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Abstract 

Background: The genetic background of trait variability has captured the interest of ecologists and animal breeders 
because the genes that control it could be involved in buffering various environmental effects. Phenotypic variability 
of a given trait can be assessed by studying the heterogeneity of the residual variance, and the quantitative trait loci 
(QTL) that are involved in the control of this variability are described as variance QTL (vQTL). This study focuses on litter 
size (total number born, TNB) and its variability in a Large White pig population. The variability of TNB was evaluated 
either using a simple method, i.e. analysis of the log‑transformed variance of residuals (LnVar), or the more complex 
double hierarchical generalized linear model (DHGLM). We also performed a single‑SNP (single nucleotide polymor‑
phism) genome‑wide association study (GWAS). To our knowledge, this is only the second study that reports vQTL for 
litter size in pigs and the first one that shows GWAS results when using two methods to evaluate variability of TNB: 
LnVar and DHGLM.

Results: Based on LnVar, three candidate vQTL regions were detected, on Sus scrofa chromosomes (SSC) 1, 7, and 18, 
which comprised 18 SNPs. Based on the DHGLM, three candidate vQTL regions were detected, i.e. two on SSC7 and 
one on SSC11, which comprised 32 SNPs. Only one candidate vQTL region overlapped between the two methods, 
on SSC7, which also contained the most significant SNP. Within this vQTL region, two candidate genes were identi‑
fied, ADGRF1, which is involved in neurodevelopment of the brain, and ADGRF5, which is involved in the function of 
the respiratory system and in vascularization. The correlation between estimated breeding values based on the two 
methods was 0.86. Three‑fold cross‑validation indicated that DHGLM yielded EBV that were much more accurate and 
had better prediction of missing observations than LnVar.

Conclusions: The results indicated that the LnVar and DHGLM methods resulted in genetically different traits. Based 
on their validation, we recommend the use of DHGLM over the simpler method of log‑transformed variance of residu‑
als. These conclusions can be useful for future studies on the evaluation of the variability of any trait in any species.
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Background
Living organisms are under the constant influence of 
unpredictable changes in the environment. Thus, in ecol-
ogy as well as in animal and plant breeding, genes that 

can buffer the negative effects of unpredictable (e.g., dis-
eases) or difficult to avoid (e.g., temperature changes) 
environmental factors are highly desirable [1]. It is 
assumed that such genes can control the variation of a 
trait (at either the population or the individual level) and 
maintain it at an optimal level [2]. One of the most well-
studied genes that is involved in buffering the effects of 
genetic and environmental factors is the heat-shock pro-
tein 90 (Hsp90) gene. In Drosophila and Arabidopsis, 
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Hsp90 is described as a stabilizer of developmental and 
morphological traits [3–5]. This suggests that tradition-
ally applied methods that focus on the genetic control of 
the mean of traits could be extended by also accounting 
for the variability around that mean. This is possible since 
it has been observed that not only the mean of the trait is 
under genetic control, but also the variation around the 
mean, which is described in the literature as “variance 
heterogeneity” or “phenotypic variability”.

Phenotypic variability can be assessed by studying 
the heterogeneity of residual variance across observa-
tions [6]. Empirical evidence that residual variance has a 
genetic component has been reported for different traits 
in many animal species [7–15] and in humans [16, 17]. 
Recently, residual variance has even been linked with fill-
ing part of the gap of “missing heritability” in genome-
wide association studies (GWAS) in humans [17]. One 
of the most common methods used to obtain variability 
phenotype is the double hierarchical generalized lin-
ear model (DHGLM) [18]. This rather complex method 
requires substantial computation time. Thus, to verify 
the need to use DHGLM, it was compared with simpler 
approaches: log-transformed variance of a trait [14], log-
transformed squared estimated residuals [19], and log-
transformed variance of residuals (LnVar) [15]. However, 
only Sell-Kubiak et al. [14] and Iung et al. [19] reported 
comprehensive comparative studies. Thus, the extended 
evaluation would also be needed for LnVar and DHGLM. 
Furthermore, many studies have reported quantitative 
trait loci (QTL) that are associated with phenotypic vari-
ability, the so-called variance QTL (vQTL) [20]. Detec-
tion of vQTL in a population can indicate the presence 

of an unmodeled interaction associated with the locus [1, 
2, 20, 21] or the presence of QTL that directly control the 
variance of a trait [22, 23]. An overview of selected vQTL 
that have been detected to date is in Table 1. Still, so far 
no study has compared the genomic background of vari-
ability phenotypes for the same trait obtained with differ-
ent methods.

In the current study, we continue to focus on the vari-
ability of litter size in a Large White population. Litter 
size is a trait of high economic relevance for pig breeding 
and has been under intense selection in the past decades. 
Many reports have shown that litter size has increased 
from an average of 11.7 live piglets in 2000 to 17.5 in 
2019 [24] and this increase has also led to an increase in 
its variability, which is due to the positive genetic cor-
relation between the mean litter size and its variability 
[25]. Although litter size might be one of the most stud-
ied traits in pigs in terms of genetics, with more than 
255 associated single nucleotide polymorphisms (SNPs) 
reported between 2011 and 2021 [26], to our knowl-
edge, only the Sell-Kubiak et al. [25] study has detected 
vQTL for litter size in pigs. One of the most promising 
candidate genes for the variability of litter size is HSPCB, 
which is better known as the aforementioned Hsp90 [27]. 
Although our previous study [25] reported the first SNPs 
associated with phenotypic variability in litter size in 
pigs, a follow-up study is necessary to confirm more pre-
cisely the genomic regions that affect variability in litter 
size, especially because now we have access to high-den-
sity SNP-chip data (660 K instead of 60 K) and the num-
ber of genotyped animals has increased exponentially 
since the publication of our previous paper.

Table 1 Selected examples of vQTL that affect the variability of quantitative traits across species

Authors Species Trait

Mackay and Lyman [53] Drosophila melanogaster Bristle number

Ordas et al. [54] Maize Days to flowering, ear height, and tassel length

Paré et al. [55] Human Levels of inflammatory biomarkers

Ayroles et al. [56] Drosophila melanogaster Locomotor handedness

Perry et al. [57] F2 cross of the genetically hypercalciuric Rattus 
norvegicus with normocalciuric Wistar‑Kyoto

Urinary calcium levels

Wolc et al. [58] Laying hens Egg weight

Jimenez‑Gomez et al. [59]; Shen et al. [2] Arabidopsis thaliana Flowering time

Yang et al. [16] Human Body mass index (BMI)

Mulder et al. [60] Dairy cows Somatic cell score (SCS)

Nelson et al. [20] S. cerevisiae strains Expression traits in different treatments

Sell‑Kubiak et al. [25] Pigs Litter size

Ek et al. [61] Human Variation in DNA methylation levels

Wang et al. [62]; Wang et al. [63] Pigs Birth weight

Iung et al. [64] Nellore cattle Yearling weight

Hussain et al. [65] Bread wheat Cadmium levels
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Here, we compare two methods to estimate the pheno-
typic variability of litter size and to evaluate its genetic 
background and detect new genomic regions associated 
with it, by performing a GWAS using genotypes from 
a high-density SNP-chip. Thus, our study has two main 
aims: (1) to compare two approaches for obtaining vari-
ability phenotypes for litter size, and for analyzing their 
genetic background, i.e. a simpler log-transformed vari-
ance of residuals (LnVar) and a more complex double 
hierarchical generalized linear model (DHGLM); and (2) 
to perform a single-SNP GWAS to detect novel genomic 
regions associated with litter size variability using high-
density SNP-chip data on ~ 12,000 Large White pigs. The 
data used in this study is an updated version of the litter 
size records and genotypes used in the previous GWAS 
performed by Sell-Kubiak et al. [25], where only DHGLM 
was used to obtain variability phenotypes.

Methods
Phenotypes
The phenotypic data on Large White pigs used in this 
study were collected on multiplication farms of Topigs 
Norsvin (Vught, the Netherlands) between March 
1982 and January 2019. In total, litter size records (total 
number born, TNB) for over 640,000 litters were avail-
able before data editing. Records were removed if TNB 
was equal to 3 or less, or if only one record per sow was 
available. Parities 10 + were treated as parity 10 and lit-
ters with a TNB larger than 25 were recoded to 25. This 
allowed us to keep such records in the analysis, rather 
than removing the most extreme values. After data edit-
ing, 607,553 litter records from 121,088 sows were avail-
able for further analysis. The average TNB was 13.76 

(± 3.64) and the distribution of TNB is presented in 
Fig. 1. The pedigree contained 168,230 records and was 
on average five generations deep.

Estimation and analysis of variability phenotypes using 
the log‑transformed variance of residuals
Variability phenotype was obtained as the log-trans-
formed variance of residuals (LnVar) of TNB in two 
steps. First, to obtain estimates of variance components, 
the TNB data were analyzed with the following tradi-
tional animal model, as previously described and tested 
by Dobrzański et al. [28], using the ASReml 3.0 package 
[29]:

 where y is a vector of phenotypes for TNB; X , Z , and U 
are incidence matrices relating phenotypes to effects; b is 
a vector of the fixed effects of herd-year-season and par-
ity; a is a vector of additive genetic effects, with 
a∼N

(
0,Aσ 2

a

)
 , where A is the augmented numerator rela-

tionship matrix and σ 2
a  is the additive genetic variance; pe 

is a vector of permanent environmental sow effects, 
which accounts for repeated observations per sow, with 
pe∼N

(
0, Ipeσ

2
pe

)
, where Ipe is the appropriate identity 

matrix and σ 2
pe is the permanent environmental sow vari-

ance; and e is a vector of residuals, with e∼N
(
0, Ieσ

2
e

)
 , 

where Ie is the appropriate identity matrix and σ 2
e  is the 

residual variance.
In the second step, estimates of the residuals from the 

first step were used to estimate the phenotype for the log 
of variability of TNB (LnVarTNB) for each sow as the 
within-individual variance of residuals and log-trans-
forming the result. Log transformation was used to 

(1)y = Xb+ Za +Upe+ e,

Fig. 1 Histogram of the distribution of litter size (TNB total number born)
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normalize the distribution of the variability phenotypes 
and to assume an exponential model for the environmen-
tal variance [8, 30–32], which in general is described as: 
yi = µ+ u+ exp

(
1
2 (η + v)

)
ǫj for j = 1, . . . n , where yi 

are the phenotypic observations for LnVarTNB, µ is the 
population mean, η is the log environmental variance 
mean; u and v are the genetic values of the mean and 
environmental variance, respectively, following [
u
v

]
∼ N

(
0,

[
σ 2
u σu,v

σu,v σ 2
v

])
 , where σ 2

u and σ 2
v  are the 

genetic variances and σu,v is the covariance between the 
genetic effects; and ǫj refers to independent, identically 
and normally distributed variables, that are independent 
from u and v.

The variability phenotypes from LnVar were analyzed 
with the following model, as previously used by Berghof 
et al. [15] and Dobrzański et al. [28]:

 where yvar is a vector of LnVarTNB phenotypes; Xvar and 
Zvar are incidence matrices relating phenotypes to model 
effects; bvar is a vector of the fixed effects of farm-year-
season of the first farrowing; avar is a vector of additive 
genetic effects, with avar∼ N

(
0,Aσ 2

avar

)
 , where σ 2

avar is the 
additive genetic variance; and evar is a vector of residu-
als, with evar∼ N

(
0, Ievarσ

2
evar

)
 , where Ievar is the appro-

priate incidence matrix and σ 2
evar is the residual variance. 

To account for differences in residual variance due to 
the varying numbers of TNB records available per sow, 
we estimated a unique residual variance for each of the 
nine groups of sows based on numbers of records (Group 
1: 19,670 sows with two litters; Group 2: 18,173 sows 
with three litters; Group 3: 17,601 sows with four litters; 
Group 4: 16,868 sows with five litters; Group 5: 15,661 
sows with six litters; Group 6: 13,365 sows with seven lit-
ters; Group 7: 9516 sows with eight litters; Group 8: 5581 
sows with nine litters; and Group 9: 4188 sows with ten 
or more litters).

Estimation and analysis of variability using a double 
hierarchical generalized linear model
We also analyzed the variability of TNB with a double 
hierarchical generalized linear model (DHGLM) [18, 33], 
which also allows estimation of variance components for 
residual variance in ASReml 3.0. The method is based on 
a bivariate model that requires several iterations until 
convergence and was used in an earlier study to obtain 
variability phenotypes for a GWAS for litter size variabil-
ity [25]. The applied DHGLM was:

(2)yvar = Xvarbvar + Zvaravar + evar ,

 where y is the vector of phenotypes TNB and ψ is the 
vector of response variables for the variance part of the 
DHGLM; the residuals e and ev are assumed to be inde-
pendent and normally distributed but with heterogene-
ous variances across phenotypes; b and bv are vectors of 
the fixed effects of parity of the sow and farm-year-sea-
son of the farrowing for y and ψ , respectively; a and av 
are vectors of random additive genetic effects for y and ψ , 

with 
[
a
av

]
∼ N

(
0,

[
σ 2
a σa,av

σa,av σ 2
av

]
⊗ A

)
 , where σ 2

av is the 

additive genetic variance, σa,av is the covariance between 
the genetic effects and ⊗ is the Kronecker product; pe 
and pev are vectors of random non-genetic permanent 
sow effects for y and ψ ·, with [
pe

pev

]
∼ N

(
0,

[
σ 2
pe σpe,pev

σpe,pev σ 2
pev

]
⊗ I

)
 , where σ 2

pev is the perma-

nent sow variance, σpe,pev is the covariance between the 
permanent sow effects; and e and ev are vectors of residu-

als, with 
[
e
ev

]
∼ N

(
0
0
,

[
W

−1σ 2
e 0

0 W
−1
v σ 2

ev

])

 , where 

W = diag

(
exp

(
∧

ψ

)−1
)

 and Wv = diag
(
1−h
2

)
 are 

expected reciprocals of the residual variance from the 
previous iteration, and σ 2

e  and σ 2
ev are scaling variances 

and are expected to be equal to 1 [31]. The predicted 

residual variance for each TNB phenotype exp
(

∧

ψ

)
 is 

based on the estimated fixed and random effects for ψ in 
the previous iteration of the algorithm. This methodology 
produced the second variability phenotype—varTNB and 
estimated its variance components.

Note: to fully evaluate the genetic variation within 
litter size variability based on LnVar and DHGLM, 
the genetic coefficient of variation on the stand-
ard deviation (SD) level ( GCVSDe ) was used, which 
can be approximated as: GCVSDe =

σaddv(σe)
σe

≈
1

2
σavar 

or ≈ 1
2σav , where σaddv is the genetic SD in residual 

variance.

Comparison of the LnVar and DHGLM
The two methods used to estimate variability pheno-
types for litter size, i.e. LnVar and DHGLM, were evalu-
ated by:

(3)

[
y
ψ

]
=

[
X 0
0 Xv

][
b
bv

]
+

[
Z 0
0 Zv

][
a
av

]

+

[
U 0
0 Uv

][
pe
pev

]
+

[
e
ev

]
,
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(1) Comparing the estimates of variance components 
and the estimated breeding values (EBV) of 
LnVarTNB and varTNB and their theoretical 
accuracies which were estimated based on the fol-
lowing equation: rA,I =

√
1− si

σ 2
add

 , where si is the 

standard error for the EBV of the i th individual 
and σ 2

add is the additive genetic variance for the 
trait.

(2) Three-fold cross-validation used to predict EBV for 
LnVarTNB and varTNB. For this, we selected pater-
nal families with at least three half-sisters with litter 
size records. Then, phenotypes for one of the pater-
nal half-sisters were set to missing, which resulted 
in removing 3650 sows and their records in three 
subsets of data. This cross-validation imitates a sit-
uation where a breeding program aims at predict-
ing the phenotype of a new-born sow that already 
has paternal half-sisters with litter size records. 
The predicted EBV were then correlated with the 
log-transformed variance of litter size per sow. A 
similar validation approach was described by Sell-
Kubiak et al. [14].

SNP genotypes for GWAS
In total, 12,232 genotyped sows (N = 11,451) and boars 
(N = 781) were available for the GWAS. Genotyping was 
performed at GeneSeek (Lincoln, NE, USA) using three 
medium-density SNP chips. Most animals (N = 7079) 
were genotyped using the (Illumina) GeneSeek custom 
50K SNP chip (Lincoln, NE, USA), while 3276 and 1877 
animals were genotyped using the (Illumina) GeneSeek 
custom 80K SNP chip (Lincoln, NE, USA) and the Illu-
mina Porcine SNP60 Beadchip (Illumina, San Diego, CA, 
USA), respectively. In total, 499 animals that had already 
been genotyped with the medium-density chips were 
also genotyped with the Axiom porcine 660K array from 
Affymetrix (Affymetrix Inc., Santa Clara, CA, USA) at 
GeneSeek (Lincoln, NE, USA). These animals were the 
sires with the largest number of offspring in the geno-
typed dataset.

Quality control of the genotype data included exclusion 
of SNPs with a GenCall score < 0.15 (Illumina Inc., 2005), 
a call rate < 0.95, and a minor allele frequency < 0.01, and of 
the SNPs that deviated strongly from the Hardy–Weinberg 
equilibrium (χ2 > 600), that were located on sex chromo-
somes, and that were unmapped. The positions of the SNPs 
were based on the Sscrofa11.1 assembly of the reference 
genome. Since all animals had a frequency of missing geno-
types ≤ 0.05, none were removed based on that criterion.

After quality control, missing genotypes of the animals 
genotyped with the (Illumina) GeneSeek custom 50K 

SNP chip were imputed within the population using the 
Fimpute v2.2 software [34], while animals genotyped with 
the other two chips had their genotypes imputed to the 
set of SNPs on the (Illumina) GeneSeek custom 50K SNP 
chip that passed the quality control. After quality control 
and imputation, genotypes on 50,717 SNPs were available 
and were used in imputation to the 660K genotypes using 
Fimpute v2.2 [34]. After quality control and imputation, 
genotypes on 526,505 SNPs were available for the GWAS.

Genome‑wide association study
For use in GWAS, the EBV for variability obtained with 
the two methods were deregressed using the method-
ology of Garrick et  al. [35]. Deregression of EBV avoids 
double-counting of parental information due to various 
information sources and complex family structures in a 
population, and provides phenotypes for boars that do 
not have own litter size records. This also allows more 
genotyped animals to be included in the GWAS and thus 
increase its power to detect QTL.

A single-SNP GWAS was performed using the imputed 
660K genotypes and applying the following linear animal 
model in the GCTA software [36, 37]:

 where y∗k is the deregressed EBV of the k th animal for 
LnVarTNB or varTNB; µ is the average of the deregressed 
EBV; X∗ is the genotype (0, 1, 2) of the k th animal for the 
evaluated SNP; β̂ is the unknown allele substitution effect 
of the evaluated SNP; u∗k is the random additive genetic 
effect, assumed to be distributed as ∼ N (0,Gσ 2∗

a ) , which 
accounts for the (co)variances between animals though 
the formation of a genomic numerator relationship 
matrix ( G ), constructed using the imputed 660  K geno-
types, σ 2∗

a  is the additive genetic variance; and e∗k is the 
random residual effect, which was assumed to be distrib-
uted as ∼ N (0, Iσ 2∗

e ).
The genetic variance explained by a SNP ( σ 2

snp = 2pqβ̂2 ) 
was estimated based on the allele frequencies ( p and q ) 
and the estimated allele substitution effect ( ̂β ). The pro-
portion of phenotypic variance explained by the SNP was 
defined as σ 2

snp/σ
2
P , where σ 2

P is the total phenotypic vari-
ance (sum of the additive genetic and residual variances), 
which was estimated based on the model described above 
without a SNP effect. Significant SNPs were declared 
based on a p-value <  10–6, while suggestive SNPs were 
declared based on a p-value <  10–4 and linkage disequilib-
rium (LD) with the significant SNP. Each region with the 
significant and suggestive SNPs was defined as a separate 
vQTL region.

Following the GWAS based on the imputed 660 K data, 
we investigated the linkage disequilibrium (LD) in the 

(4)y∗k = µ+ X∗β̂+ u∗k + e∗k ,
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QTL region on SSC7 that overlapped between the two 
variability phenotypes. LD, as measured by  r2, was calcu-
lated between SNPs using the Plink 1.9 software [38].

Search for candidate genes
Based on the GWAS results, we used the location of the 
significant SNPs to search for candidate genes with the 
software BIOMART available in Ensembl Sscrofa 11.1 
[39] by entering the position of a SNP and ± 50 kb if the 
SNP was not located within a known gene. Furthermore, 
the PigQTL database of the Animal Genome project [26] 
was used to find previously detected associations and 
QTL related to pig reproduction within the most prom-
ising regions. This was done by entering the start and 
end position of the identified QTL regions for litter size 
variability.

Results
Comparison of the variability phenotypes
Estimates of the variance components and heritability 
for total number born (TNB) and its variability are in 
Table 2. The variance components obtained for the vari-
ability of litter size differed between the two estimation 
methods (LnVar and DHGLM), which resulted in differ-
ences between heritability estimates. The genetic coef-
ficient of variation on the SD level ( GCVSDe ) indicated 
a possible change of 9.1 and 9.6% per generation in the 
genetic SD of LnVarTNB and of varTNB, respectively. 
Table  3 shows estimates of the correlations between 
random effects in the DHGLM, with a correlation of 
0.43 between additive effects and a correlation of − 0.87 
between permanent sow effects.

Table 2 Estimates of variance components, heritability, and the 
genetic coefficient of variation on the standard deviation level 
( GCVSDe)

TNB: litter size as total number born

LnVarTNB: phenotypic variability of litter size estimated by the log‑transformed 
variance of residuals

varTNB: phenotypic variability estimated with double hierarchical generalized 
linear model measured in 121,088 sows from the Large White pig population
a Heritability is a measure of the reliability of EBV for LnVarTNB and varTNB; it 
does not reflect the magnitude of the genetic variance in varTNB
b Measure of the genetic variation in residual variance 
GCVSDe =

σaddv (σe)
σe

≈
1

2
σavar or ≈

1

2
σav

Estimate TNB LnVarTNB varTNB

Permanent sow variance 0.86 (0.01) – 0.15 (0.003)

Additive genetic variance 1.33 (0.2) 0.033 (0.001) 0.037 (0.002)

Residual variance 7.67 (0.8) 1.33 (0.4) 0.84

Heritability 0.135 (0.02) 0.024 (0.002)a 0.036a

GCVSDe
b – 0.091 0.096

Table 3 Estimates of  correlationsa (with SE) between the 
random effects on litter size and its variance

a Obtained with double hierarchical GLM

Effect Correlation

Additive genetic 0.43 (0.03)

Permanent sow − 0.87 (0.02)

Fig. 2 Theoretical accuracies of EBV for litter size variability in Large 
White sows for two methods: log‑transformed variance of residuals 
from multiple observations per sow (LnVarTNB) and residual variance 
of individual litter size obtained with a double hierarchical GLM 
(varTNB; or varTNB_2015 based on Sell‑Kubiak et al. [25]). a LnVarTNB 
vs. varTNB, b varTNB vs. varTNB_2015, c LnVarTNB vs. varTNB_2015
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The correlation between the EBV obtained with the 
two methods was 0.86, which indicates some reranking of 
the animals. In the validation, we also compared the EBV 
from the two methods with those obtained for the varia-
bility of litter size by Sell-Kubiak et al. [25], which will be 
referred to as varTNB_2015. Estimates of the correlation 
of the EBV for varTNB_2015 with those for LnVarTNB 
and varTNB were 0.73 and 0.83, respectively. These 
results suggest that the variability phenotypes obtained 
with the two methods are not as similar as expected.

The two methods were also compared by evaluating the 
theoretical accuracies of the EBV and by cross-validation. 
The theoretical accuracies presented in Fig.  2 indicate 
that the highest accuracy was reached for varTNB, while 
LnVarTNB and varTNB_2015 resulted in very similar 

Table 4 Correlations between log‑transformed variance of litter 
size and EBV for  LnVarc and  DHGLMc obtained from three‑fold 
cross‑validationa

a Three‑fold cross‑validation was performed to compare the two methods 
used to obtain phenotypic variability of litter size: log‑transformed variance of 
residuals (LnVar) and double hierarchical GLM (DHGLM)
b Log‑transformed variance of litter size per sow
c Estimated in each run for 3650 sows with their records set to missing

Validation run Correlations of ln(var(TNB))b with

EBV from  LnVarc EBV from 
 DHGLMc

1 0.47 0.55

2 0.42 0.49

3 0.40 0.44

Average 0.43 0.49

Fig. 3 Genome‑wide association for phenotypic variability of litter size in Large White pigs based on a deregressed EBV of log‑transformed 
residuals (LnVarTNB) for 11,230 genotyped purebred sows and boars, and b a double hierarchical generalized linear model (varTNB) for 12,232 
genotyped purebred sows and boars. The dashed grey line on the figure indicates the significance threshold −  log10(P‑value) ≤ 6
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accuracies, although the older dataset contained fewer 
records per sow. The results of the three-fold cross-vali-
dation indicated that the EBV from DHGLM had a signif-
icantly (P = 0.038 based on a t-test) higher precision than 
the EBV based on LnVar (Table 4).

Significant SNPs and candidate genes
Figures 3 and 4 present the GWAS results of this study 
and Tables  5 and 6 show the significant and suggestive 
SNPs for each identified vQTL region for LnVarTNB 
and varTNB, respectively. The estimates of the 

Fig. 4 Manhattan plots for the GWAS of phenotypic variability of litter size based on a LnVarTNB, and b varTNB. The y‑axis shows the 
−  log10(p‑values) of single SNP association with LnVarTNB or varTNB in Large White pigs, and the x‑axis shows the physical position of the SNP in 
the SSC7 vQTL region. Linkage disequilibrium (LD) is given on a scale of 0–1 as a measure of the pairwise correlation between the most significant 
SNP (pink dot) and all other SNPs
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genetic variance obtained in the GWAS were 0.012 for 
LnVarTNB and 0.014 for varTNB. The inflation factors 
(lambda) for both variability phenotypes are in Addi-
tional file  1: Fig. S1. Only one identified vQTL region 
overlapped between LnVarTNB and varTNB, i.e. a 
region on SSC7, which contained the most significant 
SNP detected for both variability traits, AX-116689108. 
This SNP had a low minor allele frequency (MAF = 0.01) 
with only three animals being homozygous for the least 
frequent genotype and 253 animals being heterozygous. 
The least frequent allele was associated with greater lit-
ter size variability. This low MAF could be explained 
by the selection history of the population, with strong 
selection for increased litter size over the last decades, 
because greater litter size variation could reduce the 
average litter size.

We also investigated the LD between AX-116689108 
and its surrounding SNPs to check if the mapping of the 
most significant SNP was correct. This showed that the 
highest LD was between AX-116689108 and the SNPs in 
the vQTL region on SSC7, which confirms that the sig-
nificant SNP is properly mapped.

Additional vQTL regions were identified on SSC1 
and SSC18 for LnVarTNB and on SSC7 and SSC11 for 
varTNB. These GWAS results provide support for con-
sidering the variability phenotypes obtained with the two 
methods as two different traits, since different genomic 
regions were identified for each of them.

Based on the positions of the significant and sugges-
tive SNPs for the two variability traits, we identified sev-
eral candidate genes (see Tables 5 and 6) within ± 50 kb 
from each SNP. However, not all the significant SNPs 
were located within a known gene region. This was the 
case for the most significant SNP detected on SSC7 
for both traits and for most of the suggestive SNPs for 
varTNB. Several previously reported QTL related to 
reproduction traits in pigs were located within the iden-
tified vQTL regions (Tables 5 and 6). Interestingly, SNP 
AX-116317698 at 38.81 Mb on SSC7 in the vQTL region 
for variability of litter size was previously found to be 
associated with TNB (see Additional file  1: Fig. S2 and 
Additional file 2 Table S1).

Discussion
The main aim of our study was to detect novel genomic 
regions that are involved in the genetic control of the 
phenotypic variability of litter size in Large White pigs. 
In addition to this objective, we also compared two meth-
ods to estimate variability phenotypes, i.e. LnVar and 
DHGLM. This is the second study that reports vQTL 
for the variability of litter size and the first one to study 
the genomic differences between variability phenotypes 
obtained with two methods.

Comparison of methods
We compared the following two methods for estimat-
ing litter size variability: the simple approach of estimat-
ing log-transformed variance residuals (LnVar) and a 
DHGLM. The latter was previously used for analysis of 
part of the same data as used here by Sell-Kubiak et  al. 
[25]. The LnVar is a simpler method than DHGLM to 
compute variability phenotypes and requires less com-
putation time, making it more suitable for application in 
breeding programs. The DHGLM method was described 
in detail by Berghof et al. [15] and Dobrzański et al. [28]. 
Dobrzański et al. [28] also tested whether accounting for 
the “parity curve” in litter size, i.e. a change in average lit-
ter size in subsequent parities [40], affected the variability 
phenotype. This was proposed since extending the model 
to better fit the phenotypic data should, in theory, yield 
more accurate estimates of the residual variance. How-
ever, no differences in residual variance were found when 
applying these more complex animal models [28].

The DHGLM is an interesting approach to study the 
variability of traits because it enables analysis of varia-
tion even when only one observation per animal is avail-
able [14]. This of course comes with a cost, since more 
observations per animal increases the heritability of trait 
variability [41]. It is important since trait variability tends 
to have a very low heritability in the classical sense [6], 
whereas in exponential models it should be considered 
as a measure of the reliability of EBV for variability and 
as such does not reflect the magnitude of the genetic 
variance (for this, the genetic coefficient of variation on 
the SD level is used). Due to its complexity, DHGLM 
was compared with simpler methods: log-transformed 
variance of birth weight per litter in pigs [14], log-trans-
formed squared estimated residuals of yearling weight in 
Nellore beef cattle [19], and log-transformed variance of 
residual of body weight in layer hens (LnVar) [15]. Sell-
Kubiak et  al. [14] and Berghof et  al. [15] reported high 
similarity between the variability traits obtained with 
the compared methods, whereas the Iung et al. [19] indi-
cated that DHGLM provided more accurate estimates. 
However, only Sell-Kubiak et al. [14] and Iung et al. [19] 
reported comprehensive comparative studies, whereas 
Berghof et  al. [15] merely presented the genetic corre-
lation between traits. Interestingly, in the study of Sell-
Kubiak et  al. [14] the correlation between EBV for the 
studied methods (0.88) was slightly higher than that 
found between LnVar and DHGLM (0.86) in the current 
study, whereas in the study of Iung et  al. [19] the cor-
relation was only 0.45. In those studies, the accuracy of 
EBV was always higher for DHGLM than for the simpler 
method.

Overall, our results indicate that the two methods used 
to estimate variability phenotypes of litter size (LnVar 
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and DHGLM) do not produce identical traits, based on 
comparing estimates of variance components, estimated 
breeding values, and theoretical accuracies of EBV and 
by a three-fold cross-validation. Therefore, our results 
do not confirm the study of Berghof et al. [15] that con-
cluded that these two methods yielded the same trait 
when analyzing body weight variability in layer hens. In 
addition, the GWAS results of our study reveal that these 
two traits are controlled by different genomic regions, 
given that only the region on SSC7 was significant for 
both traits. This is in line with the presence of some 
reranking of EBV when comparing LnVar and DHGLM, 
which after deregression were used as response vari-
able in GWAS. Thus, our results indicate that LnVar and 
DHGLM yield, to a large extent, genetically different phe-
notypes of variability. Moreover, we also showed in the 
three-fold cross-validation that DHGLM provides more 
accurate EBV. This means that the two methods should 
not be treated as interchangeable and although DHGLM 
has a longer computation time and is more difficult to 
implement in a real-life breeding program, we recom-
mend it over the simpler methods. This is in line with the 
findings of Sell-Kubiak et al. [14] and Iung et al. [19].

Significant SNPs and candidate genes
Within each vQTL region for variability of litter size, sev-
eral candidate genes were identified. We focused only on 
genes that are located within ± 50 kb from the most sig-
nificant SNP in each vQTL region. The most significant 
SNP (AX-116689108) for both variability phenotypes was 
located on SSC7 within a non-coding region but notably 
in the middle of a regulatory element (genomic evolu-
tionary rate profiling, GERP) [39]. In our study of 2015 
on variability of litter size, which included a much smaller 
number of animals from the same population (N = 2067), 
we also identified a SNP on SSC7 that was significantly 
associated with varTNB_2015 [25]. This SNP was located 
at 43.76 Mb based on the Sus scrofa build 10.2 [25] but at 
38.26 Mb in the Sus scrofa build 11.1 used in the current 
study. However, in the current study, this SNP was not 
significant [−  log10(P-value) = 4.05]. The LD between this 
SNP and the most significant SNP from the current study 
(at 41.8 Mb on SSC7) was only 0.11. Although this is not 
a strong LD, it indicates that this region on SSC7 plays an 
important role in litter size variability.

The two genes that are located within ± 50  kb from 
the most significant SNP on SSC7 for both traits are 
ADGRF1—adhesion G protein-coupled receptor F1 
(SSC7:41,806,393–41,853,657  bp) and ADGRF5—adhe-
sion G protein-coupled receptor F5 (SSC7:41,640,258–
41,769,286 bp). The ADGRF1 GO term annotation relates 
it to transmembrane signaling receptor activity, for 

which ADGRF5 is an important paralog [27]. ADGRF1 is 
involved in neurodevelopment of the brain and its func-
tions are related to the effect of docosahexaenoic acid 
on the brain [42, 43]. ADGRF5 was recently reported to 
be involved in the prevention of paraquat-related lung 
injuries and to be important for the function of the res-
piratory system [44] and in the process of vascularization 
[45, 46]. Moreover, knockout mice that lack ADGRF5 
(in combination with a knockout of another gene adhe-
sion G protein-coupled receptor ADGRL4) show perinatal 
lethality in 50% of the animals [46]. These functions can 
have an important effect on the blood supply to develop-
ing fetuses. Both ADGRF1 and ADGRF5 are expressed in 
human ovary, uterus, prostate, and testis tissues [27].

Another identified vQTL region for varTNB was also 
located on SSC7, with the most significant SNP being 
AX-116320493 and the candidate gene being AP3B2—
adaptor related protein complex 3 subunit beta 2, which 
is expressed in the testis and prostate [27]. Mutations of 
this gene have been reported to result in neurologic dis-
orders in humans [47].

The two other candidate genes for LnVarTNB were 
GANC—glucosidase alpha, neutral C for the identified 
vQTL on SSC1 and AHCYL2 adenosylhomocysteinase 
like 2 on SSC18. In humans, GANC is expressed in sev-
eral organs related to reproduction in females (breast, 
uterus, cervix, and ovary) and in males (testis, prostate, 
and seminal vesicle) [27]. GANC encodes a member of 
the glycosyl family, which is a key enzyme in the metabo-
lism of glycogen and is associated with susceptibility to 
diabetes [48, 49]. AHCYL2 is involved in the develop-
ment of congenital heart defects in humans, and a GWAS 
in Chinese cattle also described it as a candidate gene 
associated with displacement of the abomasum [50]. It is 
also expressed in the ovary and uterus and in the testis 
and prostate [27].

The last of the most significant SNPs for varTNB was 
AX-116416839 located on SSC11 within the candidate 
gene KATNAL1 katanin catalytic subunit A1 like 1. This 
gene is associated mostly with an expression in neurons 
[51], but it has been shown to have a role in the regula-
tion of the Sertoli cell microtubules, which if disturbed 
can cause male infertility [52]. Since the functions of the 
candidate genes are not directly linked with female repro-
duction, it would be useful to further study the existence 
of causative mutations underlying variability of litter size.

Conclusions
We identified six novel genomic regions that are associ-
ated with the variability of litter size in pigs. Only one 
vQTL region, on SSC7, partially overlapped between the 
variability traits obtained with the two methods (LnVar and 
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DHGLM) used here and, in both cases, it contained the 
same most significant SNP. Both our current findings and 
those of a previous study of the same population, provide 
strong evidence for a causative mutation on SCC7 for litter 
size variability. However, future studies based on sequence 
data are needed to confirm the genomic regions involved 
in the control of variability of litter size, since the most sig-
nificant SNP on SSC7 was detected within a non-coding 
region. In addition, our results indicate that the LnVar and 
DHGLM methods that were used to estimate the variabil-
ity of litter size produced phenotypically and genetically 
different traits, and that DHGLM yields much more accu-
rate results. Thus, we recommend the use of DHGLM over 
the simpler method to study and implement selection on 
the variability of litter size in breeding programs.
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