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Abstract 

Background:  Genomic selection using single nucleotide polymorphism (SNP) markers has been widely used for 
genetic improvement of livestock, but most current methods of genomic selection are based on SNP models. In this 
study, we investigated the prediction accuracies of haplotype models based on fixed chromosome distances and 
gene boundaries compared to those of SNP models for genomic prediction of phenotypic values. We also examined 
the reasons for the successes and failures of haplotype genomic prediction.

Methods:  We analyzed a swine population of 3195 Duroc boars with records on eight traits: body judging score 
(BJS), teat number (TN), age (AGW), loin muscle area (LMA), loin muscle depth (LMD) and back fat thickness (BF) at 
100 kg live weight, and average daily gain (ADG) and feed conversion rate (FCR) from 30 to100 kg live weight. Ten-fold 
validation was used to evaluate the prediction accuracy of each SNP model and each multi-allelic haplotype model 
based on 488,124 autosomal SNPs from low-coverage sequencing. Haplotype blocks were defined using fixed chro-
mosome distances or gene boundaries.

Results:  Compared to the best SNP model, the accuracy of predicting phenotypic values using a haplotype model 
was greater by 7.4% for BJS, 7.1% for AGW, 6.6% for ADG, 4.9% for FCR, 2.7% for LMA, 1.9% for LMD, 1.4% for BF, and 
0.3% for TN. The use of gene-based haplotype blocks resulted in the best prediction accuracy for LMA, LMD, and TN. 
Compared to estimates of SNP additive heritability, estimates of haplotype epistasis heritability were strongly corre-
lated with the increase in prediction accuracy by haplotype models. The increase in prediction accuracy was largest 
for BJS, AGW, ADG, and FCR, which also had the largest estimates of haplotype epistasis heritability, 24.4% for BJS, 
14.3% for AGW, 14.5% for ADG, and 17.7% for FCR. SNP and haplotype heritability profiles across the genome identi-
fied several genes with large genetic contributions to phenotypes: NUDT3 for LMA, LMD and BF, VRTN for TN, COL5A2 
for BJS, BSND for ADG, and CARTPT for FCR.
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Background
Genomic prediction using single nucleotide poly-
morphism (SNP) markers has been widely used for 
livestock, but most current methods of genomic pre-
diction use additive SNP models and only a limited 
number of studies have used haplotype models [1–10]. 
In general, these studies have achieved little to sub-
stantial improvement in prediction accuracies when 
using haplotype compared to SNP models. Methods 
used to define haplotype blocks for genomic prediction 
included a fixed number of SNPs per haplotype block 
[1, 2, 4, 9, 10], a fixed block length [8, 9], or linkage 
disequilibrium (LD) blocks [3, 5–7, 9]. However, none 
of the previous haplotype prediction models has used 
gene information or SNP dominance effects. A recent 
study using human data showed that functional genome 
information, including gene information, was relevant 
to the accuracy of haplotype genomic prediction of 
phenotypes, primarily as a result of haplotype epistasis, 
and that less accurate estimation of SNP effects by hap-
lotype models was responsible for the failures of hap-
lotype genomic prediction [11]. However, to date, the 
use of functional genomic information for haplotype 
genomic prediction and assessment of the successes 
and failures of haplotype genomic prediction have not 
been reported in swine.

Low-coverage sequencing (LCS) of a large num-
ber of individuals has proven to be more informative 
than sequencing fewer individuals at higher coverage 
because of the use of shared stretches of the genome 
across the population and haplotype diversity [12, 13]. 
With advances in sequencing and imputation algo-
rithms, LCS can cover almost the whole genome and 
capture most of the variation in the population with 
high accuracy at low cost, making LCS a powerful and 
cost-effective genotyping tool.

In this study, we conducted an extensive evaluation of 
the accuracy of haplotype models for genomic predic-
tion of phenotypic values for eight traits in Duroc pigs, 
using fixed chromosome distances and gene bounda-
ries to define haplotype blocks of SNPs from LCS. For 
each method of haplotype block construction, one hap-
lotype model, two SNP models, and three models that 
combine SNP and haplotype effects were evaluated for 
prediction accuracy. We also investigated the reasons 
for the successes and failures of the haplotype models 

using relative haplotype epistasis heritability and the 
comparison of SNP and haplotype heritability profiles 
[11].

Methods
Animals and phenotyping
Animal and phenotype data used for this study were 
provided by the Guangdong Wen’s Foodstuff Group 
(Guangdong, China). The swine population consisted of 
3195 Duroc boars born from September 2011 to Septem-
ber 2016 on a single nucleus farm, with most of the pigs 
(3108 out of 3195) born from September 2011 to March 
2014. The eight traits analyzed included age at 100  kg 
live weight (AGW, in days), average daily gain during 
30–100 kg live weight (ADG, in g), back fat thickness at 
100 kg live weight (BF, in mm), body judging score (BJS, 
ranging from 1 to 10), feed conversion ratio from 30 to 
100 kg live weight (FCR), loin muscle area at 100 kg live 
weight (LMA, in mm2), loin muscle depth at 100 kg live 
weight (LMD, in mm), and total teat number (TN). Trait 
measurements began when the weight of pigs reached 
30 ± 5  kg (average age 80 ± 8.4  days). Trait statistics are 
summarized in Additional file 1: Table S1.

The initial weight was measured 12  h after discon-
tinuation of feeding. Single-space automatic feed intake 
recording equipment (FIRE, Osborne, KS, USA) was used 
to collect the feed intake and weight of the pigs. When 
a pig entered the measuring station, it was identified by 
radio frequency identification ear tags and the time and 
duration of each feeder visit, the weight of feed consumed 
per visit, and the cumulative feed consumed for each pig 
over a 24-h period were recorded. Daily feed intake was 
computed as the total feed intake during a 24-h period 
and daily weight each pig was computed as the average 
weight of the pig for the same 24-h period. Feeding was 
stopped in the afternoon of the day when the weight of 
each pig reached 100 ± 5 kg (average age 160 ± 9.0 days), 
and the final weight was recorded 12 h after feeding was 
stopped. Average daily gain was calculated based on 
daily gain from 30 to 100 kg live weight. The FCR from 
30 to 100 kg was calculated by dividing average daily feed 
intake by ADG. A type B ultrasound scanner (SSD-500, 
Aloka, CT, USA) was used for measurements of muscle-
related traits. Measurement positions were between the 
penultimate third and fourth ribs and five centimeters 
from the midline of the back on the left side, and the 

Conclusions:  Haplotype prediction models improved the accuracy for genomic prediction of phenotypes in Duroc 
pigs. For some traits, the best prediction accuracy was obtained with haplotypes defined using gene regions, which 
provides evidence that functional genomic information can improve the accuracy of haplotype genomic prediction 
for certain traits.
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direction of the scanner head was perpendicular to the 
pig midline. The strong echogenic bands that appeared 
in the ultrasonic images and that represented the skin, 
connective tissue, and myolemma of the loin muscle 
were identified and provided a reliable basis for deter-
mining BF, LMA and LMD. TN was defined as the sum 
of the normal left and right teats counted within 48  h 
after birth. BJS was based on a ten-point scoring system 
and was recorded by skilled technicians for four body 
regions: head, foot and leg, forequarters, and hindquar-
ters. A higher comprehensive BJS score is associated with 
a more desirable body shape and structure and is one of 
the company’s breeding aims in Duroc boars.

The phenotypic values of BJS had a skewed distribu-
tion and the Box-Cox transformation implemented in 
the R package [13] only changed the shape of the distri-
bution slightly. However, since the original phenotypic 
values of BJS had a higher prediction accuracy than the 
transformed phenotypic values, we used the original phe-
notypic values. The original FCR values had outliers that 
resulted in a severely skewed phenotypic distribution, 
which became approximately normally distributed after 
removing outliers that were more than four standard 
deviations from the mean (see Additional file  1: Figure 
S1). Four traits (BF, LMA, LMD, and TN) had maximum 
values that were 4.02 to 4.25 standard deviations from 
the means, but these were not removed because the phe-
notypic distributions of these traits closely resembled a 
normal distribution (see Additional file 1: Figure S1).

Whole‑genome low‑coverage sequencing and genotyping
Genomic DNA was extracted from ear tissues of 3195 
Duroc boars using a DNeasy Blood & Tissue Kit (Qia-
gen 69506) and quantified using a NanoDrop spectro-
photometer. Then, all DNA preparations were diluted 
to the same concentration in 96-well plates using a 
Qubit 2 Fluorometer (Invitrogen) and checked on a 1% 
agarose gel. The Tn5 transposase (Karolinska Institute 
17177 Stockholm, Sweden) was used to construct the 
LCS libraries. The protocol and oligonucleotides for 
the Tn5 based library construction were as described 
previously [14, 15]. Two types of linker oligonucleo-
tides were designed, separately, for the MGI and Illu-
mina platforms. After PCR amplification using the 
KAPA HiFi HotStart ReadyMix (Roche), the products 
were quantified by Qubit 2 Fluorometric Quantitation 
and groups of 96 indexed samples were pooled in equal 
amounts. AMPure XP beads (Beckmann) was used to 
perform size-selection. The libraries were sequenced 
on a MGISEQ-2000 (PE 100) (192 libraries on 2 lanes) 
and a Illumina Hiseq Xten (PE 150) (84 libraries on 
one lane) sequencer. Each animal was sequenced at an 
average depth of 0.73 ± 0.17X and 96.7% of the reads 

were successfully mapped to the pig reference genome 
Sscrofa11.1. The BaseVar algorithm [16] was used to 
call SNP variants and estimate allele frequencies, and 
the STITCH algorithm [17] was used to impute SNPs.

A total of 11 million SNPs from the whole genome 
were obtained from imputation. Quality control of the 
SNP data consisted of removing SNPs with a minor allele 
frequency lower than 5% and those that did not pass the 
Hardy–Weinberg equilibrium test at p ≤ 10−5. After qual-
ity control, a clean SNP data set with 9,769,161 autosomal 
SNPs was subjected to further density reduction because 
haplotype reconstruction using nearly 10 million SNPs 
for many models (14 block sizes each with four haplo-
type models plus  four haplotype models for gene-based 
haplotype blocks, i.e. 60 haplotype  models) would be 
computationally too costly. Among the 9,769,161 auto-
somal SNPs, one SNP was selected from each 20-SNP 
window such that SNPs selected from adjacent windows 
were approximately equally spaced. Thus, 488,124 SNPs 
across the 18 pig autosomes were identified with a high 
average call rate of 98.9 ± 0.6% (see Additional file 1: Fig-
ure S2).

Construction of haplotypes and haplotype blocks
For haplotype phasing, we used the Beagle 5.1 soft-
ware [18] with default parameters and 30 phasing runs 
for each chromosome. Creation of haplotype blocks 
was based on fixed sizes in kilobases (kb), ranging from 
50 to 5000  kb per block, and based on the location of 
genes. The method based on a fixed distance resulted in 
a greater number of haplotypes as block size increased, 
averaging from 16 haplotypes for 50  kb blocks to 696 
haplotypes for 5000 kb blocks, while the average number 
of SNPs per block ranging from 14 for the 50-kb blocks 
to 1065 for the 5000-kb blocks (Table  1). Based on the 
Sscrofa genome annotation (ref_Sscrofa11.1_top level.
gff3), 28,999 autosomal genes were available to con-
struct the gene-based haplotype blocks, covering 1.28 Gb 
(56.5%) of the genome. Of these 28,999 genes, 26,319 
had at least two SNPs, which were used to define gene-
based haplotype blocks. To reduce variation in the size of 
the gene-based blocks, large genes were split into blocks 
of 200 to 500 kb, and the small genes (less than 50 kb), 
which accounted for 77.9% of the autosomal genes (see 
Additional file 1: Figure S3), were extended by 100 kb at 
each end. With these extensions, the gene-based haplo-
type blocks contained 364,643 SNPs (74.7% of the total 
number of SNPs). The size of the 26,319 gene-based 
haplotype blocks ranged from 0.6 to 1638.1 kb, with on 
average 13.9 SNPs per gene block, ranging from 2 to 602 
(Table  2). After removing overlapping regions between 
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haplotype blocks, the gene-based haplotype blocks cov-
ered 1.35 Gb (59.7%) of the autosomes.

Mixed model with SNP and haplotype effects for GBLUP 
and GREML
Each haplotype block was treated as a ‘locus’ and each 
haplotype within the haplotype block was treated as an 
‘allele’ in the GVCHAP analysis [19]. The haplotypes in 
each block were converted into codes of haplotype gen-
otypes for each boar using the GVCHAP pipeline [19]. 
Computation of genomic best linear unbiased predic-
tion (GBLUP) of genetic values and genomic restricted 
maximum likelihood (GREML) estimation of variance 
components and heritabilities were conducted using 
the GVCHAP pipeline [19], which implements a multi-
allelic mixed model. This model is based on a quantitative 
genetics model that results from the genetic partitioning 
of the genotypic values of the SNPs [20] and multi-allelic 
loci (haplotype blocks) [21] but implements genomic 
prediction and variance component estimation using a 
reparameterized and equivalent model due to the use of 
genomic relationship matrices of SNPs and/or haplotypes 
[19, 21, 22]. The mixed model based on the original quan-
titative genetics model for SNP and haplotype effects is:

where Z is an incidence matrix that allocates phenotypic 
observations to each individual, α0 is a column vector of 
the additive effects of SNPs with incidence matrix Wα , δ0 
is a column vector of the dominance effects of SNP geno-
types with incidence matrix Wδ , αoh is a column vector 
of the haplotype additive effects with incidence matrix 
Wαh , b is a column vector of fixed year-season effects 
with incidence matrix X , a = Wαα0 is a column vector 
of SNP additive values, d = Wδδ0 is a column vector of 
SNP dominance values, ah = Wαhα0h is a column vec-
tor of haplotype additive values, and e is a column vec-
tor of random residuals. The SNP coding in Wα and Wδ 

(1)
y = Xb+ Z(Wαα0 +Wδδ0 +Wαhαoh)+ e

= Xb+ Z(a + d + ah)+ e,

is the same as the quantitative genetic coding for SNPs 
[20], and the haplotype coding in Wαh is the same as the 
multi-allelic coding based on genetic partitions [21]. The 
reparameterized and equivalent model of Eq.  (1) due to 
the use of genomic relationships is:

where Tα = Wα/k
1/2
α

 , Tδ = Wδ/k
1/2
δ

 , Tαh = Wαh/k
1/2
αh  ; 

and kα = tr(WαW
′

α
)/n , kδ = tr(WδW

′

δ
)/n , 

kαh = tr(WαhW
′

αh)/n , and where n is the number of indi-
viduals. The first moment is E

(

y
)

= Xb , and the second 
moments resulting from the reparameterized and equiva-
lent model are:

where σ2
α
 , σ2

δ
 , and σ2

αh are the SNP additive variance, the 
SNP dominance variance, and the haplotype additive 
variance, respectively; Ag is the SNP additive relationship 
matrix; Dg is the SNP dominance relationship matrix; 
Agh is the haplotype additive relationship matrix; σ2e is 
the residual variance; and V is the phenotypic variance–
covariance matrix. The GVCHAP program first estimates 
the variance components of σ2

α
 , σ2

δ
 , and σ2

αh in Eqs. (3) to 
(6) and the corresponding heritabilities  using GREML, 
and then computes GBLUP and associated reliability esti-
mates [19, 21].

Evaluation of the prediction accuracy of haplotype models 
using cross‑validation
Ten-fold cross-validation was used to evaluate the accu-
racy of predicting phenotypic values. The 3195 Duroc 
pigs were randomly divided into ten validation data sets 
of 320 pigs each, except for the 10th set, which had 315 
pigs. Phenotypic observations of individuals in the vali-
dation set were omitted in the calculation of the GBLUP. 
The following six predictions were evaluated for each val-
idation set for each method of haplotype blocking and for 
each trait:

Model-1: SNP additive and dominance, and haplo-
type additive values ( A+ D+H);
Model-2: SNP and haplotype additive values ( A+H);

(2)
y = Xb+ Z(Tαα+ Tδδ+ Tαhαh)+ e

= Xb+ Z(a + d + ah)+ e,

(3)var(a) = σ
2
α
TαT

′

α
= σ

2
α
Ag = σ

2
α
WαW

′

α
/kα = Ga,

(4)var(d) = σ
2
δ
TδT

′

δ
= σ

2
δ
Dg = σ

2
δ
WδW

′

δ
/kδ = Gd,

(5)
var(ah) = TαhT

′

αh = σ
2
αhAgh = σ

2
αhWαhW

′

αh/kαh = Gah,

(6)
var

(

y
)

= Z
(

σ
2
α
Ag + σ

2
δ
Dg + σ

2
αhAgh

)

Z
′

+ σ
2
eIN = V

Table 2  Statistics of haplotype blocks defined by gene 
boundaries

Total number of haplotypes 865,537

Number of blocks 26,319

Average number of haplotypes per block 32.89

Minimum SNPs per block 2

Maximum SNPs per block 602

Average number of SNPs per block 13.85

Minimum block distance (kb) 0.64

Maximum block distance (kb) 1638.08

Average distance per block (kb) 98.59
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Model-3: SNP dominance values and haplotype 
additive values ( D+H);
Model-4: haplotype additive values ( H);
Model-5: SNP additive and dominance values 
( A+ D);
Model-6: SNP additive values ( A).

Models-1 to -4 contain haplotype additive values, while 
Model-5 and Model-6 contain only SNP predictions. 
The comparison of prediction accuracies of Model-1 to 
Model-4 with Model-5 and Model-6, therefore, evalu-
ates whether the use of haplotypes improves prediction 
accuracy.

Prediction accuracy was estimated as the correla-
tion between the phenotypic values and the predicted 
genetic values in each validation population [8, 11, 
23–28] and averaged over the 10 validation populations. 
Thus, prediction accuracy here refers to the observed 
accuracy of predicting phenotypic values. Observed 
prediction accuracies were computed for both the 
original phenotypic values and phenotypic values cor-
rected for fixed year-season effects estimated from each 
of the 10 training data sets. The fixed effects for each 
training population were estimated using the best lin-
ear unbiased estimation (BLUE) method  which is also 
a  generalized least squares (GLS) estimation [22, 29] 
implemented in GVCHAP [19]. Note that, phenotypic 
values in the training population are automatically cor-
rected for fixed effects when calculating GBLUP [20, 
21]. The observed accuracy of predicting phenotypic 
values was calculated as:

where R̂0jp is the observed accuracy for predicting the 
phenotypic values (or predictive ability [23]), ĝ0j is the 
GBLUP of g0j , g0j is the unobservable genetic values, y0 
are the phenotypic observations, subscript ‘ 0 ’ denotes 
validation population, ‘ corr ’ stands for correlation, and j 
represents the total genetic values under Model-j , 
j = 1, . . . , 6 . In addition to the observed accuracy, two 
theoretical measures of accuracy that do not involve the 
phenotypic observations were also calculated: the theo-
retical accuracy for predicting phenotypic values [23, 24], 
and the theoretical accuracy of predicted genetic values 
as the square root of the reliability under the SNP and 
haplotype models [19].

The theoretical accuracy of predicting the genetic 
value of the i-th training or validation individual for 

(7)

R̂0jp = corr
(

ĝ0j , y0

)

=

[

∑10

k=1
corr

(

ĝ0jk , y0k

)

]

/10,

ĝ = â + d̂ + âh of Model-1 was calculated as the square 
root of the reliability implemented by GVCHAP [19]:

where P = V−1 − V−1X(X
′
V−1X)

−
X

′
V−1 , and Aii

g , Dii
g 

and Aii
gh are the i-th diagonal elements of Ag , Ag and Agh 

[Eqs. (3) to (6)], respectively. The accuracy for Model-2 
to Model-6 can be readily derived from Eq. (8), e.g., the 
accuracy for ĝ = â + âh of Model-2 is obtained from 
Eq. (8) by deleting all terms involving ‘ δ ’. In the following, 
a subscript ‘ 0 ’ is added to Eq. (8) to denote the validation 
population, and ‘ g ’ is changed to ‘ j ’ to indicate Model-j , 
j = 1, . . . , 6 . The theoretical accuracy for predicting the 
genetic values in the tenfold validation study was calcu-
lated as the average of the R0ji values of all individuals in 
each validation population and then averaged over all 10 
validation populations., i.e.:

where Rk
0ji

 is the value of R0ji and n0k is the number of 
individuals in the k-th validation population.

The theoretical accuracy for predicting phenotypic val-
ues was calculated as:

where R0jp is the theoretical accuracy for predicting phe-
notypic values, h2g is the total genomic heritability for 
Model-j, R0j is the theoretical accuracy for predicting 
genetic values of individuals in the validation population, 
calculated based on the square root of the reliability from 
the GVCHAP output file using the estimated h2g from 
each validation population ( ̂h2gk ) for h2gk in Eq. (10).

Depending on the prediction model, h2g has one of the 
following expressions:

(8)
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
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
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




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
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,

(9)

R0j = corr
�

ĝ0j , g0j

�

=





10
�

k=1





n0k
�

i=1

Rk
0ji



/n0k



/10,

(10)R0jp = R0j

√

h2g =

[

10
∑

k=1

R0jk

√

h2gk

]

/10,

(11)ĥ2g = ĥ2
αs + ĥ2

δs + ĥ2
αh for Model-1,

(12)ĥ2g = ĥ2
αs + ĥ2

αh for Model-2,
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where ĥ2
α1 is the estimate of the SNP additive heritabil-

ity from Model-6, ĥ2
α2 is the estimate of the SNP additive 

heritability from Model-5, ĥ2
δ
 is the estimate of the SNP 

dominance heritability from Model-5, ĥ2
αs is the estimate 

of the SNP additive heritability from Model-1 or Model-
2, ĥ2

δs is the estimate of the SNP dominance heritability 
from Model-1 or Model-3, ĥ2

αh is the estimate of the hap-
lotype additive heritability from Model-1 to Model-4, and 
ĥ2s is the estimate of the total SNP heritability of Model-5 
or Model-6.

Estimation of the haplotype epistasis heritability
The estimate of the haplotype epistasis heritability (ĥ2E ) 
was defined as the difference between the estimates of 
total heritability of the haplotype models (Model-1 to 
Model-4) (ĥ2g) and the total heritability of the corre-
sponding SNP models (Model-5 and Model-6) ( ̂h2s ) , i.e., 
ĥ2E = ĥ2g − ĥ2s . This difference measures the genetic vari-
ance generated by haplotypes that are unavailable from 
the SNP additive or dominance variance and was shown 
to be responsible for the increased prediction accuracy 
of haplotype models [11]. Depending on the SNP and 
haplotype prediction models, four sets of ĥ2E expressions 
were defined, as described previously [11], i.e.:

where ĥ2
αh , ĥ2

α1 , ĥ
2
α2 , ĥ

2
δ
 , ĥ2

αs and ĥ2
δs have the same defini-

tions as in Eqs. (11) to (16). The heritability estimates on 
the right-hand sides of Eqs. (17) to (20) are available from 
the GREML output files of GVCHAP [19]. Relative hap-
lotype epistasis heritability was defined as the ratio of the 

(13)ĥ2g = ĥ2
δs + ĥ2

αh for Model-3,

(14)ĥ2g = ĥ2
αh for Model-4,

(15)ĥ2g = ĥ2s = ĥ2
α2 + ĥ2

δ
for Model-5,

(16)ĥ2g = ĥ2s = ĥ2
α1 for Model-6

(17)ĥ2E = ĥ2g − ĥ2s = ĥ2
αh − ĥ2

α1 for Model-4,

(18)
ĥ2E = ĥ2g − ĥ2s =

(

ĥ2
αh + ĥ2

αs

)

− ĥ2
α1 for Model-2,

(19)
ĥ2E = ĥ2g − ĥ2s =

(

ĥ2
αh + ĥ2

αs + ĥ2
δs

)

− (ĥ2
α2 + ĥ2

δ
) for Model-1,

(20)
ĥ2E = ĥ2g − ĥ2s =

(

ĥ2
αh + ĥ2

δs

)

− (ĥ2
α2 + ĥ2

δ
) for Model-3,

haplotype epistasis heritability to the SNP additive herit-
ability to serve as a measure of the size of the haplotype 
epistasis heritability relative to the SNP additive herit-
ability. Depending on the haplotype prediction model, 
estimates of relative haplotype epistasis heritability were 
obtained as:

To assess the impact of relative haplotype epistasis her-
itability on the increase in prediction accuracy, the Pear-
son’s correlation coefficient between estimates of relative 
haplotype epistasis heritability [Eqs. (21) and (22)] and 
the increase in prediction accuracy due to haplotypes 
was calculated and tested for statistical significance. For 
comparison, correlation coefficients between the predic-
tion accuracy and estimates of SNP additive heritability, 
SNP total heritability, and the total heritability based on 
SNPs and haplotypes were also calculated and tested for 
each trait.

Profiles of heritability estimates for SNPs and haplotype 
blocks
Here, a heritability profile is a Manhattan plot of herit-
ability estimates for SNPs or haplotype blocks using the 
SNPEVG2 program [30], where the heritability estimate 
for each SNP or each haplotype block was from the 
GREML output file from GVCHAP [19]. The heritabil-
ity estimate for each SNP is the contribution of the SNP 
to the phenotypic variance and is also the contribution 
to the SNP additive or dominance heritability [31], and 
the heritability estimate for each haplotype block is the 
contribution of the haplotype block to the phenotypic 
variance and is also the contribution to the haplotype 
additive heritability [21], i.e.:

where ĥ2
αi , σ̂

2
αi and α̂i are the additive heritability, variance 

and effect of the i-th SNP;ĥ2
δi , σ̂

2
δi and δ̂i are the dominance 

(21)ĥ2Er = ĥ2E/ĥ
2
α1 for Model-2 and Model-4,

(22)ĥ2Er = ĥ2E/ĥ
2
α2 for Model-1 and Model-3.

(23)

ĥ2
αi = σ̂

2
αi/σ̂

2
y =

(

α̂
2
i /

m
∑

i=1

α̂
2
i

)

ĥ2
α
=

(

α̂
2
i /α̂

′
α̂

)

ĥ2
α
,

(24)ĥ2
δi = σ̂

2
δi/σ̂

2
y =

(

δ̂
2
i /

m
∑

i=1

δ̂
2
i

)

ĥ2
δ
=

(

δ̂
2
i /δ̂

′
δ̂

)

ĥ2
δ
,

(25)

ĥ2
αhi = σ̂

2
αhi/σ̂

2
y =

(

α̂
2
hi/

b
∑

i=1

α̂
2
hi

)

ĥ2
αh =

(

α̂
2
hi/α̂

′
hα̂h

)

ĥ2
αh,
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heritability, variance and effect of the i-th SNP;ĥ2
αhi , 

σ̂
2
αhi and α̂hi are the haplotype additive heritability, vari-

ance and effect of the i-th haplotype block with b being 
the number of haplotype blocks, respectively; σ̂2y is the 
phenotypic variance and is equal to σ̂2

α
+ σ̂

2
δ
+ σ̂

2
αh + σ̂

2
e , 

ĥ2
α
= σ̂

2
α
/σ̂2y is the genomic SNP additive heritability, 

ĥ2
δ
= σ̂

2
δ
/σ̂2y is the genomic SNP dominance heritability, 

ĥ2
αh = σ̂

2
αh/σ̂

2
y is the genomic haplotype additive herit-

ability. It can be readily seen that the sum of all SNP or 
haplotype heritability estimates is the genomic SNP or 
haplotype heritability, i.e., 

∑m
i=1 ĥ

2
αi = ĥ2

α
 , 
∑m

i=1 ĥ
2
δi = ĥ2

δ
 , 

∑b
i=1 ĥ

2
αhi = ĥ2

αh . Equations  (23) to (25) can be shown 
using the example of SNP additive heritability. The addi-
tive variances of m SNPs and the i-th SNP can be esti-
mated as:

where Cαα is the submatrix in the inverse or general-
ized inverse of the coefficient matrix of the mixed model 
equations (MME) corresponding to the SNP additive 
effects, and �α = σ̂

2
e/σ̂

2
α
 . Dividing Eq. (27) by σ̂2y and mul-

tiplying by σ̂2
α
/σ̂2

α
 yields Eq. (23), i.e.:

Equations  (24) and (25) can be shown similarly. Note 
that Eqs. (26) and (27) using MME are not implemented 
by GVCHAP but are convenient for proving Eq. (23) and 
yield identical results as the conditional expectation (CE) 
method implemented by GVCHAP. The CE method is 
more efficient than the MME method when the num-
ber of genetic effects is greater than the number of indi-
viduals [20, 21]. With genome-wide haplotypes in the 
prediction model, the number of genetic effects should 
generally be much larger than the number of individu-
als. In this study, the number of SNPs was 488,124, the 
number of haplotypes ranged from 319,090 to 553,758 
for haplotype blocks using fixed chromosome distances 
(Table  1) and was 865,537 for gene-based haplotype 
blocks (Table 2), whereas the number of individuals was 
3195. For this type of data structure, the MME method 
for estimating genetic effects and their variances is com-
putationally prohibitive, and the CE method is computa-
tionally feasible.

(26)

σ̂
2
α
= α̂

′
α̂/[m− tr(Cαα)�α]

=

m
∑

i=1

α̂
2
i /[m− tr(Cαα)�α] =

m
∑

i=1

σ̂
2
αi,

(27)σ̂
2
αi = α̂

2
i /m− tr(Cαα)�α,

ĥ2
αi =

(

σ̂
2
αi/σ̂

2
y

)(

σ̂
2
α
/σ̂2

α

)

=
(

σ̂
2
αi/σ̂

2
α

)(

σ̂
2
α
/σ̂2y

)

=

(

α̂
2
i /

m
∑

i=1

α̂
2
i

)

ĥ2
α
=

(

α̂
2
i /α̂

′

α̂

)

ĥ2
α
.

The heritability size for a SNP is related to the num-
ber of SNPs in the model, i.e., the larger the number of 
SNPs, the smaller the heritability estimate for each SNP 
[24, 32]. Consequently, the heritability for a SNP is not 
comparable with the heritability for a haplotype block. 
However, the SNP heritability estimates from Eqs. (23) 
and (24) are comparable regarding their sizes, and the 
haplotype additive heritability estimates from Eq. (25) are 
also comparable regarding their sizes. Therefore, the her-
itability profile for SNPs or haplotypes provides a global 
view of the relative genetic contributions of the different 
genes and chromosome locations to the phenotype. The 
difference between heritability profiles for SNPs and hap-
lotypes was used to assess the likely reason for the suc-
cess or failure of haplotype models.

Results and discussion
Impact of using haplotypes on prediction accuracy
We found that, for the eight traits included in this study, 
prediction accuracy was improved by using haplotypes 
in the prediction model, for both prediction of the origi-
nal (Fig.  1a) and the corrected phenotypic values with 
removal of the fixed year-season effects (Fig. 1b), except 
for TN, for which the increase in accuracy was negligi-
ble. The increase in prediction accuracy due to the use of 
haplotypes relative to the prediction accuracy of the best 
SNP model (additive only, or additive and dominance) 
ranged from 0.3 to 7.4% for the original phenotypic val-
ues (Fig. 1a and Table 3) and from 0.4 to 14.2% using the 
corrected phenotypic values (Fig.  1b and Table  4). The 
average increase in the observed prediction accuracies 
due to the use of haplotypes across all eight traits was 
3.3% for the original phenotypic values and 3.2% for the 
corrected phenotypic values (Table 4). The detailed anal-
ysis of the prediction accuracies will focus first on results 
for the original phenotypic values, and then on the com-
parison of the results for the original and corrected phe-
notypic values.

Increased prediction accuracy with fixed‑size haplotypes
For haplotype blocks defined by fixed chromosome 
distance, predictions of the original phenotypic val-
ues based on haplotype additive values (Model-4) had 
the highest accuracy for BJS, AGW and ADG, with 
increases in accuracy relative to the best SNP predic-
tion of 7.4, 7.1 and 6.6% using haplotype block sizes of 
100, 500, and 500  kb, respectively (Table  3). The full 
model (Model-1) with haplotype additive values of 
1000-kb haplotype blocks and SNP additive and domi-
nance values improved the prediction accuracy by 5.0% 
for FCR and 1.3% for BF (Table 3). The increase in pre-
diction accuracy due to the use of haplotypes relative 
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to the best SNP model was higher for AGW than for 
ADG, which was due to the lower SNP prediction accu-
racy of AGW, i.e., 0.252 for AGW and 0.259 for ADG 
(Table 3). For BJS, the high prediction accuracy due to 

the use of haplotypes was observed for all sizes of hap-
lotype blocks evaluated, whereas 1- to 2-Mb haplotype 
blocks had the highest prediction accuracy for FCR, 
and 350 to 750-kb haplotype blocks had the highest 

Fig. 1  Observed prediction accuracy of the best haplotype model relative to the best SNP model for predicting phenotypic values of each trait 
from ten-fold validations. a Observed prediction accuracy using the original phenotypic values of the validation populations. b Observed prediction 
accuracy using the corrected phenotypic values of the validation populations. The error bar is one standard deviation above and below the average 
prediction accuracy, where standard deviation was calculated from tenfold validations. AGW​ age at 100 kg live weight, ADG daily gain during, BJS 
body judging score, FCR Feed conversion ratio, LMA loin muscle area at 100 kg, LMD loin muscle depth at 100 kg, BF back fat thickness at 100 kg, TN 
teat number
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prediction accuracy for AGW and ADG (Fig.  2). The 
error bars in Fig. 1 show that the traits with lower pre-
diction accuracies (AGW, ADG, and BJS) had lower 
standard deviations of the observed prediction accu-
racies across validation populations than traits with 

higher prediction accuracies (LMA, LMD, BF and TN). 
The only exception was FCR, which had the lowest pre-
diction accuracy but the largest standard deviation of 
observed prediction accuracies for unknown reasons.

Table 3  Accuracy of the best prediction models with haplotype additive values compared to the best SNP models

R̂0jp , observed accuracy of predicting phenotypic values; R0jp , theoretical accuracy of predicting phenotypic values; R0j , theoretical accuracy of predicting genotypic 
values; accuracy increase is the percentage increase in observed accuracy of predicting phenotypic values under the best haplotype model relative to the observed 
accuracy of the best SNP model (in italic font); A, SNP additive values; D, SNP dominance values; H, haplotype additive values; AGW, age at 100 kg live weight; ADG, 
daily gain; BJS, body judging score; FCR, feed conversion ratio; LMA, loin muscle area; LMD, loin muscle depth; BF, back fat thickness; TN, teat number

Trait

AGW​ ADG BJS FCR LMA LMD BF TN

SNP accuracy for predicting phenotypic values R̂0jp = corr(ĝ0j , y0)

 A-only, Model-6 0.251 0.258 0.258 0.197 0.402 0.363 0.387 0.401

 A + D, Model-5 0.252 0.259 0.244 0.202 0.401 0.364 0.387 0.405

 A + D over A (%) 0.381 0.328 − 5.588 2.624 − 0.123 0.496 0.174 0.856

Best SNP prediction model (the SNP model in italic font, A-only or A + D)

 R̂0jp = corr(ĝ0j , y0)
0.252 ± 0.032 0.259 ± 0.028 0.258 ± 0.033 0.202 ± 0.052 0.402 ± 0.042 0.364 ± 0.055 0.387 ± 0.061 0.405 ± 0.055

 R0jp = R0j

√

h2j
0.285 ± 0.010 0.290 ± 0.009 0.156 ± 0.013 0.241 ± 0.012 0.432 ± 0.008 0.418 ± 0.010 0.407 ± 0.015 0.405 ± 0.010

 R0j = corr(ĝ0j , g0j ) 0.613 ± 0.010 0.624 ± 0.01 0.559 ± 0.016 0.579 ± 0.015 0.757 ± 0.004 0.722 ± 0.009 0.718 ± 0.010 0.707 ± 0.007

Haplotype prediction accuracy

 Best model H H H D + H H A + D + H A + D + H A + D + H

 Best blocking 500 kb 500 kb 100 kb 1 Mb Genes Genes 1 Mb Genes

 R̂0jp = corr(ĝ0j , y0)
0.270 ± 0.029 0.276 ± 0.027 0.277 ± 0.026 0.212 ± 0.066 0.413 ± 0.043 0.371 ± 0.055 0.392 ± 0.062 0.406 ± 0.053

 Accuracy increase (%) 7.14 6.56 7.36 4.95 2.74 1.92 1.29 0.25

 R0jp = R0j

√

h2j
0.292 ± 0.006 0.298 ± 0.005 0.178 ± 0.011 0.248 ± 0.014 0.431 ± 0.006 0.417 ± 0.010 0.413 ± 0.015 0.401 ± 0.010

 R0j = corr(ĝ0j , g0j ) 0.647 ± 0.005 0.650 ± 0.004 0.572 ± 0.012 0.549 ± 0.012 0.743 ± 0.004 0.710 ± 0.008 0.693 ± 0.009 0.695 ± 0.007

Table 4  Observed accuracy of predicting original and corrected phenotypic values for the best SNP and haplotype models

R̂s0y , observed accuracy of predicting phenotypic values by the best SNP model using the original phenotypic values; R̂s0r , observed accuracy of predicting phenotypic 
values by the best SNP model using the corrected phenotypic values; R̂h0y , observed accuracy of predicting phenotypic values by the best haplotype model using 
the original phenotypic values; R̂h0r , observed accuracy of predicting phenotypic values by the best haplotype model using the corrected phenotypic values; A, SNP 
additive values; D, SNP dominance values; H, haplotype additive values; AGW, age at 100 kg live weight; ADG, daily gain. BJS: body judging score; FCR, Feed conversion 
ratio; LMA, loin muscle area; LMD, loin muscle depth; BF, back fat thickness; TN, teat number

Trait

AGW​ ADG BJS FCR LMA LMD BF TN Mean

Best SNP prediction model (as defined in Table 3)

 R̂s0y 0.252 0.259 0.258 0.202 0.402 0.364 0.387 0.405 0.316

  0.256 0.262 0.138 0.204 0.415 0.394 0.399 0.407 0.309

Haplotype prediction accuracy

 Best model H H H D + H H A + D + H A + D + H A + D + H

 Best blocking 500 kb 500 kb 100 kb 1 Mb Genes Genes 1 Mb Genes

 R̂h0y 0.270 0.276 0.277 0.212 0.413 0.371 0.392 0.406 0.327

  0.269 0.274 0.157 0.211 0.426 0.400 0.403 0.409 0.319

 R̂s0y/R̂
s
0r − 1, % − 1.0 0.5 88.9 − 1.5 0.3 − 2.9 − 1.7 − 3.6

 R̂h0y/R̂
h
0r − 1, % 0.7 2.7 74.6 0.3 − 0.2 − 2.4 − 1.8 − 3.8

R̂s0r

R̂h0r
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Fig. 2  Observed prediction accuracy of haplotype models using fixed chromosome distance and gene boundaries per haplotype block. A = SNP 
additive values. D = SNP dominance values. H = haplotype additive values. Gene_H = gene-based haplotype additive values. AGW​ age at 100 kg live 
weight, ADG daily gain during, BJS body judging score, FCR Feed conversion ratio, LMA loin muscle area at 100 kg, LMD loin muscle depth at 100 kg, 
BF back fat thickness at 100 kg, TN teat number
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Increased prediction accuracy with gene‑based haplotypes
Haplotype blocks defined by gene boundaries had the 
best prediction accuracy of original phenotypic values 
for two muscle traits (LMA and LMD) and teat num-
ber (TN), with increases in prediction accuracy of 2.7% 
for LMA, 1.9% for LMD and 0.3% for TN relative to the 
prediction accuracy of the best SNP model (Fig.  1 and 
Table  3). The haplotype-only model (Model-4) was the 
best prediction model for LMA, while the full model 
(Model-1) was best for LMD and TN. These results indi-
cate that functional genomic information is relevant 
for haplotype genomic prediction and that haplotype 
prediction models could be an effective method to use 
functional genomic information (autosomal genes in 
this case) for genomic prediction of some traits. These 
results also provide examples showing whole-genome 
haplotype prediction is not always better than gene-
based haplotype prediction, although the latter covered 
only 56.5% of the autosomes. A study on seven human 
traits reported that gene-based haplotype prediction was 
the best prediction model for one trait, although genes 
covered only 50.8% of all autosomes, and was tied for the 
best for the other traits [11]. These results provide evi-
dence that the use of autosomal genes can result in the 

best haplotype prediction models for some quantitative 
traits.

Comparison between observed and theoretical prediction 
accuracies
For the seven traits with increased prediction accu-
racies due to the use of haplotypes (except TN), the 
observed prediction accuracy [ ̂R0jp of Eq.  (7)] was 
lower than the theoretical prediction accuracy [ R0jp of 
Eq.  (10)] for predicting the original phenotypic values 
for six of the traits but was substantially higher than 
the theoretical accuracy for BJS under the best SNP 
and haplotype models. The R̂0jp for BJS was 0.258 for the 
best SNP model and 0.277 for the best haplotype model 
but the R0jp of BJS was 0.156 for the best SNP model 
and 0.178 for the best haplotype model. The value of 
R0jp from Eq.  (10) decreased as heritability decreased. 
Thus, the main reason for the low R0jp values was due to 
the low heritability estimates: 0.097 under the additive 
haplotype model and 0.124 under the A+ D SNP model 
(Table 5), the lowest among all traits. These results also 
demonstrate that the theoretical accuracy for predict-
ing phenotypic values was not always higher than the 

Table 5  Relationship between haplotype heritability and prediction accuracy for eight traits under the best prediction models

Accuracy increase is the percentage increase in observed prediction accuracy of the best haplotype model relative to the accuracy of the best SNP model (in italic 
font) using the original phenotypic values

A SNP additive values, D SNP dominance values, H haplotype additive values, AGW​ age at 100 kg live weight, ADG daily gain, BJS body judging score, FCR feed 
conversion ratio, LMA loin muscle area, LMD loin muscle depth, BF back fat thickness, TN teat number

Trait

AGW​ ADG BJS FCR LMA LMD BF TN

SNP model with additive values (A)

 Additive heritability (ĥ2
α1)

0.182 0.186 0.078 0.142 0.327 0.315 0.300 0.297

SNP model with additive and dominance values (A + D)

 Additive heritability (ĥ2
α2)

0.173 0.179 0.076 0.139 0.327 0.309 0.299 0.293

 Dominance heritability (ĥ2
δ
) 0.045 0.038 0.048 0.036 0.000 0.027 0.028 0.037

 SNP broad-sense heritability (ĥ2s ) 0.218 0.216 0.124 0.175 0.327 0.336 0.326 0.331

Haplotype prediction models

 Best model H H H D + H H A + D + H A + D + H A + D + H

 Best haplotype blocking method 500 Kb 500 Kb 100 Kb 1 Mb Genes Genes 1 Mb Genes

 Accuracy increase (%) 7.14 6.56 7.36 4.95 2.74 1.92 1.29 0.25

 SNP additive heritability (ĥ2
αs)

– – – – – 0.101 0.154 0.137

 SNP dominance heritability (ĥ2
δs)

– – – 0.036 – 0.026 0.022 0.037

 Haplotype additive heritability (ĥ2
αh)

0.208 0.213 0.097 0.170 0.336 0.215 0.183 0.162

 Total heritability (ĥ2g) 0.208 0.213 0.097 0.206 0.336 0.343 0.359 0.336

Estimates of haplotype epistasis heritability

 Haplotype epistasis heritability (ĥ2g) 0.026 0.027 0.019 0.031 0.009 0.007 0.033 0.005

 Relative haplotype epistasis heritability (ĥ2Er, %) 14.29 14.52 24.36 22.30 2.75 2.26 11.04 1.71
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observed accuracy. The theoretical accuracy for pre-
dicting genetic values [ R0j of Eq.  (9)] was higher than 
the observed and theoretical accuracies for predicting 
phenotypic values for all haplotype and SNP models, 
as expected, because R0j is the upper limit of R0jp . The 
comparison between the best haplotype and SNP mod-
els showed that the theoretical accuracy for predict-
ing phenotypic values ( R0jp ) under the best haplotype 
models was higher than under the best SNP models 
for five traits (AGW, ADG, BJS, FCR, and BF) and was 
lower for two traits (LMA and LMD), and the theoreti-
cal accuracy for predicting genetic values ( R0j ) under 
the best haplotype models was higher than under the 
best SNP models for three traits (AGW, ADG, and BJS) 
and was lower for four traits (FCR, LMA, LMD, and 
BF). The higher haplotype R0jp values for AGW, ADG, 
BJS, FCR, and BF were consistent with the higher hap-
lotype heritability estimates than the SNP heritability 
estimates (Table 5), but the reason for the lower R0j for 
FCR, LMA, LMD, and BF under the haplotype models 
than under the SNP models was unknown.

Comparison between observed accuracies for predicting 
the original and corrected phenotypic values
The observed accuracies for predicting the original and 
corrected phenotypic values were two observed corre-
lations: the correlation between the GBLUP of geno-
typic values and the original phenotypic values, and 
the correlation between the GBLUP of genotypic values 
and the corrected phenotypic values after removing 
the fixed year-season effects in each validation popula-
tion. The results of these observed accuracies showed 
that the haplotype models had better prediction accu-
racies than the SNP models for all traits for predicting 
the original and corrected phenotypic values (Fig.  1) 
and that, on average across the eight traits, the SNP and 
haplotype prediction accuracies for the original and 
corrected phenotypic values were similar. Two fixed 
effect levels did not have observations in the training 
populations and these two observations were removed 
when calculating the observed prediction accuracies 
using the corrected phenotypic values. Increases in 
accuracy when including haplotypes were greater for 
the original phenotypic values than for the corrected 
phenotypic values for AGW, ADG and FCR, with 
increases in accuracy of 7.1, 6.6 and 5.0%, respectively, 
for the original phenotypic values (Fig. 1a and Table 3), 
and of 4.7, 4.6 and 3.4% for the corrected phenotypic 
values (Fig.  1b and Table  4). Removing fixed effects 
resulted in minor changes of the increases in accuracy 
from including haplotypes for LMA, LMD, BF and TN, 
but in a substantial increase for BJS, i.e., an increase 
in accuracy of 14.2% using the corrected phenotypic 

values. For the same SNP model, corrected phenotypic 
values had a higher prediction accuracy for five traits 
(AGW, FCR, LMD, BF and TN) and a lower prediction 
accuracy for three traits (ADG, BJS and LMA). For the 
same haplotype model, corrected phenotypic values 
had a higher prediction accuracy for four traits (LMA, 
LMD, BF and TN) and a lower prediction accuracy for 
four traits (AGW, ADG, BJS and FCR). The reason for 
the large decrease in the observed prediction accuracy 
due to the removal of fixed effects for BJS was unclear: 
88.9% lower for the SNP model and 74.6% lower for the 
haplotype model compared to prediction of the original 
phenotypic values (Table  4). These BJS results should 
indicate the presence of inconsistency for grading the 
BJS scores at certain time periods. On average across 
the eight traits, predictions were more accurate for the 
original phenotypic values than for the corrected phe-
notypic values for both the SNP and haplotype models. 
The average observed prediction accuracy under the 
SNP models was 0.316 for the original and 0.309 for the 
corrected phenotypic values, and the average observed 
prediction accuracy under the haplotype models was 
0.327 for the original and 0.319 for the corrected phe-
notypic values (Table 4).

SNP additive and dominance heritabilities and impacts 
on prediction accuracy
Estimates of the SNP additive heritability ranged from 
0.08 (for BJS and FCR) to 0.33 (for LMA), while estimates 
of SNP dominance heritability ranged from 0.00 (for 
LMA) to 0.05 (for BJS) (Table 5). The inclusion of domi-
nance effects increased the prediction accuracy by 2.5% 
for FCR, which had a dominance heritability of 0.04, but 
decreased prediction accuracy by 5.7% for BJS, which had 
the highest dominance heritability (0.05). Inclusion of 
SNP dominance effects slightly decreased the prediction 
accuracy for LMA (− 0.3%), slightly increased the predic-
tion accuracy for AGW (0.4%), AGD (0.4%), LMD (0.3%), 
and TN (1.0%), and had no effect on the prediction accu-
racy for BF (Table 3).

Haplotype epistasis heritability and impact 
on prediction accuracy
The relationship between heritability estimates and pre-
diction accuracy is the basis to understand the perfor-
mance of different prediction models. We examined 
the relationship between estimates of relative haplotype 
epistasis heritability [Eqs. (21) and (22)] and the increase 
in prediction accuracy due to the use of haplotypes 
(Table  5). The four traits (BJS, AGW, ADG, and FCR) 
with the highest relative haplotype epistasis heritability 
estimates (14.3 to 24.4%) also had the largest increases 
in haplotype prediction accuracy (5.0 to 7.4%). The three 
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traits (LMA, LMD, and TN) with the lowest relative hap-
lotype epistasis heritability estimates (1.7 to 2.8%) had 
three of the four smallest increases in haplotype pre-
diction accuracy (0.3 to 2.7%). The correlation between 
estimates of relative haplotype epistasis heritability and 
the increase in accuracy due to the use of haplotypes 
was statistically significant (r = 0.78, p = 0.02, Fig.  3a). 
These results were in strong agreement with the results 
on human data [11], i.e., haplotype epistasis was mainly 
responsible for the increased accuracy of haplotype pre-
diction models given that haplotype epistasis was the 
only new genetic information generated by haplotypes 
and that the relative haplotype heritability was strongly 
correlated with the increase in prediction accuracy. As a 
comparison, the correlation was also significant between 
estimates of SNP additive heritability and prediction 
accuracy (r = 0.83, p = 0.01, Fig.  3b), between estimates 
of SNP total heritability and SNP prediction accuracy 
(r = 0.93, p = 0.0009, Fig.  3c), and between estimates of 
total heritability of the best prediction model and the 
best prediction accuracy (r = 0.90, p = 0.003, Fig.  3d). 

These comparisons showed that the correlation between 
estimates of relative haplotype epistasis heritability and 
accuracy increase due to the use of haplotypes (Fig.  3a) 
had a similar statistical significance but was not as signifi-
cant as the correlations between prediction accuracy and 
estimates of the three types of heritability (Fig. 3b–d). In 
a human haplotype genomic prediction study, the corre-
lation between estimates of relative haplotype epistasis 
heritability and the increase in prediction accuracy due 
to the use of haplotypes was more significant than the 
other three correlations [11]. These results of high cor-
relations between relative haplotype epistasis heritability 
and accuracy increase for swine and human data showed 
that haplotype epistasis was mainly responsible for the 
increase in prediction accuracy of haplotype genomic 
prediction.

Comparison of heritability profiles of SNPs and haplotypes
The differences between heritability profiles across 
the genome based on SNPs and haplotypes reflect the 

Fig. 3  Relationship between observed prediction accuracy and heritability estimates. a Correlation between relative increase in prediction 
accuracy due to haplotypes and relative haplotype epistasis heritability. b Correlation between prediction accuracy of the best haplotype model 
and total heritability that can be haplotype heritability only or a combination of haplotype and SNP heritabilities. c Correlation between prediction 
accuracy of the SNP model with additive and dominance values and the SNP total heritability as a summation of additive and dominance 
heritabilities. d Correlation between prediction accuracy of the SNP model with additive values and SNP additive heritability. AGW​ age at 100 kg live 
weight, ADG daily gain duringv BJS body judging score, FCR Feed conversion ratio, LMA loin muscle area at 100 kg, LMD loin muscle depth at 100 kg, 
BF back fat thickness at 100 kg, TN teat number
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differences between the SNP and haplotype models in the 
genetic contributions of genes and chromosome regions 
to phenotypic variation. Such differences in heritability 
profiles provide indications about the likely reason why 
a haplotype model does or does not improve prediction 
accuracy. Our results showed that the haplotype herit-
ability profile needs to be different from the SNP herit-
ability profile, at least for some regions, for the haplotype 
models to be more accurate than the SNP models. For 
traits where the haplotype-only models were most accu-
rate, haplotype effects fully accounted for the SNP effects 
because adding SNPs to the prediction model decreased 
the prediction accuracy. In these cases, the chromosomal 
locations with high heritability estimates should be con-
sidered as more accurately identified than those with 
high SNP heritability estimates but are not shared by 
haplotypes. For traits where the integration of SNP and 
haplotype additive values increased the prediction accu-
racy over the haplotype-only models, haplotypes likely 
incorrectly estimated some SNP effects and the inclusion 
of SNPs in the prediction model compensated the weak-
ness of haplotypes in those cases. One trait (TN) pro-
vided an example where SNP and haplotype heritability 
profiles were virtually identical, and the use of haplotypes 

virtually provided no help for improving prediction accu-
racy (increased prediction accuracy by only 0.25%).

Heritability profiles for AGW, ADG, BJS and FCR
The haplotype-only model (Model-4) had the best pre-
diction accuracy for AGW, ADG, BJS and LMA, and the 
D+H model (Model-3) had the best prediction accu-
racy for FCR. A common feature of these models is the 
absence of SNP additive values. The SNP and haplotype 
heritability profiles identified common and different 
regions with high heritability estimates. Chromosome 
locations with a high haplotype heritability should be 
more accurately identified than those with high SNP her-
itability estimates because of the higher prediction accu-
racy of the haplotype-only models over the SNP models. 
For BJS, both SNP and haplotype heritability profiles 
identified the COL5A2 gene as having the highest herit-
ability (Fig.  4a and b), but the second highest heritabil-
ity estimate for BJS was for the region that included the 
NID2-PTGER2 genes by SNP analysis (Fig.  4a) and for 
the RBAK gene by haplotype analysis (Fig. 4b). For AGW, 
the SNP heritability profile identified the BSND gene 
region as having the highest heritability (Fig. 4c), but the 
haplotype heritability profile identified the chromosome 

Fig. 4  Heritability profiles of SNPs and haplotypes for body judging score (BJS), age at 100 kg live weight (AGW), average daily gain (ADG), and feed 
conversion ratio (FCR). a SNP heritability profile of BJS; b Haplotype heritability profile of BJS; c SNP heritability profile AGW; d Haplotype heritability 
profile of ADG; e SNP heritability profile of average daily gain ADG; f Haplotype heritability profile of ADG; g SNP heritability profile of FCR; and h 
Haplotype heritability profile of FCR
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region that is 1.5-Mb upstream of BSND as having the 
highest heritability (Fig.  4d). AGW (Fig.  4c and d) vir-
tually had identical SNP and haplotype heritability pro-
files as ADG (Fig. 4e and f ), providing confirmation that 
AGW and ADG were associated with the same genetic 
factors. The largest differences or least overlap between 
the highest SNP and haplotype heritability profiles were 
observed for FCR (Fig.  4g and h). FCR had the high-
est SNP additive heritability estimate for the region that 
included the TMPRSS2 gene on chromosome 13 (Fig. 4g) 
but had the highest haplotype heritability estimate for 
the HS3ST3B1 gene on chromosome 12 (Fig.  4h). Since 
SNP additive values were not in the prediction model, 
the haplotype heritability estimates should have fully 
accounted for the SNP heritability estimates for FCR. 
The CARTPT gene, also known as CART​, is involved in 
the regulation of appetite and energy homeostasis [33]. 
For FCR, the CARTPT gene did not have the highest 
haplotype heritability, but still had high haplotype herit-
ability estimates (Fig. 4h), and a haplotype block imme-
diately downstream of CARTPT had the same haplotype 
heritability estimate as that in the haplotype block that 
included CARTPT. Therefore, CARTPT likely has a sub-
stantial contribution to the phenotypic variance of FCR 

based on the haplotype heritability estimates. The SNP 
heritability estimates also indicated a substantial contri-
bution of CARTPT to FCR, because the total SNP herit-
ability of the 20 SNPs in the 48.02–48.07 Mb region on 
chromosome 16, which contains the CARTPT gene, was 
slightly higher than the sum of the heritability estimates 
of all 11 SNPs in the 204.91–204.95 Mb region on chro-
mosome 13, which had the highest SNP heritability esti-
mates among all SNPs (Fig. 4g).

Heritability profiles of muscle and fat traits
The heritability profiles of SNPs and haplotypes for the 
three muscle and fat traits, LMA, LMD, and BF, all iden-
tified the NUDT3 gene as having high SNP and haplo-
type heritability estimates (Fig.  5). For LMA, the best 
prediction model was the haplotype-only model. SNP 
heritability profiles identified NUDT3 as having the sec-
ond highest SNP heritability (Fig. 5a) but the haplotype 
heritability profiles identified this gene as having the 
highest haplotype heritability (Fig.  5b). This result was 
expected since the haplotype model had a higher predic-
tion accuracy. The reasons for the increase in prediction 
accuracy due to the use of haplotypes for LMA included 
a more accurate estimate of the sum of small effects by 

Fig. 5  Heritability profiles of SNPs and haplotypes for loin muscle area (LMA), loin muscle depth (LMD), backfat (BF), and teat number (TN). a SNP 
heritability profile of LMA; b Haplotype heritability profile of LMA; c SNP heritability profile of LMD; d Haplotype heritability profile of LMD; e SNP 
heritability profile of BF; f Haplotype heritability profile of BF; g SNP heritability profile of TN; h Haplotype heritability profile of TN
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haplotypes than the estimate of each small effect by 
SNPs, noting that LMA had one of the smallest haplotype 
epistasis heritability estimates, explaining less than 1.0% 
of the phenotypic variance (Table  5). The integration of 
SNP and haplotype additive values resulted in the best 
prediction model for four traits including FCR discussed 
in the previous section, LMD, BF, and TN. For LMD, 
NUDT3 had the highest SNP and haplotype heritability 
estimates (Fig. 5c and d), GRIK4 had the second highest 
SNP heritability estimate (Fig. 5c), and TENT4A had the 
second highest haplotype heritability estimate (Fig.  5d). 
For BF, NUDT3 had the second highest SNP heritability 
and the highest haplotype heritability estimates (Fig.  5e 
and f ), and PIGN-CCBE1 had the second highest SNP 
heritability estimate (Fig.  5e), but the haplotype model 
identified six locations with similar haplotype heritability 
estimates, on chromosomes 1, 2, 5, 7, 9 and 18, that were 
much lower than the haplotype heritability for NUDT 
(Fig.  5f ). It is interesting to note that the NUDT3 gene 
had high SNP and haplotype heritability estimates for all 
three muscle and fat traits (LMA, LMD, and BF), which 
was consistent with previous results that NUDT3 had 
significant effects for LMA and LMD [34] and for BF [15] 
in Duroc pigs. The accuracy increases due to the integra-
tion of SNPs with haplotypes indicated that haplotypes 
alone did not capture all the SNP information for these 
traits, a phenomenon termed as ‘haplotype loss’ [32], 
which was compensated by including SNPs in the predic-
tion model. Given the accuracy increases due to SNPs, 
the haplotype loss for FCR, LMD and BF was due to less 
accurate or insufficient estimation of SNP effects. For 
FCR, dominance effects were unaccounted for by haplo-
type additive effects. For LMD, the GRIK4 with large SNP 
heritability estimates did not have high haplotype herita-
bility estimates, and for BF, PIGN-CCBE1 with large SNP 
heritability estimates did not have high haplotype herit-
ability estimates. These differences in SNP and haplotype 
heritability profiles likely contributed to the increased 
prediction accuracy due to the integration of SNPs with 
haplotypes and this integration compensated the haplo-
type loss for those traits. The next example was the only 
known example showing virtually identical SNP and 
haplotype heritability profiles with no accuracy increase 
from the haplotype model over the SNP model.

Heritability profiles for TN
The SNP and haplotype heritability profiles for TN were 
unique because they were virtually identical, with high 
SNP and haplotype heritability estimates within and 
around the VRTN gene on chromosome 7 (Fig.  5g and 
h). Such an absence of differences in heritability profiles 

is probably due to the absence of haplotype epistasis, and 
it should be noted that TN had the smallest relative hap-
lotype epistasis heritability (1.7%, Table  5). TN was the 
only example for which the haplotype analysis did not 
improve prediction accuracy when profiles of SNP and 
haplotype heritability estimates were virtually identical. 
Several reports confirmed that the VRTN gene and its 
surrounding regions had the most significant effects on 
TN [24, 35–38]. Although the heritability estimates for 
this region were about 10 times as high as the highest 
estimates for other regions, this region only accounted 
for 10.0% of the genomic additive heritability and 8.0% of 
the observed accuracy of genomic prediction [24]. There-
fore, the discussion on the high heritability obtained for 
TN and for the other traits is to compare heritability 
profiles under different models and does not deny the 
relevance of chromosome regions with low heritability 
estimates to the accuracy of genomic prediction.

Conclusions
Analysis of haplotype genomic prediction models showed 
that haplotype prediction models had a higher prediction 
accuracy of phenotypic values than SNP models in Duroc 
pigs. Overall, the traits analyzed in this study had differ-
ent SNP and haplotype heritability profiles and required 
different haplotype prediction models to achieve the best 
prediction accuracy. Haplotype-only models were the 
best prediction models for some traits, whereas the inte-
gration of SNP and haplotype effects in the prediction 
model provided the best prediction accuracy for other 
traits. Gene-based haplotype blocks resulted in the best 
prediction accuracy for some traits, providing evidence 
that gene-based haplotypes contained the most impor-
tant genetic information for those traits although they 
only covered part of the autosomes.
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