

σ̂ 2
ni
+ σ̂ 2

e

,
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where σ̂uii′ is the estimate of the covariance of additive 
genetic effects between CG i and i′ , which was computed 
as σ̂uii′ = σ̂ 2

a0
+ σ̂a0a1 θ̂i + σ̂a0a1 θ̂i′ + σ̂ 2

a1
θ̂iθ̂i′ . Genetic 

correlation estimates were calculated only for the opti-
mal RNM used for each trait (chosen based on the AIC 
values).

Accuracy and correlations of estimated breeding values 
between traits
The accuracy of genomic estimated breeding values 
(GEBV) of animal j for a trait was calculated following 
[42] as:

where ŜEj is the standard error (SE) of the coefficient for 
the RNM intercept or slope for animal j (square root of 
the diagonal elements of the inverse of the left-hand 
side), Fj is the inbreeding coefficient of animal j , and σ̂ 2

aj
 is 

the variance of the coefficient for the RNM intercept or 
slope for animal j . An estimate of the correlation of 
GEBV between traits x and y ( rg(xy) ) was obtained using 
the weighted Pearson correlation coefficient of GEBV, as 
described in [43]:

with x̄ =

∑
wjxj∑
wj

 and ȳ =
∑

wjyj∑
wj

 , where xj and yj are the 
GEBV of traits x and y , respectively, and wj is the accu-
racy-based weighting of animal j , calculated as (
Acc2xj × Acc2yj

)
/
√

Acc2xj × Acc2yj  . The SE of r̂g(xy) was 

derived as 
√(

1− r̂2
g(xy)

)
/(n− 2), where n is the number 

of selected animals that have GEBV accuracies higher 
than an empirical value of 0.35 [44, 45].

Genome‑wide association studies and functional analyses
For each trait, the optimal RNM was re-run using the 
estimated variance components and estimates of the SNP 
effects for the RNM intercept ( ̂u0 ) and slope ( ̂u1 ) were 
back-solved following [26] as û0 = IZ′

(
ZIZ′

)−1
â0 and 

û1 = IZ1
(
ZIZ1

)−1
â1 , respectively, as implemented in the 

postGSf90 software [26, 46]. Here, Z is the matrix with 
the genotypes for each SNP, and â0 and â1 are the vec-
tors of GEBV for the RNM intercept and slope, respec-
tively. The proportions of the additive genetic variance 

rii′ =
σ̂uii′√
σ̂ 2
ui
σ̂ 2
ui′

,

Accj =

√√√√
1−

ŜE
2

j(
1+ Fj

)
σ̂ 2
aj

,

r̂g(xy) =

∑
wj

(
xj − x̄

)(
yj − ȳ

)
/
∑

wj√∑
wj(xj−x̄)

2

∑
wj

×

∑
wj(yj−ȳ)

2

∑
wj

,

that were explained by sliding windows of five adjacent 
SNPs (sliding genomic windows) computed using the 
postGSf90 software were reported, and genomic win-
dows were considered to be relevant if they explained 
0.5% or more of the total additive genetic variance for a 
trait for either the intercept or the slope of the RNM [20, 
47]. Overlapping relevant windows were concatenated 
into candidate genomic regions.

We searched all candidate genomic regions in the Pig 
QTL Database (PigQTLdb, Release 42) [48] in order to 
query whether they contained previously reported quan-
titative trait loci (QTL). All known genes within the can-
didate genomic regions, including the protein-encoding 
and long non-coding RNAs (lncRNAs), were extracted 
from the reference pig genome (SusScrofa 11.1; https://​
uswest.​ensem​bl.​org/​Sus_​scrofa/​Info/​Index) using the 
biomaRt R package [49]. Functional enrichment analy-
ses of the candidate genes identified in the previous step 
were conducted using the g:GOSt function from the 
g:Profiler web server [50], including the target datasets of 
the Gene Ontology (GO) biological process [51], Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
[52], and the Human Phenotype Ontology (HPO) term 
[53]. The default parameters and method of multiple 
testing correction were used for computing P values and 
a threshold of 0.05 was set. We further illustrated the 
related biological processes of the candidate genes identi-
fied for each trait using the ClueGO software [54].

Results
Descriptive statistics of phenotypes and environmental 
descriptors
Descriptive statistics for the reproduction, growth, 
and body composition traits after quality control are 
in Table  1. In total, 186,189 records for TNB, 185,824 
records for NBA, and 8164 records for NW were availa-
ble. For the four growth and body composition traits, the 
number of phenotypic records ranged from 20,149 (MD) 
to 101,541 (OW). Up to 474 CG were defined for TNB 
and NBA, while the number of CG for the other traits 
ranged from 75 (WW) to 256 (OW). The statistical mod-
els used are in Table 1, based on selection of the recorded 
fixed and prospective random effects [see Additional 
file  1: Table  S2]. The quadratic effects of farrowing age 
(for NW) and weaning age (for WW and BF) were non-
significant and thus, were not included in the final mod-
els for these specific traits. All three random effects (i.e., 
animal, permanent environment, and common litter) 
were included for TNB, NBA, and NW, but only animal 
and common litter effects were included for WW, OW, 
MD, and BF. The density distributions of the estimates of 
CG effects are in Additional file 2: Fig. S1.

https://uswest.ensembl.org/Sus_scrofa/Info/Index
https://uswest.ensembl.org/Sus_scrofa/Info/Index
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Reaction norm models and G × E interaction
Estimates of variance components (Table  2) and their 
corresponding SE [see Additional file  1: Table  S3] were 
obtained for all seven traits with both RNM1 and RNM2. 
Based on the AIC values, the best RNM differed by trait 
(Table 2): for TNB, NBA, WW, and OW, the model with 
a heterogeneous residual variance (RNM2) provided the 
best fit, while the model with a homogenous residual var-
iance (RNM1) was best for NW, MD, and BF. However, 
differences in AIC between RNM1 and RNM2 were small 
for NW, WW, and BF. Differences in estimates of additive 
genetic variance components for either the RNM inter-
cept or slope between the homogenous and heterogene-
ous models were small for all traits, except for OW, for 
which the heteroscedastic model resulted in smaller vari-
ance component estimates.

Significant additive genetic variances for RNM slope 
were observed for TNB, NBA, and OW (P < 0.05 based 
on one-tailed t-test). Based on estimates of the variance 
components of the additive genetic effects, the esti-
mate of the genetic correlation between the RNM inter-
cept and slope were moderate for TNB (0.602 ± 0.024), 
NBA (0.425 ± 0.028), WW (− 0.368 ± 0.021), and BF 
(0.573 ± 0.196), but large for NW, OW, and MD (> 0.94).

Estimates of genetic correlations for each trait 
between levels of environmental gradients are shown 
in Fig.  1. Estimates of the genetic correlation for TNB 

(average = 0.89) and NBA (average = 0.86) decreased 
gradually as the difference between environmental gradi-
ents increased, as expected. In fact, the correlation esti-
mates were even negative (− 0.28 and − 0.40 for TNB and 
NBA, respectively) between the first and second-plus-
third tertile of the environmental gradients. For WW, 
lower genetic correlation estimates (average of 0.89 and 
minimum of 0.16) were also observed between the first-
plus-second and third tertile of environmental gradients. 
However, strong genetic correlation estimates (close to 
1.0) across environmental gradients were observed for 
the other traits (NW, OW, MD, and BF; [see Additional 
file  2: Fig. S2]). Therefore, we concluded that TNB and 
NBA are substantially and WW moderately affected by 
G × E interactions.

Estimates of heritabilities and breeding values 
across environments
For the three traits with significant G × E interactions 
(TNB, NBA, and WW), estimates of heritability across 
environments are shown in Fig. 2. The SE of the variance 
component estimates are in Additional file  1: Table  S3. 
Both TNB and NBA showed similar patterns of heritabil-
ity estimates along the environmental gradients, i.e., first 
decreasing, under the worst environmental conditions, 
and then increasing under better conditions. In addi-
tion, clear differences in the magnitude of the heritability 

Table 2  Estimates of variance components for the intercept and slope for all the models with homogenous (RNM1) and 
heterogeneous (RNM2) residual variances

TNB, total number of piglets born; NBA, number of piglets born alive; NW, number of piglets weaned; WW, weaning weight (kg); OW, off-test weight (kg); MD, 
ultrasound muscle depth (mm); BF, ultrasound backfat thickness (mm)

a, animal (additive genetic) effect; pe, animal permanent environmental effect across parities; ce, litter effect
a The two Akaike Information Criterion (AIC) values are referred to RNM1 and RNM2, respectively
b In the 2 × 2 block between every trait and random effect, the diagonals, upper triangular and lower triangular represent additive genetic variance, covariance and 
genetic correlation for the intercept and slope coefficients, respectively. The residual variances for both models (RNM1 and RNM2) are in Additional file 1: Table S3

Traits RNM1 RNM2 AICa

a pe ce a pe ce

TNBb 1.0325 0.3011 0.9173 0.3490 0.1146 0.0327 1.0024 0.2533 0.7903 0.1294 0.1132 0.0199 950,276.38

0.7150 0.1718 0.9999 0.1328 0.9999 0.0932 0.6020 0.1766 0.9989 0.0212 0.9976 0.0035 948,339.79

NBA 0.8056 0.1612 0.7395 0.2975 0.0913 0.0203 0.8014 0.1620 0.6462 0.1199 0.0882 0.0185 936,031.17

0.4290 0.1754 0.7592 0.2076 0.3627 0.0344 0.4247 0.1816 0.3273 0.2078 0.3178 0.0382 935,390.49

NW 0.2806 − 0.0360 0.1117 − 0.0289 0.1428 − 0.0902 0.2804 − 0.0353 0.1005 0.0164 0.1447 − 0.0892 38,228.143

− 0.9935 0.0047 − 0.3316 0.0679 − 0.9999 0.0570 − 0.9866 0.0046 0.1839 0.0788 − 0.9999 0.0550 8228.26

WW 0.1988 0.0415 − − 0.9854 − 0.0040 0.1348 − 0.0184 − − 0.9831 − 0.0014 100,784.49

0.5099 0.0334 − − − 0.5599 0.0001 − 0.3686 0.0185 − − − 0.2317 0.0000 100,780.17

OW 102.570 31.4820 − 32.7150 0.7261 56.9330 8.9481 −  −  33.0810 0.3088 790,691.03

0.9776 10.110 − − 0.9915 0.0164 0.9423 1.5838 − − 0.9985 0.0029 790,366.96

ND 10.5220 0.4543 − − 3.4842 1.0041 10.3670 0.8726 − − 3.4046 1.0458 127,475.18

0.9409 0.0222 − − 9989 0.2900 0.9855 0.0756 − − 0.9977 0.3227 127,497.83

BF 7.3740 0.5134 − − 1.2345 − 0.2079 7.3650 0.5051 − − 1.2332 − 0.2083 109,070.95

0.5726 0.1090 − − − 0.9994 0.0351 0.5668 0.1078 − − − 0.9937 0.0356 109,072.95
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estimates between RNM1 and RNM2 were only observed 
for the extreme environmental conditions. For WW, 
using RNM1 or RNM2 generated an opposite trend in 
the heritability estimates when environmental conditions 
increased (i.e., heritability estimates increased from 0.05 
to 0.20 across environmental conditions for RNM1 but 
slightly decreased from 0.08 to 0.05 for RNM2.

Among the animals that had more than 30 offspring 
(i.e., more accurate GEBV with progeny distributed 
across multiple environmental gradients), Fig.  3 shows 
the GEBV for the 20 sires with the highest or lowest 
GEBV for the RNM slope across environments. These 
sires had the lowest accuracies for WW, with a mean 
(± SD) of 0.64 ± 0.07 for the GEBV of the RNM intercept 
and of 0.38 ± 0.06 for the GEBV of the slope. Re-rank-
ings of animals were clearly observed for both TNB and 

NBA when changing from the worst to the best environ-
mental conditions. A trend towards re-ranking was also 
observed for WW under the best environmental condi-
tions. Furthermore, we selected all the animals that had 
more than 10 offspring and a GEBV accuracy for each 
trait higher than 0.30, and calculated the Spearman’s 
rank correlation of GEBV between three representative 
environmental conditions (i.e., ~ 15, 50, and 85% quan-
tiles of environmental gradient, respectively) [see Addi-
tional file 1: Table S4]. For TNB and NBA, we observed a 
moderate and low Spearman’s rank correlation of GEBV 
between the worst and medium environments (0.614 
and 0.669), and between the worst and best environ-
ments (0.298 and 0.319), respectively. For WW, the low-
est Spearman’s rank correlation of GEBV, i.e. 0.93, was 
between the worst and best environmental conditions.

Fig. 1  Estimates of genetic correlations across environmental gradients. Pearson correlation coefficients (cor) are represented by colors with the 
mean values (M) shown below; please note that different scales of color were used according to trait; TNB: total number of piglets born; NBA: 
number of piglets born alive; WW: weaning weight (kg)
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For completeness, we also calculated the estimates of 
heritabilities and the GEBV across environments and 
performed GWAS for the four traits that did not show 
significant G × E interactions (NW, OW, MD, and BF). 
These results are described in Additional file 3 and pre-
sented in Additional file 1: Tables S5 and S6 and in Addi-
tional file 2: Fig.s S3 to S6.

Correlations of GEBV between traits
Before estimating the correlations of GEBV between 
traits, we investigated the accuracies of GEBV for the 
RNM intercept and slope for each trait [see Additional 
file 1: Table S7]. For the RNM intercept, the highest and 
lowest average accuracies of GEBV for all animals were 
observed for OW [0.649, 95% confidence interval (CI) of 
0.648–0.649] and NW (0.393, 95% CI of 0.391–0.395), 
respectively. The RNM slopes had relatively lower accu-
racies of GEBV that ranged from 0.292 (95% CI of 0.291–
0.293) for WW to 0.606 (95% CI of 0.605–0.606) for OW. 
For the estimation of the correlation between TNB and 
WW, the number of selected animals (N = 2252) was the 
smallest [see Additional file  1: Table  S8]. The estimated 

weighted Pearson correlation between RNM intercepts 
and slopes of traits are shown in Fig. 4.

Among the seven traits analyzed, the highest positive 
correlations of GEBV were between TNB and NBA, with 
values of 0.91 for the RNM intercept and 0.85 for the 
RNM slope. Both TNB and NBA had negative correla-
tions with NW for the GEBV of the RNM slope (0.11–
0.35) and with WW for the GEBV of the RNM intercept 
(0.13–0.28). Also, TNB and NBA had negative correla-
tions with growth and body composition traits for both 
the RNM intercept and slope (OW, MD, and BF). The 
RNM intercept and slope of WW had positive (~ 0.28) 
and negative (~ 0.27) correlations with OW, respectively. 
The GEBV correlations ranged from 0.15 to 0.25 between 
MD and BF for the RNM intercept and slope. However, 
we observed moderate and positive GEBV correlations of 
OW with MD (0.36–0.40) and BF (0.57–0.60). Between 
the intercept-by-intercept and slope-by-slope compari-
sons, the GEBV correlations were in opposite directions 
for 12 of the comparisons, such as for TNB with NW, 
WW with OW, and WW with MD (Fig. 4).

Fig. 2  Heritability estimates using reaction norm models with homogenous (RNM1) and heterogeneous (RNM2) residual variances. Respective 
optimal RNM for each trait are marked by the solid lines; TNB: total number of piglets born; NBA: number of piglets born alive; WW: weaning weight 
(kg)
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Genome‑wide association studies
For TNB, NBA, and WW, 27 relevant 5-SNP win-
dows were identified, which were concatenated into 16 
genomic regions with 65 SNPs, distributed on five auto-
somes and the X chromosome, each explaining 0.5% 
or more of the additive genetic variance (Table  3 and 
Fig.  5). Among these, four genomic regions on the Sus 
scrofa (SSC) chromosome X (SSCX) and one window 
on SSC12 overlapped between TNB and NBA. For TNB 
and NBA, no genomic windows were significant for both 
the RNM intercept and slope, and the numbers of rel-
evant genomic windows were larger for the slope than 
for the intercept (i.e., 6 versus 2 for TNB, and 10 versus 
4 for NBA). In contrast, for WW more relevant genomic 
windows were found for the RNM intercept (4/5) than 
for the RNM slope (1/5). More than half of the relevant 
genomic windows were located on SSCX for TNB (5/8) 
and NBA (12/14), while only one genomic window (1/5) 
was located on SSCX for WW. Based on the estimated 
SNP effects (Fig.  6), the correlation between the RNM 
intercept and slope was moderately positive for TNB and 

NBA (0.72 and 0.54, respectively) but negative for WW 
(− 0.92).

Functional investigation of the identified relevant genomic 
regions
We searched all the relevant genomic regions using the 
PigQTLdb and found that most of them (13/16) were 
located within previously reported QTL for the same (or 
a biologically associated) trait (Table  4). Among these, 
previously reported QTL for litter size, number of mum-
mified pigs, plasma FSH (follicle-stimulating hormone) 
concentration, and health-associated QTL (such as path-
ogen susceptibility and immunity response) were asso-
ciated with the relevant genomic regions for TNB and 
NBA identified in this study. The four relevant genomic 
regions for WW were located within previously reported 
QTL for traits such as WW, birth weight, and immu-
nity response. The relevant genomic regions included 19 
protein-encoding and one lncRNA genes (Table  3 and 
Additional file  1: Table  S9). In addition to the five can-
didate genes on SSCX that were shared between TNB 
and NBA, two additional candidate genes were found on 

Fig. 3  Genomic estimated breeding values (GEBV) of the three traits with clear G×E interactions for 20 sires with the highest and lowest GEBV for 
reaction norm slopes. TNB: total number of piglets born; NBA: number of piglets born alive; WW: weaning weight (kg).
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SSCX for NBA. Four relevant genomic regions on SSCX 
were jointly supported by three or more overlapping 
sliding windows, including the regions for TNB from 
19,844,004 to 20,026,618 bp, and for NBA from 7198,352 
to 7,307,313 bp, from 91,889,310 to 92,034,525 bp, and 
from 122,118,491 to 122,365,194 bp.

No significantly enriched GO biological process or 
KEGG pathway was revealed for any of the traits in the 
functional enrichment analyses. Thus, we investigated 
the involved biological processes for each candidate 

gene [see Additional file  2: Fig. S6]. Thirteen of the 20 
candidate genes were involved in one or more biologi-
cal processes and some of these genes have positive bio-
logical implications, such as the GO terms of “Negative 
regulation of microtubule depolymerization” and “Man-
ganese ion transport” for TNB and NBA. Furthermore, 
five HPO terms of the penile hypospadias (HP:0003244), 
blind vagina (HP:0040314), glandular hypospadias 
(HP:0000807), penoscrotal hypospadias (HP:0000808), 

Fig. 4  Correlations of genomic estimated breeding values (lower triangle with standard errors in the upper triangle) between traits for reaction 
norm intercepts and slopes. The x-axis and y-axis are the concatenation of traits and RNM items, for instance, “TNB_Itc” and “TNB_Slp” represent the 
RNM intercept (Itc) and slope (Slp) of the “TNB” trait, respectively. Within each trait, the real value of the genetic correlation between RNM intercept 
and slope is not shown here; TNB: total number of piglets born; NBA: number of piglets born alive; NW: number of piglets weaned; WW: weaning 
weight (kg); OW: off-test weight (kg); MD: ultrasound muscle depth (mm); BF: ultrasound backfat thickness (mm)
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and X-linked recessive inheritance (HP:0001419) were 
suggested for the three MAMLD1 (mastermind like 
domain containing 1), MTM1 (myotubularin 1), and 
MID1 (midline 1) genes that were associated with NBA 
[see Additional file 2: Fig. S7].

Discussion
Although the existence of G × E interactions for quanti-
tative traits in livestock has been widely recognized for 
many decades [55], significant progress in genetic and 
genomic evaluations of GxE interactions has emerged 
only during recent years, mainly due to advances in 
genomic technologies and analytic methods [9, 10]. In an 
early study, Schinckel et  al. [56] reared multiple genetic 

pig populations under different environments and pro-
vided conclusive evidence that considering G × E inter-
actions is an important factor to be considered when 
genetically evaluating pigs. By comparing the perfor-
mance of the progeny of boars from three terminal lines, 
the genotype-by-feeding-level interactions were evalu-
ated for average daily feed intake, growth rate, feed con-
version ratio, and backfat [57]. These studies on G × E 
interactions in pigs, together with those of Knap et  al. 
[58], Wallenbeck et al. [16], Brandt et al. [59], Li et al. [17], 
Rosé et al. [60], and Godinho et al. [61] were conducted 
using well-known pig breeds, progeny groups of sires, 
or purebred-crossbred populations to represent differ-
ent genomic backgrounds. However, the inter-individual 

Table 3  Relevant genomic windows with the explained genetic variances and associated candidate genes

TNB, total number of piglets born; NBA, number of piglets born alive; WW, weaning weight (kg)
a Genomic windows are defined by the five adjacent SNPs that explained 0.5% or more of the total additive genetic variance; Chr, chromosome; positions refer to 
Sscrofa11.1
b Explained genetic variances in percent for intercept (Int) and slope (Slo) by five adjacent SNPs; explained variances with ≥ 0.5% are denoted in italics.

Candidate genes are represented by the gene symbol when available, otherwise by the Ensembl gene ID. The long noncoding RNA genes are marked by marked by 
an asterisk (*)

Trait Genomic windowa Variance (%)b Candidate genes

Chr Positions (bp) Int Slo

TNB SSC3 5,934,183–5,978,000 0.61 0.00 TRRAP

SSC12 37,811,479–37,872,427 0.27 0.60 ENSSSCG00000039473

SSC14 134,570,084–134,625,180 0.06 0.59 None

SSCX 7,243,129–7,307,313 0.52 0.16 MID1

19,844,004–19,985,584 0.11 0.89 ACOT9, SAT1, APOO, CXorf58

19,885,476–20,012,307 0.15 1.09

19,911,826–20,026,618 0.10 0.74

91,905,396–92,010,688 0.37 0.77 TRPC5

NBA SSC5 69,872,903–70,055,268 0.54 0.00 ENSSSCG00000000769, MICAL3

SSC12 37,811,479–37,872,427 0.20 0.56 ENSSSCG00000039473

SSCX 7,198,352–7,278,758 0.53 0.20 MID1

7,213,512–7,293,780 0.60 0.15

7,243,129–7,307,313 0.61 0.07

19,844,004–19,985,584 0.01 0.60 ACOT9, SAT1, APOO

19,885,476–20,012,307 0.02 0.74

91,889,310–91,994,567 0.14 0.57 TRPC5

91,905,396–92,010,688 0.23 0.98

91,966,658–92,025,442 0.13 0.55

91,979,985–92,034,525 0.10 0.58

122,118,491–122,263,709 0.40 0.52 MAMLD1, MTM1

122,149,267–122,298,170 0.41 0.52

122,194,006–122,365,194 0.49 0.62

WW SSC1 141,889,209–142,070,404 0.52 0.47 UBE3A, ENSSSCG00000050514*

SSC5 41,461,124–41,616,882 0.64 0.46 PKP2, YARS2, ENSSSCG00000000530

69,770,951–70,055,268 0.51 0.37 ATP6V1E1, BCL2L13, ENS‑
SSCG00000000769, MICAL369,872,903–70,106,805 0.56 0.39

SSCX 91,438,755–91,518,334 0.18 0.54 DCX
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genetic differences within breeds or progeny groups were 
not appropriately accounted for in these studies.

Using the pedigree-based relationship matrix ( A ), 
Sevillano et al. [62], Godinho et al. [63], and Gourdine 
et al. [15] evaluated GxE interactions for economically 
important traits in pigs under various environmen-
tal conditions, including photoperiod regimes, ambi-
ent temperature, and feed composition. In 2014, the 
genomic relationship matrix ( G ) based on genome-
wide SNPs was first used to evaluate G × E interac-
tions for TNB in pigs [38] and the inclusion of genomic 
information was found to improve selection accuracy 
across environments. Subsequently, genetic evalua-
tion of G × E interactions using single-step genomic 
RNM (i.e., using the hybrid H matrix instead of G ) was 
proposed for growth traits in response to heat stress 
in purebred nucleus and commercial crossbred pigs 
[12]. Recently, G × E interactions have also been stud-
ied for two growth [14] and three reproduction [13] 
traits in pigs using single-step genomic RNM, in which 

environmental gradients were quantified based on the 
estimated average performances of CG and covari-
ates derived from weather records, respectively. In our 
study, we used the average performance of CG as envi-
ronmental gradients and comprehensively evaluated 
G × E interactions using the single-step genomic RNM 
for seven reproduction, growth, and body composition 
traits in Large White pigs, which represents one of the 
most commonly raised maternal line breeds. Analy-
sis of multiple economically important traits using the 
same statistical method enabled a more straightfor-
ward comparison of G × E interactions between traits. 
In addition, we incorporated SNPs that are located on 
the X chromosome in the genomic analyses, which are 
frequently ignored in studies of this nature. However, 
we acknowledge that alternative methods for incorpo-
rating SSCX markers in a ssGBLUP setting should be 
evaluated in future studies.

Fig. 5  Miami plots for the proportion of the total additive genetic variance explained by 5-SNP sliding genomic windows. The intercept and slope 
terms of the reaction norm model are placed on the upper and lower arms of the y-axis, respectively; each open dot represents a SNP, while all SNPs 
within the relevant genomic windows are denoted as solid diamonds; TNB: total number of piglets born; NBA: number of piglets born alive; WW: 
weaning weight (kg)
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Reaction norm models
The RNM is an effective approach for the evaluation 
of G × E interactions with continuous environmental 
descriptors, where animals raised in different environ-
ments can be connected to each other using pedigree 
and/or genomic information [2]. Zhang et al. [23] stud-
ied G × E interactions for reproduction traits in Hol-
stein cattle and indicated that the use of the H matrix 
in RNM can improve prediction accuracy, as it is com-
monly done in other studies in pigs [12, 14, 22]. Thus, 
in this study, we also used the RNM coupled with the 
H matrix. Since inheritance patterns differ between the 
autosomes and the X chromosome, specific approaches 
(such as different genotyping coding rules) must be 

used to include SSCX SNPs in the construction of 
genomic-based relationship matrices [28, 64, 65]. In 
addition to the dosage compensation effect in females 
[30], the different number of copies of the X chromo-
some between males and females complicates the cal-
culation of individual relationships. However, Su et  al. 
[28] found that exclusion of X-chromosome markers 
had only a small effect on the accuracy of GEBV for 15 
traits included in the Nordic Total Merit index of Nor-
dic Holstein bulls. In our study, we evaluated exclusion 
of either the X-chromosome markers (N = 2344, 4.2%) 
or the genotyped males (N = 1669) for the two traits 
with significant G × E interactions (TNB and NBA) 
and we did not find significant changes in heritability 

Fig. 6  Estimates of correlation between SNP effect estimates for the reaction norm intercept and slope. TNB: total number of piglets born; NBA: 
number of piglets born alive; WW: weaning weight (kg)
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estimates or GEBV accuracies when excluding the 
X-chromosome markers from the analyses [see Addi-
tional file 2: Fig. S8]. However, construction of a sepa-
rate relationship matrix that is based only on SNPs 
from the X-chromosome is recommended for future 
studies. The small number of SNPs on the X-chromo-
some usually results in singular matrices, which is a 
challenge for ssGBLUP analyses [61]. Therefore, future 
studies should investigate modelling of the relationship 
matrices that include SNPs on the X-chromosome in 
a ssGBLUP setting, as proposed by Druet and Legarra 
[61].

Another important issue regarding the evaluation of 
G × E interactions involves the modelling of homog-
enous or heterogeneous residual variances between dif-
ferent environmental conditions in RNM. Carvalheiro 
et al. [20] analyzed G × E interactions for post-weaning 
weight gain in beef cattle (Nellore, Bos taurus indicus) 
using a comprehensive dataset and suggested that RNM 
with heterogeneous residual variances (termed hetero-
scedastic RNM) provided a better fit to the data than 
a homoscedastic RNM. However, our findings show 
that, actually, the choice of homogenous or heteroge-
neous residual variances is trait-dependent because the 
best fit was obtained with the homoscedastic RNM for 
three of the seven traits (NW, MD, and UF). The two 
RNM studies performed on pigs, by Song et al. [14] and 
Tiezzi et  al. [13], only used either homoscedastic or 

heteroscedastic RNM, respectively, and different mod-
els for residual variances were not compared.

G × E interactions and genetic parameters
Estimates of the variance components for the RNM 
slope and of the genetic correlations between differ-
ent environmental conditions can be used to evaluate 
whether G × E interactions are present or not. In gen-
eral, estimates of genetic variance of RNM slopes that 
significantly differed from zero and/or of genetic cor-
relations between different environments that are lower 
than 0.8 have been proposed as evidence of G × E inter-
actions in livestock [2, 23]. In this context, our study 
revealed significant G × E interactions for TNB and 
NBA according to both the estimates of the genetic 
variance of RNM slopes and of the genetic correla-
tions between environments. However, a possible G × E 
interaction (or a trend) was also suggested for WW, 
because low genetic correlation estimates between 
the first-plus-second and third tertile of environmen-
tal gradients were found. G × E interactions were not 
observed for NW, OW, MD, and BF. With respect to the 
GEBV, the re-ranking of pigs across environments also 
support the conclusion of the presence of G × E inter-
actions for TNB, NBA, and WW, but not for the other 
traits. Overall, our results regarding G × E interactions 
in pigs are consistent with other reports for TNB and 
NBA [13, 17]. However, different conclusions were 

Table 4  Previously reported quantitative trait loci (QTL) for related traits within candidate genomic regions

TNB, total number of piglets born; NBA, number of piglets born alive; WW, weaning weight (kg)
a Genomic regions are concatenated by the overlapped genomic windows shown in Table 3, and the positions are referred to Sscrofa11.1

Trait Genomic region (bp)a Related QTL (number of reports)

TNB SSC3: 5,934,183–5,978,000 Litter size (1), teat number (1), corpus luteum number (1), body weight at birth (1)

SSC12: 37,811,479–37,872,427 Teat number (7), body weight at birth (1), pathogen susceptibility (2), immunity response (3)

SSC14: 134,570,084–134,625,180 Teat number (3), number of mummified pigs (3), body weight at birth (1), maternal infanti‑
cide (1), immunity response (1)

SSCX: 7,243,129–7,307,313 Teat number (1)

SSCX: 19,844,004–20,026,618 None

SSCX: 91,905,396–92,010,688 Plasma FSH concentration (1), testicular parenchyma color (1), immunity response (1)

NBA SSC5: 69,872,903–70,055,268 Number of stillborn (1), teat number (1), immunity response (1)

SSC12: 37,811,479–37,872,427 Teat number (7), body weight at birth (1), pathogen susceptibility (2), immunity response (3)

SSCX: 7,198,352–7,307,313 Teat number (1)

SSCX: 19,844,004–20,012,307 None

SSCX: 91,889,310–92,034,525 Plasma FSH concentration (1), testicular parenchyma color (1), immunity response (1)

SSCX: 122,118,491–122,365,194 None

WW SSC1: 141,889,209–142,070,404 Teat number (3), body weight at weaning (3), body weight at birth (1), immunity response 
(5), melanoma susceptibility (2)

SSC5: 41,461,124–41,616,882 Number of stillborn (1), teat number (1), immunity response (1)

SSC5: 69,770,951–70,106,805 Number of stillborn (1), teat number (1), immunity response (1)

SSCX: 91,438,755–91,518,334 Plasma FSH concentration (1), testicular parenchyma color (1), immunity response (1)
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previously reported for BF, including the absence [38] 
or presence [14, 60, 66] of G × E interactions in pigs. 
Moreover, Fragomeni et  al. [12] observed a significant 
G × E interaction for body weight at ~ 170 days of age 
in purebred Duroc but not in crossbred animals. These 
results suggest that a heterogeneous biological basis 
underlies the G × E interaction, which may depend on 
the genetic background of the population studied and/
or the type of environment involved.

Heritability estimates vary considerably between 
environments when taking G × E interactions into 
consideration. Silva et al. [38] used the average perfor-
mances of CG as environmental gradients and reported 
the highest (0.13) and lowest (0.04) heritability esti-
mates for TNB under the best and medium environ-
mental conditions, respectively. Based on the average 
relative humidity before conception or the average THI 
index during the pregnancy of sows [13], lower herit-
ability estimates were observed when environmental 
conditions became more uncomfortable (e.g., too low 
or too high temperatures), from 0.12 to 0.02 for TNB 
and from 0.23 to 0.02 for NBA. The patterns of herita-
bility estimates across environments (i.e., curve shapes) 
observed in our study were similar to those reported in 
the literature [13, 38]. In addition, our heritability esti-
mate for WW agreed with that reported previously in 
Large White, Yorkshire, and Landrace pigs (0.01–0.08) 
[67, 68].

To date, few studies have investigated the genetic 
relationships between traits when accounting for G × E 
interactions. According to the GEBV correlations cal-
culated among all the studied traits, we found the high-
est positive correlations between TNB and NBA for 
both the RNM intercept and slope, which are similar 
to the high estimates previously reported [69, 70]. This 
suggests that the GEBV correlations calculated in this 
study are reliable. However, only relatively low posi-
tive correlations were observed for the RNM intercepts 
between NW and TNB/NBA in spite of the high esti-
mates (0.76–0.91) previously reported in the Finnish 
Landrace and Large White populations without consid-
ering G × E interaction [69]. In contrast to the moder-
ate negative genetic correlations reported in a previous 
study [68], OW had relatively low positive and negative 
correlations with the RNM intercept and slope of WW, 
respectively. We observed moderate positive correla-
tions of OW, MD, and BF with both the RNM intercept 
and slope, as reported in previous studies [71]. Fur-
thermore, we observed that the genetic correlations 
between the RNM intercept and slope were often in 
opposite directions, which suggests that different rela-
tionships exist between average performance and envi-
ronmental sensitivity of traits.

Dissection of SNP effects and functional implications
Although several candidate genomic windows were 
found to be associated with the traits investigated in this 
study, we believe that this number is probably conserva-
tive, because of the stringent setting applied, i.e. the rel-
evant genomic windows were required to explain 0.50% 
or more of the total additive genetic variance. Alter-
natively, a less stringent method would be to select the 
top-N candidate genomic windows according to the mag-
nitude of the explained variance or approximate P-value 
of SNPs, as used in previous studies [13, 14]. However, 
the candidate genomic regions identified in our study 
overlapped with previously identified QTL for the same 
or biologically-related traits. The use of RNM provides 
an opportunity to distinguish the SNP effects as either 
environment-robust or environment-sensitive, which 
is a method that has been commonly used in studies on 
G × E interactions in livestock (e.g. [13, 14, 20, 23]).

In this study, we observed that most of the candidate 
genomic windows (> 70%) for TNB and NBA are involved 
in environmental sensitivity, as they are associated with 
the RNM slope. In this context, it is important to high-
light that these relevant genomic windows were mainly 
located on SSCX. However, no SNP in the candidate 
genomic regions for TNB and NBA overlapped with the 
hundreds of candidate SNPs for the two traits published 
in a recent similar study in pigs by Tiezzi et  al. [13]. A 
possible reason for this, apart from the small number of 
candidate SNPs in our study, is that the X chromosome 
was not included in the study by Tiezzi et al. [13]. Cur-
rently, the PigQTLdb includes more than 300 QTL that 
have been found to be significantly associated with TNB 
and NBA in pigs [32] but less than 10 of these SNPs are 
located on SSCX because this chromosome was not com-
monly included in previous studies. Interestingly, the two 
candidate genes on SSCX detected in our study, MID1 
and TRPC5 (transient receptor potential cation channel 
subfamily C member 5), have been reported to be sig-
nificantly associated with NBA and other reproduction 
traits in Landrace and Large White pigs [72]. The other 
two genomic regions located on SSCX could include 
genes that are functionally involved in litter size traits in 
pigs, for example, the MAMLD1 and MTM1 genes. These 
genes, together with MID1, are known to have a role in 
reproduction-related phenotypes in humans [73, 74]. 
Both the observed number of relevant genomic windows 
and the functional implications of the candidate genes 
provide further evidence regarding the biological con-
tribution of the X chromosome to TNB and NBA, which 
also suggests the importance of including the X chro-
mosome in the genetic evaluation of G × E interactions, 
especially for reproduction traits. As a next step, we will 
evaluate more sophisticated approaches to include the 
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markers on SSCX in ssGBLUP analyses, compare the 
use of average performance of contemporary groups and 
other environmental gradient levels (e.g., temperature, 
relative humidity), and perform functional genomic anal-
yses to identify the potential causal mutations located in 
the relevant genomic regions.

Among the five relevant genomic windows found for 
WW, four and one genomic windows were independently 
associated with the RNM intercept and slope, respectively. 
Although little biological evidence is available in the litera-
ture on candidate genes for WW, the genomic region on 
SSCX is closely located to one candidate gene (TRPC5) for 
TNB and NBA. In addition, the relevant genomic regions 
for WW overlap with multiple previously reported QTL 
for health-related traits in pigs, including melanoma sus-
ceptibility and immune response [75, 76], which represent 
reasonable links between WW and health-related perfor-
mance. Furthermore, the genomic region on SSC1 found 
for WW is supported by a series of previously reported 
QTL for growth traits in pigs. The candidate gene for 
WW, UBE3A (ubiquitin protein ligase E3A), has also been 
reported to be associated with TNB in pigs [77].

Conclusions
In this study, we fitted the average performance of con-
temporary group as the environmental gradient and 
comprehensively evaluated G × E interactions using the 
single-step genomic RNM method for reproduction, 
growth, and body composition traits in Large White pigs. 
GxE interactions were detected for two reproduction 
traits (TNB and NBA) and suggested for WW. No G × E 
interaction was observed for the other four traits (NW, 
OW, MD, and BF). For the RNM, the choice of homoge-
neous or heterogeneous residual variances depended on 
the trait studied. By dissecting the SNPs with different 
effects across environmental gradient levels, we detected 
several candidate SNPs, genes, and genomic regions, 
which contribute to better understand the biological 
basis of G × E interactions for these traits. Furthermore, 
our results emphasize the biological contribution of the 
X chromosome to reproduction traits in pigs, especially 
regarding their G × E interactions.
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