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Abstract 

Background:  Disease resilience is the ability to maintain performance across environments with different disease 
challenge loads (CL). A reaction norm describes the phenotypes that a genotype can produce across a range of envi-
ronments and can be implemented using random regression models. The objectives of this study were to: (1) develop 
measures of CL using growth rate and clinical disease data recorded under a natural polymicrobial disease challenge 
model; and (2) quantify genetic variation in disease resilience using reaction norm models.

Methods:  Different CL were derived from contemporary group effect estimates for average daily gain (ADG) and clin-
ical disease phenotypes, including medical treatment rate (TRT), mortality rate, and subjective health scores. Resulting 
CL were then used as environmental covariates in reaction norm analyses of ADG and TRT in the challenge nursery 
and finisher, and compared using model loglikelihoods and estimates of genetic variance associated with CL. Linear 
and cubic spline reaction norm models were compared based on goodness-of-fit and with multi-variate analyses, for 
which phenotypes were separated into three traits based on low, medium, or high CL.

Results:  Based on model likelihoods and estimates of genetic variance explained by the reaction norm, the best CL 
for ADG in the nursery was based on early ADG in the finisher, while the CL derived from clinical disease traits across 
the nursery and finisher was best for ADG in the finisher and for TRT in the nursery and across the nursery and finisher. 
With increasing CL, estimates of heritability for nursery and finisher ADG initially decreased, then increased, while esti-
mates for TRT generally increased with CL. Genetic correlations for ADG and TRT were low between high versus low 
CL, but high for close CL. Linear reaction norm models fitted the data significantly better than the standard genetic 
model without genetic slopes, while the cubic spline model fitted the data significantly better than the linear reaction 
norm model for most traits. Reaction norm models also fitted the data better than multi-variate models.

Conclusions:  Reaction norm models identified genotype-by-environment interactions related to disease CL. Results 
can be used to select more resilient animals across different levels of CL, high-performance animals at a given CL, or a 
combination of these.
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Background
In swine breeding, selection for economically impor-
tant traits is usually based on phenotypes recorded on 
purebred animals in nucleus farms with a high health 
status. However, the breeding goal is to improve the 
performance of crossbred animals raised in commercial 
farms, which typically have a lower level of biosecurity. 
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The effectiveness of these purebred selection programs 
depends on the genetic correlations of trait phenotypes 
collected on purebred animals in the nucleus environ-
ment with phenotypes expressed for those same traits in 
crossbreds in commercial environments. Wientjes and 
Calus [1] reviewed published estimates of purebred–
crossbred genetic correlations in pigs and found esti-
mates that averaged 0.63, with only 50% of the estimates 
> 0.45 (up to 0.87). They also found that genotype-by-
environment interaction is one of the main factors that 
contributes to these low genetic correlations.

Disease resilience is defined as the ability of an ani-
mal to maintain performance across environments with 
different disease challenge loads (CL) [2, 3]. Bisset and 
Morris [3] pointed out that disease resilience captures 
both resistance and tolerance, where disease resistance 
is defined as the ability of an animal to prevent infection 
when exposed to a pathogen or to limit replication of 
the pathogen when infected [4, 5], and disease tolerance 
is defined as the ability of an animal to maintain perfor-
mance at a given level of infection or pathogen load [5]. 
In contrast to resistance and tolerance, evaluation of dis-
ease resilience does not require knowledge of pathogen 
burden [6], which is often difficult to obtain, but uses 
measures of performance in environments with differ-
ent CL. Albers et al. [2] used the reduction in growth rate 
due to infection to measure disease resilience in sheep.

A reaction norm describes the phenotypes that a geno-
type can produce across a range of environments [7, 8]; 
resilient animals tend to maintain the same performance 
level across different environments. A random regres-
sion model (RRM) represents a parsimonious covariance 
structure that can model breeding values for a pheno-
type as a function of one or more continuous variables 
[9, 10] and, thus, can implement reaction norm models, 
as demonstrated in several studies [11, 12]. Kause [13] 
demonstrated that genetic variance in tolerance can 
be estimated as genetic variance in regression slopes of 
performance on pathogen burden, where the slope rep-
resents the ability of an animal to cope with different 
CL. Resilience can be analyzed as a reaction norm with 
the animal’s performance regressed on a measure of CL, 
which does not require measures of pathogen burden but 
can be derived using performance for a contemporary 
group and/or clinical records [14–16]. Mathur et al. [17] 
proposed a method to estimate the CL using sow repro-
duction records in natural outbreaks of porcine repro-
ductive and respiratory syndrome (PRRS), based on the 
assumption that the reduction in weekly reproductive 
output in a farm during an outbreak is proportional to 
the magnitude of the challenge. This method was also 
used by Rashidi et al. [14] to identify healthy and diseased 
time periods in sow farms in which PRRS was endemic 

and to evaluate genetic variation in resilience of sows to 
PRRS CL using reaction norm models. Guy et  al. [15] 
used reaction norm models to assess resilience of pigs 
based on different environmental descriptors derived 
from estimates of the contemporary group effect for dif-
ferent phenotypes such as growth, feed intake, and car-
cass traits, and found that the use of different phenotypes 
differed in their ability to detect genetic variation in reac-
tion norm slopes.

Recently, Putz et al. [18] and Cheng et al. [19] described 
a natural disease challenge model for wean-to-finish pigs, 
in which clinical disease phenotypes were recorded on 
batches of 60 or 75 pigs, including medical treatment 
rates, mortality rates, and subjective health scores. These 
clinical disease traits are a direct reflection of the severity 
of the disease challenge. To our knowledge, few studies 
have used clinical disease phenotypes as CL or as envi-
ronment factors to study disease resilience. Guy et  al. 
[16] used medication treatment records to define the 
CL in pigs for studying disease resilience, but medica-
tions were mainly associated with tail biting, rather than 
disease. In dairy cattle, milk somatic cell count was used 
as an environmental descriptor to identify genotype-by-
environment interactions for milk protein yield [20], but 
this is limited to milking animals and cannot be widely 
applied to all livestock. The objectives of this study were 
to: (1) develop different CL using growth rate and clinical 
disease phenotypes collected under the natural polymi-
crobial disease challenge model described by Putz et  al. 
[18] and Cheng et al. [19]; and (2) evaluate genetic vari-
ation in disease resilience using reaction norm models 
based on the developed CL.

Methods
This study was carried out in accordance with the Cana-
dian Council on Animal Care guidelines (CCAC; https://​
www.​ccac.​ca/​en/​certi​ficat​ion/​about-​certi​ficat​ion). The 
protocol was approved by the Protection Committee of 
the Centre de Recherche en Sciences Animales de Des-
chambault (CRSAD) and the Animal Care and Use Com-
mittee at the University of Alberta (AUP00002227). 
The project was fully overseen by the Centre de Dével-
oppement du Porc du Québec (CDPQ) in Québec, 
Canada, and its herd veterinarian together with project 
veterinarians.

Phenotypes and genotypes
All data were collected by trained research staff from 
CDPQ, using a natural disease challenge wean-to-fin-
ish barn that was established in 2015 by bringing natu-
rally infected animals into a late nursery and finish barn 
(Fig. 1). The natural challenge included various viral and 
bacterial pathogens that are common in the industry and 

https://www.ccac.ca/en/certification/about-certification
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was maintained by entering batches of 60 or 75 healthy 
nursery pigs every three weeks in a continuous flow 
system (see Putz et  al. [18] for details). For each batch, 
weaned Large White x Landrace barrows were provided 
by one of seven breeding companies, with each company 
providing one batch for each cycle, for a total of seven 
cycles. The natural challenge protocol consisted of three 
phases: (1) quarantine nursery (19 days on average begin-
ning at 3 weeks of age), (2) challenge nursery (27 days on 
average), and (3) finishing phase (100  days on average). 
Average group sizes in the three phases were 4.3, 7.2, and 
10.7 pigs per pen, respectively, and pigs were re-grouped 
when moved between phases. The objective of the chal-
lenge was to mimic that of high disease pressure in a 
commercial farm to maximize the expression of genetic 
differences for disease resilience. In total, phenotypes and 
genotypes on 3205 pigs were available, as described by 
Cheng et al. [19]. Phenotypes included average daily gain 
in the challenge nursery (cNurADG) and in the finisher 
(FinADG), medical treatment rates in the challenge nurs-
ery (cNurTRT), in the finisher (FinTRT), and across the 
nursery and the finisher (AllTRT), mortality rates in the 
challenge nursery (cNurMOR), in the finisher (FinMOR), 
and across the nursery and the finisher (AllMOR), and 
subjective health scores in the challenge nursery (cNurH-
Score) and in the finisher (FinHScore). Phenotypes for 
ADG were derived as the regression of body weight on 
age, separately for the challenge nursery and the finisher. 
ADG in the finisher was also computed using only body 

weights from the first three weeks in the finisher, because 
most pigs had recovered from the disease challenge later 
in the finishing phase. This ADG will be referred to as 
early finisher ADG (EFinADG). Phenotypes for ADG 
across the challenge nursery and the first three weeks in 
the finisher were also derived and will be referred to as 
AllADG. Health scores were assigned on a 1 to 5 scale 
by highly qualified research personnel based on clinical 
signs, regardless of the cause of the symptoms: 1 = severe 
clinical signs with loss of weight and strength and 5 = in 
perfect health. Treatment rates were standardized by 
multiplying the number of treatments a pig received by 
the ratio of the average length of the corresponding phase 
and the number of days the pig spent in that phase. Mor-
tality was recorded as 0 = survived and 1 = died. Details 
on these phenotypes are in Cheng et  al. [19]. For treat-
ment and growth rates in the finisher, data from pigs that 
died in the finisher were included in the analyses after 
imputing the truncated records to complete phenotypes, 
as described by Cheng et al. [19].

All animals were genotyped with the 650 k Affymetrix 
Axiom Porcine Genotyping Array for 658,692 single 
nucleotide polymorphisms (SNPs) by Delta Genomics 
(Edmonton AB, Canada). Raw Affymetrix SNP data were 
processed by Delta Genomics, separately for each cycle, 
with the Axiom Analysis Suite, using all defaults. The 
435,172 SNPs that passed quality control (minor allele 
frequency > 0.05; call rate for marker > 0.90; call rate for 
individual > 0.90) for 3205 pigs, were used for analysis.

Fig. 1  Natural disease challenge protocol, phenotypes, and challenge loads. Green = healthy. Red = challenged
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Disease challenge load
To derive a quantitative measure of the CL that pigs 
faced for use as an environmental covariate in reaction 
norm models for average daily gain (ADG) and medi-
cal treatment rate (TRT), it was assumed that the CL 
differed between batches and between pens within a 
batch, in both the challenge nursery and the finisher. 
The CL by batch and pen was derived from estimates 
of the environmental effects associated with batch and 
pen for either ADG or for the clinical disease traits TRT 
(including individual and batch treatments), MOR, 
and health scores (HScore). Estimates of the environ-
mental effects associated with batch and pen for these 
traits were obtained from the following model, as used 
by Cheng et al. [19], for ADG, TRT, MOR, and HScore, 
separately for the challenge nursery and the finisher:

where yijkl is the phenotype of pig l of batch i in pen j 
from litter ijk for ADG, TRT, MOR, or HScore in the 
challenge nursery or the finisher; Batchi is the fixed batch 
effect ( i = 1, …, 50); Diedijkl is the fixed effect of the pig 
dying during the corresponding phase, which was fit-
ted only for cNurADG, FinADG, and AllTRT; Ageijkl 
is the covariate of age when the pig entered the quar-
antine nursery, with regression coefficient b ; Penj is the 
random effect of pen within batch (437 unique pens in 
the challenge nursery and 262 in the finisher), with vec-
tor Pen ∼ N (0, Iσ 2

P), where σ 2
Pl is the pen variance and 

I an identity matrix of appropriate size; uijkl is the ran-
dom additive genetic effect, with vector u ∼ N (0,Gσ 2

A), 
where G is the genomic relationship matrix, computed 
as described by Cheng et al. [19], and σ 2

A is the additive 
genetic variance; litterijk is the common environmental 
effect associated with litter mates (1119 litters), with vec-
tor litter ∼ N (0, Iσ 2

k ), where σ 2
k  is the litter environmen-

tal variance; and eijkl is the residual effect, with vector 
e ∼ N (0, Iσ 2

e), where σ 2
e  is the residual variance.

Based on the resulting estimates of batch and pen 
effects, several alternate CL were derived for each pen 
within batch. Challenge loads based on ADG in the 
challenge nursery (NurCLg) were derived as the sum 
of batch and pen estimates obtained from analysis of 
cNurADG with model (1), including ADG of pigs that 
died in the nursery. Similarly, CL based on ADG in the 
finisher (FinCLg) were derived as the sum of batch and 
pen estimates from analysis of EFinADG with model 
(1), using data on pigs that survived at least three weeks 
in the finisher. Here, EFinADG was used because ADG 
based on all body weight data in the finisher may not 
reflect the disease challenge pigs experienced in the 
finisher. To obtain a combined CL across the challenge 

(1)
yijkl = Batchi + Diedijkl + b ∗ Ageijkl

+ Penj + uijkl + litterijk + eijkl ,

nursery and the finisher (CLg), NurCLg and FinCLg 
were weighted as:

The weights in model (2) were derived as the regression 
coefficients of NurCLg and FinCLg on ADG across the 
challenge nursery and the first three weeks in the finisher 
(AllADG), which were estimated by adding NurCLg and 
FinCLg as covariates to model (1) for analysis of pheno-
types for AllADG that were pre-adjusted using estimates 
of batch and pen effects from model (1).

Challenge loads based on clinical disease traits (CLc) 
for each pen within batch were estimated as a quadratic 
function of the estimates of batch and pen effects from 
model (1) for TRT, MOR, and HScore, separately for the 
challenge nursery and the finisher (NurCLc and FinCLc, 
respectively):

where, m =1 and 2 stands for linear and quadratic 
terms, respectively, w1m , w2m , w3m , w4m , w5m , and w6m 
are weighting factors, NurTRTbatch , NurMORbatch , and 
NurHScorebatch are estimates of batch effects for the 
corresponding traits from model (1), and NurTRTpen , 
NurMORpen , and NurHScorepen are estimates of pen 
effects for the corresponding traits from model (1). A 
quadratic function was used to accommodate potential 
non-linear relationships of pen and batch effects with 
challenge load. Similarly, FinCLc was estimated as a func-
tion of the estimates of batch and pen effects for FinTRT, 
FinMOR, and FinHScore. The weighting factors in model 
(3) were derived on the assumption that the contribu-
tions of TRT, MOR, and HScore to the challenge load are 
proportional to their impacts on ADG, i.e. cNurADG and 
EFinADG. On this premise, the weighting factors were 
derived by regressing the sum of estimates of batch and 
pen effects from model (1) for cNurADG and EFinADG, 
respectively, on the estimates of batch and pen effects 
using model (3). A stepwise model selection strategy by 
backward elimination was performed to select the batch 
and pen effect estimates that significantly affected Nur-
CLc and FinCLc (P-value < 0.05). The resulting equations 
to estimate NurCLc and FinCLc were:

(2)CLg = 0.35 ∗ NurCLg + 0.65 ∗ FinCLg .

(3)

NurCLc =
∑2

m=1
w1mNurTRT

m
batch

+

∑2

m=1
w2mNurTRT

m
pen

+

∑2

m=1
w3mNurMORm

batch

+

∑2

m=1
w4mNurMORm

pen

+

∑2

m=1
w5mNurHScore

m
batch

+

∑2

m=1
w6mNurHScore

m
pen,
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To derive a combined CL across the challenge nursery 
and finisher, CLc was weighted by NurCLc and FinCLc, 
as for model (2), with weighting factors derived by add-
ing NurCLc and FinCLc to model (1) as covariates for 
phenotypes for AllADG that were pre-adjusted using 
estimates of batch and pen effect from model (1). Based 
on the resulting regression coefficient estimates, CLc was 
weighted as:

All CL were standardized to a mean of zero and a 
standard deviation (SD) of one for use in further analyses.

To determine to what extent each of the derived CL was 
affected by batch versus pen within batch effects, the pro-
portion of variance explained by batch was estimated for 
each CL by fitting a model with batch as random effect 
the derived CL for each pen. In this model, the residual 
variance is equal to the variance of pen within batch 
because the CL was derived from estimates of batch and 
pen within batch from model (1).

Reaction norm models
A two-step approach was used for reaction norm analy-
ses of cNurADG, FinADG, cNurTRT, and AllTRT, using 
each of the six derived CL (CLc, NurCLc, FinCLc, CLg, 
NurCLg, and FinCLg). FinTRT was not analyzed because 
of its close to zero estimate of heritability [19]. First, all 
phenotypes were pre-adjusted for the effects of batch and 
pen using model (1). Then, either a linear reaction norm 
model or a cubic spline reaction norm model was fitted 
to the pre-adjusted phenotypes. Compared to the lin-
ear reaction model, the cubic spline model is more flex-
ible and does not assume a linear relationship between 
the response trait and the environmental variable (CL in 
this study). A quadratic reaction norm model was also 
attempted but had convergence issues for most traits and 
was, therefore, not further pursued.

The following model was used for the linear reaction 
norm analyses:

(4)

NurCLc = 1.43− 0.31 ∗ NurTRTbatch

+5.95 ∗ NurMORbatch

− 5.19 ∗ NurMOR2
batch

−10.01 ∗ NurHScorebatch
−4.99 ∗ NurHScore2batch
+ 0.46 ∗ NurMORpen

−1.28 ∗ NurMOR2
pen

− 1.40 ∗ NurHScorepen
−1.29 ∗ NurHScore2pen,

(5)

FinCLc = 0.03+ 0.04 ∗ FinTRTbatch + 0.62 ∗ FinMORbatch

− 0.15 ∗ FinHScorebatch − 0.33 ∗ FinHScorepen
− 0.28 ∗ FinHScore2pen.

(6)CLc = 0.12 ∗ NurCLc + 0.88 ∗ FinCLc.

where ykl is the phenotype of pig kl for ADG or TRT; 
Agekl and litterk are the same as in model (1), except 
that litterk was only fitted for cNurADG and cNurTRT 
because FinADG and AllTRT had small litter effects; 
Diedkl indicates whether the pig died or not during the 
corresponding phase; β ∗ CLkl is the fixed covariate effect 
for CL, with regression coefficient β ; ukl0 and ukl1 are 
the random additive genetic effects for the intercept and 
slope, respectively, for the reaction norm for animal kl . 
The variance–covariance structure for the vectors of ran-
dom regression coefficients was:

where σ 2
0
and σ 2

1
 are the genetic variances for the inter-

cept and slope, respectively, and σ0,1 is the corresponding 
genetic covariance.

The cubic spline reaction norm model consisted of a 
series of piecewise cubic polynomials between defined 
knots (breakpoints) for the CL that were constrained 
such that the cubic spline function and its first two deriv-
atives are continuous at the knots [21]. The cubic spline 
reaction norm model that was fitted here used knots at 
the minimum, medium, and maximum CL, respectively, 
following de Groot et  al. [22] (a model with four knots 
was also attempted but resulted in a poorer fit), and can 
be described as:

where all terms are as described in model (7), except that 
the terms skl0 ∗ CLkl and skl1 ∗ CLkl were added based on 
the incorporation of cubic splines in the mixed model 
equations described by de Groot et al. [22], where skl0 is 
a fixed cubic spline effect and skl1 is the random additive 
genetic spline effect for animal kl . The variance–covari-
ance structure for the vectors of additive genetic effects 
for this model was:

where σ 2
0

 , σ 2
1

 , and σ1,0 are as described for model (7) and 
σ 2
as is the genetic variance of the random spline effects. 

Both the linear and cubic spline reaction norm models 
(7) and (8) allowed for heterogeneous environmental var-
iances for three classes of CL, i.e., low, intermediate, and 
high CL, with approximately 1000 animals in each CL 

(7)
ykl =Diedkl + b ∗ Agekl + β ∗ CLkl + ukl0

+ukl1 ∗ CLkl + litterk + ekl,

Var

[
ukl0

ukl1

]
∼ N

(
0,G⊗

[
σ 2
0

σ0,1
σ1,0 σ 2

1

])
,

(8)

ykl = Diedkl + b ∗ Agekl + β ∗ CLkl+skl0 ∗ CLkl + ukl0

+ukl1 ∗ CLkl+skl1 ∗ CLkl + litterk + ekl ,

Var




ukl0

ukl1

skl1



 ∼ N



0,G⊗




σ 2
0

σ0,1 0

σ1,0 σ 2
1

0

0 0 σ 2
as







,
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class. Thus, phenotypes of animals that were in the same 
CL class were assumed to have the same environmental 
variance. All analyses were implemented in ASReml 4.0 
[23].

The matrix of genetic variances and covariances for the 
analyzed trait for n levels of CL, as generated by ASReml, 
is equal to TVT′ for model (7) and TVT′

+ zz
′σ 2

as for 
model (8) [22], where T is an n × 2 matrix for the inter-
cept and slope corresponding to the n CL levels, 

V = G⊗

[
σ 2
0

σ0,1
σ1,0 σ 2

1

]
 , and z is an n × 1 vector of the ani-

mal genetic spline coefficients for the n CL levels. Esti-
mates of genetic variances and co-variances of the trait 
for and between different CL levelscwere derived by 
replacing the variance and co-variance components in 
these equations by their estimates.

Two comparisons were used to determine which CL 
captured genetic effects associated with the reaction 
norms the best. For the first comparison, all six CL were 
simultaneously fitted as fixed covariates in the linear and 
cubic spline reaction norm models but only one CL was 
fitted for the genetic slope effect, and the resulting model 
loglikelihoods and estimates of genetic variance associ-
ated with the reaction norm were compared between the 
different CL. In this comparison, the fixed spline func-
tion skl0 ∗ CLkl was excluded from the cubic spline reac-
tion norm model such that the same fixed effects were 
included for comparison of model likelihoods. The main 
purpose of this comparison was to compare the CL for 
a given model (i.e. the linear or the cubic spline reac-
tion norm model). In the second comparison, estimates 
of genetic variances for the reaction norm slopes from 
models (7) and (8) with only the corresponding CL fitted 
as fixed covariate were compared. This comparison was 
also used to compare the goodness-of-fit of the linear and 
cubic reaction norm models.

The linear reaction norm model using one of the six 
CL was also compared to a standard mixed linear model 
for the pre-adjusted phenotypes, which was the same 
as model (7) but without the random slope term. The 
cubic spline reaction norm model was compared to the 
linear reaction norm model (7) for a given CL but with 
skl0 ∗ CLkl added as a fixed effect to the latter, such that 
the likelihoods from the two models were comparable. A 
likelihood ratio test was used to evaluate the goodness-
of-fit when comparing two models, based on a Chi-
square distribution with degrees of freedom equal to the 
difference in dimensionality of the parameters of the two 
models [24].

Model (7) without the random slope term was also used 
for a three-trait multi-variate analysis, where the phe-
notype in each of the three classes of CL (low, medium, 
and high) that were used to define heterogenous residual 

variances, was considered a different genetic trait. The 
multi-variate model does not assume a specific func-
tional relationship of additive genetic effects with CL 
and, therefore, enables one to assess whether parameter 
estimates from the reaction norm models may be ‘biased’ 
by the specific functional relationship that is fitted in the 
linear or cubic reaction norm models. A disadvantage 
of a multi-variate model, however, is that the continu-
ous variable CL is broken up into intervals, within which 
genetic parameters are assumed to be constant. Estimates 
of genetic parameters from the multi-variate model were 
compared with corresponding estimates obtained from 
the linear and cubic spline reaction norm models at the 
mean CL of the low, intermediate, and high CL classes. 
Goodness-of-fit of the multi-variate and the linear and 
cubic reaction norm models were also compared based 
on the Akaike information criterion (AIC).

Results
Phenotypic trends for clinical disease traits and growth 
rate
Average treatment and mortality rates, subjective health 
scores, and growth rates by batch in the challenge nurs-
ery and finisher are shown in Fig.  2. In the challenge 
nursery, in general, the average treatment rate increased 
and peaked at around batch 35 and then decreased. 
Mortality rate followed a similar trend, with relatively 
higher mortality rates for batches 20–40. Average health 
scores and growth rates were both higher in the early 
batches and then decreased, which was in contrast to the 
observed trends for treatment rate and mortality, except 
for the final batches. In the finisher, generally, higher 
treatment and mortality rates were always associated 
with lower average health scores and growth rates. For 
example, treatment and mortality rates were higher in 
the early batches, while average health scores and growth 
rates were relatively lower in the early batches.

Trends in average clinical disease phenotypes by batch 
were not consistent across the two phases (Fig. 2). Treat-
ment and mortality rates were lower in the early batches 
in the challenge nursery but relatively higher in the fin-
isher. Treatment and mortality rates were high in the 
middle batches in the challenge nursery but low in the 
finisher. In the later batches, treatment rate and average 
health scores had much greater variation in the challenge 
nursery than in the finisher.

Challenge loads
Distributions of the six standardized (mean zero and SD 
equal to 1) CL and their relationships are shown in Fig. 3. 
Large variation was observed for each CL but 86 to 97% 
of this variation was attributed to batch effects. Most of 
the CL were skewed, e.g. CLc was skewed to the right. 
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(a)

(b) 

Left y-axis

Left y-axis

Right y-axis

Right y-axis

Fig. 2  Treatment and mortality rates and average health scores and growth rates by batch in the challenge nursery (a) and in the finisher (b)
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In the remainder, results will focus on the 95% highest 
density interval (HDI) for each CL, which provides more 
reliable results. CLc was highly correlated with FinCLc 
(0.99) and the same was true for CLg with FinCLg (0.90), 
which was because CLc and CLg were heavily weighted 
by FinCLc and FinCLg, respectively. The CL derived 
from the clinical disease traits and from ADG for a given 
phase were moderately correlated (0.75 between NurCLg 
and NurCLc, 0.71 between FinCLg and FinCLc, and 0.63 
between CLg and CLc). Finally, FinCLg was moderately 
correlated with CLc (0.70).

Comparison of CL in reaction norm analyses
Tables 1 and 2 show the loglikelihoods and slope genetic 
variances from the linear and cubic spline reaction norm 
models when all six CL were fitted as fixed covariates and 
one CL as the random reaction norm. In general, esti-
mates of the slope genetic variance based on the cubic 

spline model were slightly higher than those based on the 
linear model. For a given trait, the ranking of CL was sim-
ilar when based on loglikelihood or on estimates of the 
slope genetic variance and when based on the linear or 
the cubic spline reaction norm model. However, the CL 
that was best based on the loglikelihood differed between 
traits, for both the linear and cubic reaction norm mod-
els. The same was true when using the slope genetic vari-
ance to identify the best CL.

Table 3 shows the comparison of estimates of the slope 
genetic variance from the linear and cubic spline reaction 
norm models when fitting one CL as a fixed covariate 
and that same CL as the random genetic reaction norm. 
For the cubic spline model, only the slope variance was 
compared and the spline variance was not included in 
the comparison. Estimates of the slope genetic variance 
were slightly higher in the cubic spline model than in the 
linear model, as also observed in Table 2. In general, the 
linear and cubic spline reaction norm models showed the 

Fig. 3  Distributions and relationships of challenge loads by pen within batch derived from the growth and clinical disease phenotypes. Vp by 
Batch: proportion of phenotypic variance explained by Batch for each CL; NurCLc = challenge load derived from the clinical disease traits in the 
challenge nursery; FinCLc = challenge load derived from the clinical disease traits in early finisher; CLc = weighted challenge load of NurCLc and 
FinCLc; NurCLg = challenge load derived from the growth rate in the challenge nursery; FinCLg = challenge load derived from the growth rate in 
early finisher; CLg = weighted challenge load of NurCLg and FinCLg
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same pattern in estimates of slope genetic variance and, 
for a given trait, the same CL showed the largest estimate 
for both models. Consistent with results in Table 2, Fin-
CLg was the best CL for analysis of cNurADG. However, 
different from the results in Table  2, CLc had the larg-
est estimate of the slope genetic variance for analysis of 
FinADG, cNurTRT, and AllTRT for both the linear and 

cubic spline models, except for cNurTRT for the cubic 
spline model. For cNurTRT, NurCLc had the largest esti-
mate of the slope genetic variance. The linear reaction 
norm model did not converge for analysis of cNurTRT 
based on NurCL.

In the remainder, based on having the largest estimate 
of the slope genetic variance in Table 3, only results for 

Table 1  Comparison of loglikelihoods for the linear and cubic reaction norm models for analysis of average daily gain (ADG) and 
treatment rate (TRT) in the challenge nursery (cNur), finisher (Fin) and across the nursery and finisher (All) for six challenge loads based 
on clinical disease traits or growth rate

All six CL were fitted as fixed effects in the linear and cubic reaction norm model, but only one CL was fitted for the random genetic reaction norm. cNurADG: growth 
rate in the challenge nursery; FinADG: growth rate in the finisher; cNurTRT: medical treatment rate in the challenge nursery; AllTRT: medical treatment rate across the 
challenge nursery and finisher; NurCLc: challenge load derived from the clinical disease traits in the challenge nursery; FinCLc: challenge load derived from the clinical 
disease traits in early finisher; CLc: weighted challenge load of NurCLc and FinCLc; NurCLg: challenge load derived from the growth rate in the challenge nursery; 
FinCLg: challenge load derived from the growth rate in early finisher; CLg: weighted challenge load of NurCLg and FinCLg; figures in italic characters indicate the 
greatest loglikelihood for that trait

Trait Loglikelihood using clinical disease traits Loglikelihood using growth rate

NurCLc FinCLc CLc NurCLg FinCLg CLg

Linear RN

 cNurADG 4718.26 4727.34 4725.71 4715.68 4744.44 4736.78

 FinADG 3844.07 3802.61 3797.06 3815.21 NA 3806.87

 cNurTRT​ − 1802.20 − 1753.47 − 1761.52 NA − 1797.27 − 1792.54

 AllTRT​ − 2166.53 − 2147.13 − 2149.99 − 2169.70 − 2150.46 − 2146.40

Cubic RN

 cNurADG 4720.07 4728.97 4730.27 4719.09 4745.39 4737.24

 FinADG 3844.07 3802.84 3800.26 3820.95 3817.12 3815.47

 cNurTRT​ − 1802.20 − 1752.64 − 1758.89 − 1797.79 − 1797.27 − 1792.54

 AllTRT​ − 2166.53 − 2143.02 − 2143.89 − 2169.70 − 2150.46 − 2146.40

Table 2  Comparison of slope genetic variances for the linear and cubic reaction norm models for analysis of average daily gain (ADG, 
g) and treatment rate (TRT) in the challenge nursery (cNur), finisher (Fin) and across the nursery and finisher (All) for six challenge loads 
based on clinical disease traits or growth rate

All six different CL were fitted as fixed effects in the linear and cubic reaction norm model, but only the corresponding CL was fitted as random animal genetic 
slope. cNurADG: growth rate in the challenge nursery; FinADG: growth rate in the finisher; cNurTRT: medical treatment rate in the challenge nursery; AllTRT: medical 
treatment rate across the challenge nursery and finisher; NurCLc: challenge load derived from the clinical disease traits in the challenge nursery; FinCLc: challenge 
load derived from the clinical disease traits in early finisher; CLc: weighted challenge load of NurCLc and FinCLc; NurCLg: challenge load derived from the growth rate 
in the challenge nursery; FinCLg: challenge load derived from the growth rate in early finisher; CLg: weighted challenge load of NurCLg and FinCLg; figures in italic 
characters indicate the greatest genetic slope variance for that trait

Trait Slope genetic variance (SE) using clinical disease traits Slope genetic variance (SE) using growth rate

NurCLc FinCLc CLc NurCLg FinCLg CLg

Linear RN

 cNurADG 400 (300) 700 (300) 800 (300) 20 (300) 2300 (300) 2200 (400)

 FinADG 4000 (700) 1000 (400) 800 (400) 2000 (500) 0 400 (400)

 cNurTRT​ 0 0.10 (0.03) 0.09 (0.03) NA 0.15 (0.04) 0.13 (0.04)

 AllTRT​ 0.10 (0.05) 0.16 (0.05) 0.21 (0.06) 0.14 (0.05) 0.14 (0.05) 0.31 (0.07)

Cubic RN

 cNurADG 700 (400) 900 (300) 1000 (300) 300 (300) 3000 (600) 2000 (400)

 FinADG 4000 (600) 1000 (400) 1000 (400) 3000 (600) 800 (400) 1000 (400)

 cNurTRT​ 0 0.11 (0.04) 0.11 (0.04) 0.024 (0.03) 0.15 (0.04) 0.13 (0.04)

 AllTRT​ 0.10 (0.05) 0.19 (0.05) 0.26 (0.06) 0.15 (0.06) 0.14 (0.05) 0.31 (0.07)
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reaction norms on FinCLg will be shown for analysis 
of cNurADG and only those based on CLc for analysis 
of FinADG, cNurTRT, and AllTRT. Results of reaction 
norm analyses based on the other five CL are in Addi-
tional file 1: Tables S1–S5, with most resulting in either 
convergence issues or poor fit of the data.

Comparison of alternate statistical models to capture 
the effect of CL
Likelihood ratio test results for the comparison of the 
linear reaction norm model to the standard model and 
of the cubic spline model to the linear reaction norm 
model are in Table  3. The linear reaction norm model 
fitted the data significantly better than the standard 
model for all four traits (P < 0.03) and the cubic spline 
reaction norm model fitted the data significantly bet-
ter than the linear reaction norm model for FinADG, 
cNurTRT, and AllTRT (P < 0.04). Although the cubic 
spline model did not perform significantly better than 
the linear model for cNurADG (P = 0.35), it was signifi-
cantly better than the standard model (P < 0.0001).

Comparisons of the reaction norm models to the 
multi-trait model based on AIC are in Table 4. For both 
cNurADG and AllTRT, the cubic spline model had 
the lowest AIC, followed by the linear model, then the 
multi-variate model. The linear reaction norm model 

had the lowest AIC for FinADG, followed by the cubic 
spline model, then the multi-variate model. In contrast, 
the multi-variate model had the lowest AIC for cNur-
TRT, followed by the cubic spline model, then the lin-
ear reaction norm model. These comparisons agreed 
with those of the likelihood ratio tests (Table 3), except 
for FinADG, for which the cubic spline model had a 
better fit than the linear model based on the likelihood 
ratio test.

Heritability estimates
Estimates of heritability for ADG and TRT from the lin-
ear and cubic spline reaction norm models and from the 
multi-variate model are shown in Figs. 4 and 5. Estimates 
of heritability for cNurADG from the cubic spline reac-
tion norm model were approximately twice as large as 
those from the linear model because of a larger estimate 
of genetic variance but the two models resulted in the 
same U-shaped curve of estimates as a function of CL. 
It should be noted that the cubic spline model did not 
fit the data significantly better than the linear model for 
cNurADG (Table  3). For FinADG, in general, estimates 
of heritability from the cubic spline model were about 
twice as large as those from the linear model for high CL 
and 67% larger for the intermediate CL class due to larger 
estimates of genetic variance. The two models, however, 

Table 3  Comparison of slope genetic variance and reaction norm models for analysis of average daily gain (ADG, g) and treatment 
rate (TRT) in the challenge nursery (cNur), finisher (Fin) and across the nursery and finisher (All) for six challenge loads based on clinical 
disease traits or growth rate

Only one corresponding CL was fitted as fixed effect in the linear and cubic spline reaction norm model. CL: challenge load; RN: reaction norm; NurCLc: challenge load 
derived from the clinical disease traits in the challenge nursery; FinCLc: challenge load derived from the clinical disease traits in early finisher; CLc: weighted challenge 
load of NurCLc and FinCLc; NurCLg: challenge load derived from the growth rate in the challenge nursery; FinCLg: challenge load derived from the growth rate in early 
finisher; CLg: weighted challenge load of NurCLg and FinCLg; P-value for cNurADG was based on FinCLg and P-values for FinADG, cNurTRT, and AllTRT were based on 
CLc because CLc was the best CL for these three traits. P-values for the linear model were based on comparison of the linear reaction norm model with the standard 
model without random slope term. P-values for the cubic spline model were based on comparison of the cubic spline reaction norm model with the linear reaction 
norm model. cNurADG: growth rate in the challenge nursery; FinADG: growth rate in the finisher; cNurTRT: medical treatment rate in the challenge nursery; AllTRT: 
medical treatment rate across the challenge nursery and finisher; figures in italic characters indicate the greatest genetic slope variance for that trait

Trait CL using clinical disease traits CL using growth rate P-value vs. no RN

NurCLc FinCLc CLc NurCLg FinCLg CLg

Linear RN

 cNurADG 400 (500) 500 (300) 500 (300) 0 2200 (400) 2000 (4000)  < 0.0001

 FinADG 1100 (600) 200 (300) 1200 (500) 200 (400) 0 0 0.004

 cNurTRT​ NA 0.01 (0.02) 0.10 (0.04) 0 0.07 (0.03) 0.09 (0.03) 0.03

 AllTRT​ 0 0 0.21 (0.05) 0.016 (0.03) 0 0.11 (0.04) 0.001

Trait CL using clinical disease traits CL using growth rate P-value vs. linear RN

NurCLc FinCLc CLc NurCLg FinCLg CLg

Cubic RN

 cNurADG 400 (500) 240 (300) 600 (300) 160 (300) 2500 (600) 2000 (500) 0.35

 FinADG 1200 (700) 200 (200) 1600 (500) 500 (400) 0 0 0.001

 cNurTRT​ 0.24 (0.05) NA 0.08 (0.04) 0 0.07 (0.03) 0.09 (0.03) 0.04

 AllTRT​ 0 0 0.27 (0.06) 0.015 (0.03) 0 0.11 (0.04) 0.0003
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resulted in similar U-shaped curves for estimates of herit-
ability as a function of CL. For TRT, in general, estimates 
of heritability from the linear and cubic spline models 
were similar and had similar trends for both cNurTRT 
and AllTRT, with increasing estimates as CL increased.

When comparing the reaction norm models with the 
multi-variate model, estimates of heritability from the 
multi-variate model for cNurADG in general had a simi-
lar trend as those from the linear and cubic spline reac-
tion norm models, with the estimate of heritability being 
lower for intermediate CL than for low or high CL (Fig. 4; 
Table 4). Table 4 shows that estimates of heritability for 
cNurADG were moderate to high for all three models 
when CL was low, lowest when CL was intermediate, and 
moderate to high again when CL was high. However, the 
multi-variate model resulted in lower estimates of her-
itability for cNurADG than the reaction norm models, 
especially compared to the cubic spline model, mainly as 
a result of lower estimates of genetic variances. Estimates 
of heritability for FinADG from the multi-variate model 

did not match those from the cubic spline model very 
well, mainly because the estimates of genetic variance 
for the intermediate and high CL were very high for the 
cubic spline model. Estimates of heritability for FinADG 
from the multi-variate model were larger than those of 
the linear model but lower than those of the cubic spline 
model, but they did follow a similar U-shaped pattern 
as those from the reaction norm models. For TRT, in 
general, estimates of heritability from the multi-variate 
model showed similar trends as those from both the 
linear and cubic spline models for both cNurTRT and 
AllTRT, with increasing estimates with increasing CL. 
Table  4 shows that estimates of heritability for cNur-
TRT at low, intermediate, and high CL were lower than 
for AllTRT for all three models. Estimates of heritability 
for TRT from the multi-variate model were lower than 
those from the cubic spline model for high CL because of 
a lower estimate of genetic variance, but similar for low 
and intermediate CL.

Heritability

Genetic variance

Linear RN for nursery ADG Cubic spline RN for nursery ADG

Multivariate Multivariate

Linear RN for finisher ADG Cubic spline RN for finisher ADG

Multivariate

Multivariate

95%HDI 95%HDI

95%HDI 95%HDI

Fig. 4  Estimates of heritability and genetic variance as a function of challenge load (CL) based on the linear and cubic spline reaction norm 
(RN) models for average daily gain (ADG, kg/day) in the challenge nursery and finisher. Dots indicate estimates from multi-variate analyses with 
phenotypes under low, intermediate, and high CL treated as different traits. Green vertical lines indicate the 95% highest density interval for the 
challenge load. Nursery ADG was analyzed based on CL derived from early finisher growth rate, while finisher ADG was based on CL derived from 
the clinical disease traits across the challenge nursery and finisher
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Genetic correlations of traits between different levels of CL
Estimates of genetic correlations from the linear and 
cubic spline reaction norm models for ADG are shown 
in Figs. 6 and 7 and Additional file 2: Figs. S1 and S2. For 
cNurADG, estimates of genetic correlations were similar 
for the linear and cubic spline models, consistent with 
the finding that the cubic spline model did not fit the data 
significantly better than the linear reaction norm model 
(Table 3). Estimates of genetic correlations were high for 
pairs of CL that were close to each other and low and 
even negative for pairs of CL that were very different, e.g. 
low CL with high CL. For FinADG, the linear and cubic 
spline models showed different patterns for estimates of 
genetic correlations, with higher estimates for the cubic 
spline model than for the linear model for pairs of CL 
that were close.

Estimates of genetic correlations from the linear and 
cubic spline reaction norm models for TRT are shown in 
Figs. 8 and 9 and Additional file 2: Figs. S3 and S4. Similar 

to FinADG, the linear and cubic spline reaction norm 
models resulted in different patterns of genetic correla-
tion estimates for both cNurTRT and AllTRT. For pairs 
of CL that were close, estimates of genetic correlations 
from the cubic spline model were always stronger than 
those from the linear reaction norm model.

Point estimates of genetic correlations from the multi-
variate and the linear and cubic spline reaction norm 
models for low, intermediate, and high CL are in Table 4. 
Linear and cubic spline models showed a very similar 
pattern in genetic correlation estimates for most traits, 
in that the estimate between low and high CL was much 
lower than the estimates of intermediate with either low 
or high CL. This was, however, not true for the multi-var-
iate analysis, for which all genetic correlation estimates 
were high for cNurADG, while for FinADG, the esti-
mate was high between intermediate and high CL, low 
between low and intermediate CL, and very low between 
low and high CL. Both cNurTRT and AllTRT had high 

Heritability

Genetic variance

Linear RN for nursery TRT Cubic spline RN for nursery TRT

Multivariate

Linear RN for combined TRT Cubic spline RN for combined TRT

Multivariate

Multivariate

Multivariate

95%HDI 95%HDI

95%HDI 95%HDI

Fig. 5  Estimates of heritability and genetic variance as a function of challenge load (CL) based on the linear and cubic spline reaction norm (RN) 
models for treatment rate in the challenge nursery and across challenge nursery and finisher. Dots indicate estimates from multi-variate analysis 
with phenotypes under low, intermediate, and high CL treated as different traits. Green vertical lines indicate the 95% highest density interval for 
the CL. TRT: medical treatment rate; combined TRT: medical treatment rate across the challenge nursery and finisher; both nursery and combined 
TRT were analyzed based on CL derived from the clinical disease traits across the challenge nursery and finisher
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Fig. 6  Estimates of genetic correlations from the linear and the cubic spline reaction norm model for average daily gain (ADG, kg/day) in the 
challenge nursery using challenge load derived from early finisher growth rate. Horizontal and vertical lines on the heatmaps indicate 95% highest 
density interval for the challenge load; Arrows on the heatmap scales indicate the mean challenge load for the low, medium, and high categories 
used for the multi-trait analyses

Fig. 7  Estimates of genetic correlations from the linear and the cubic spline reaction norm model for average daily gain (ADG, kg/day) in the 
finisher using challenge load derived from the clinical disease traits across the challenge nursery and finisher. Horizontal and vertical lines on the 
heatmaps indicate 95% highest density interval for the challenge load; Arrows on the heatmap scales indicate the mean challenge load for the low, 
medium, and high categories used for the multi-trait analyses
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Fig. 8  Estimates of genetic correlations from the linear and the cubic spline reaction norm model for treatment rate in the challenge nursery 
using challenge load derived from the clinical disease traits across the challenge nursery and finisher. Horizontal and vertical lines on the heatmaps 
indicate 95% highest density interval for the challenge load; Arrows on the heatmap scales indicate the mean challenge load for the low, medium, 
and high categories used for the multi-trait analyses

Fig. 9  Estimates of genetic correlations from the linear and the cubic spline reaction norm model for treatment rate across the challenge nursery 
and finisher using challenge load derived from the clinical disease traits across the challenge nursery and finisher. Horizontal and vertical lines on 
the heatmaps indicate 95% highest density interval for the challenge load; Arrows on the heatmap scales indicate the mean challenge load for the 
low, medium, and high categories used for the multi-trait analyses
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estimates of the genetic correlation between the low and 
intermediate CL for the multi-variate model but low esti-
mates between low and high CL and between intermedi-
ate and high CL.

Discussion
Quantification of disease challenge loads
Several previous studies have quantitatively derived dis-
ease CL or environment using performance records in 
livestock [2, 14, 15, 17, 25, 26]. Mathur et al. [17] devel-
oped a method to estimate challenge loads due to PRRS 
outbreaks using reproduction records from sow farms 
based on the assumption that a reduction in reproductive 
output of sows was proportional to the magnitude of the 
challenge load during an outbreak. The same method to 
derive the challenge load was used by Herrero-Medrano 
et  al. [25] to estimate genetic parameters and breeding 
values across PRRS challenged environments. Unlike 
Mathur et  al. [17], Rashidi et  al. [14] used standardized 
herd-year-week estimates of number born alive as envi-
ronmental covariates for a reaction norm analysis and 
found genetic variation among sows in response to PRRS 
outbreaks. Guy et al. [15] characterized disease challenge 
load by environmental descriptors based on contempo-
rary group estimates for growth rate, feed intake, backfat, 
or muscle depth, and found that the ability to detect the 
genotype-by-environment interactions for growth was 
greatest when using contemporary group estimates for 
backfat and feed intake.

Very few studies have used clinical disease pheno-
types to derive CL for disease resilience analyses [16, 
20] and these studies were either disease specific (mas-
titis) [20] or were not intentionally applying a disease 
challenge [16], resulting in a small range of CL. Guy 
et al. [16] also used medication records to quantify the 
disease challenge load. In our study, challenge loads in a 
severe polymicrobial disease challenge were quantified 
based on growth rate and clinical disease traits, includ-
ing medical treatment and mortality rates, and subjec-
tive health scores. These clinical measures were a direct 
reflection of the disease challenge and clearly showed 
that some batches were more heavily challenged than 
others (Fig. 2). Given the severity of the challenge, the 
results from this study may not apply to a situation with 
lower CL.

The choice of the environmental variable in reaction 
norm analyses, in this case disease CL, can affect the 
power to detect variation in reaction norm slopes [15, 
27]. In the present study, six disease CL were derived 
from phenotypes on growth rate and clinical disease 
traits recorded in the challenge nursery and finisher 
and were compared based on model loglikelihoods and 
estimates of genetic slope variance. Indeed, different 

CL resulted in different loglikelihoods and estimates 
of genetic slope variances for the same analyzed trait 
for both the linear and the cubic spline reaction norm 
models (Tables  1, 2). It should be noted that CLc and 
CLg were highly correlated with FinCLc (0.99) and Fin-
CLg (0.90) (Fig.  3), resulting in these pairs of CL hav-
ing similar loglikelihoods and slope variance estimates. 
NurCLc and FinCLc were also moderately correlated 
with NurCLg (0.75) and FinCLg (0.71) (Fig.  3). Com-
parisons of different measures of CL based on loglike-
lihood or based on estimates slope genetic variance in 
general agreed with each other. The CL that had the 
highest loglikelihood and estimate of slope genetic 
variance was, however, not consistent across traits. In 
addition, the same CL was the best CL for a given phase 
across traits, e.g. FinCLg was the best CL for both cNu-
rADG and cNurTRT (Table 2).

For the results in Table  2, all six CL were fitted as 
covariates in the model to enable comparison of the 
loglikelihoods. However, in practice, only one CL is fit-
ted as a fixed covariate and as a random effect for reac-
tion norm analyses. For such models, Table 3 shows that 
CLc was the best CL for all traits, except for cNurADG. 
However, although FinCLg was the best CL for cNu-
rADG, FinCLg was highly correlated with CLc (Fig.  3, 
0.70). For cNurTRT, although NurCLc was the best CL 
for the cubic spline model, NurCLc had convergence 
issues for the linear model for cNurTRT. Use of one of 
the other five CL as the environmental covariate for reac-
tion norm analyses either resulted in convergence issues 
or in a poor fit based on the p-value from the likelihood 
ratio tests (see Additional file 1: Tables S1–S5). Therefore, 
the CL derived from the clinical disease traits across the 
challenge nursery and finisher was considered the best 
CL for most traits. Biologically, this makes sense because 
the clinical disease traits are a more direct reflection of 
the disease challenge than other performance traits. In 
addition, basing the CL on clinical data across the nurs-
ery and finisher may provide more information to cap-
ture the severity of the disease challenge.

Comparison of reaction norm models
Based on the loglikelihood ratio test, the linear reac-
tion norm model fitted the data better than the stand-
ard model without a random genetic slope term, for all 
traits (Table  3). This shows the presence of genotype-
by-environment interactions, i.e. that a pig’s genetic 
value for ADG or TRT depends on the level of CL that 
it is exposed to. Based on the loglikelihood ratio test, the 
cubic spline reaction norm model fitted the data better 
than the linear reaction norm model for FinADG, cNur-
TRT, and AllTRT (Table 3), suggesting a non-linear rela-
tionship between CL and breeding values for these traits. 
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Carvalheiro et  al. [26] also found that the spline model 
outperformed the linear reaction norm model for post-
weaning weight gain in relation to the quality of the envi-
ronment in beef cattle, which was based on estimates of 
the contemporary group effect for post-weaning weight 
gain. They also found that a quadratic reaction norm 
model provided a better fit than the linear reaction norm 
model. The quadratic reaction norm model, however, had 
convergence issues for most traits in our data and was, 
therefore, not pursued further.

For comparison, the data were also analyzed with a 
three-trait multi-variate model, with traits defined based 
on CL class (low, medium, or high), which does not 
assume a specific relationship between CL and pheno-
type. Based on AIC, the multi-variate model was found 
to provide a poorer fit than the linear and cubic spline 
reaction norm models for all traits, except for cNurTRT 
(Table  4), for which the multi-variate model was best. 
The reason for the latter is not clear. The superiority of 
the reaction norm model over the multi-variate model is 

consistent with results by Rashidi et al. [14], who found 
that the reaction norm model fitted the data better than 
a bivariate model when analyzing reproductive perfor-
mance of sows following PRRS infection.

Reaction norm genetic parameters
Heritability as a function of CL
In general, estimates of heritability from the linear reac-
tion norm model matched estimates from the multi-
variate model, with both models resulting in a U-shaped 
pattern of estimates of heritability for ADG as a func-
tion of CL and increasing estimates of heritability with 
increasing CL for TRT. The cubic spline reaction norm 
model tended to give higher estimates of heritability 
than the linear reaction norm model for all traits but 
resulted in a similar pattern of estimates as the latter. The 
U-shaped trend for estimates of heritability for ADG is 
consistent with findings of Herrero-Medrano et  al. [25] 
for number born alive for sows based on PRRS challenge 
load. Estimates of heritability for cNurTRT and AllTRT 

Fig. 10  Distribution and relationships of estimated breeding values for slope from the linear reaction norm model for average daily gain (ADG, kg/
day) and treatment rate (TRT) in or across (combined) the challenge nursery and finisher. rg(int-slope) on the diagonal refers to the estimate of the 
genetic correlation between the intercept and slope for that trait
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generally increased with CL, which was consistent with 
the findings of Herrero-Medrano et al. [25] for number of 
pigs lost as a function of PRRS challenge load.

Genetic correlations of traits under different CL
The linear and cubic spline reaction norm models gen-
erally estimated a similar pattern of genetic correlations 
for a trait between different levels of CL; high when the 
CL were close and low when the CL were very different 
(Figs. 6, 7, 8, 9). However, for most traits, the cubic spline 
model generated stronger estimates of genetic correla-
tions for pairs of CL that were close. The better fit of the 
cubic spline model for most traits (Table 3) suggests that 
the linear reaction norm model underestimated genetic 
correlations for pairs of CL that were close. This was as 
expected, as the cubic spline model is more flexible and 
less driven by the assumption of linearity. Similar trends 
were observed for non-disease challenge studies that 
used reaction norm models [28, 29]. The estimates of 
genetic correlations for a trait between different CL are, 
however, also biologically reasonable because phenotypes 
are expected to be more correlated when recorded under 
similar levels of CL. Low genetic correlations among 

environments with different levels of CL suggests that 
selection on estimates of breeding value based on pheno-
types obtained in a given CL would result in low response 
to selection for performance under a very different CL.

Estimates of genetic correlations between the intercept 
(CL = 0) and slope based on the linear reaction norm 
model are shown in Fig.  10 for ADG and TRT, noting 
that CL = 0 corresponds to intermediate CL, rather than 
no disease challenge. Low genetic correlation estimates 
between intercept and slope were observed for ADG 
(0.25–0.33), while estimates for TRT were high and posi-
tive (0.69–0.74). A low genetic correlation between the 
intercept and slope for ADG suggests that growth rate 
at a given CL (CL = 0) and resilience are genetically dif-
ferent traits, suggesting an opportunity for joint selec-
tion for resilience and increased growth performance at a 
given CL. High positive estimates of the genetic correla-
tion between the intercept and slope for TRT implies that 
resilience and treatment rate at a given CL (CL = 0) are 
very similar traits and suggest that a lower treatment rate 
when CL = 0 is genetically associated with a lower slope 
(higher resilience). This is favorable when selecting for 
resilience, as selection can focus on treatment rate under 
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intermediate CL (CL = 0), regardless of the slope, which 
is usually difficult to obtain. Here, performance at CL = 0 
was used as the intercept but this can be changed to any 
level of CL, which will generate different genetic corre-
lations between intercept and slope but equivalent esti-
mated breeding values (EBV) at a given CL.

Estimated breeding values as a function of CL
Relationships between EBV for slope for different traits 
from the linear reaction norm model are shown in Fig. 10. 
A high correlation (0.82) between the EBV of slopes for 
cNurTRT and AllTRT was observed, similar to the slope 
and spline coefficient of the cubic spline reaction norm 
model (see Additional file  2: Figs. S5, S6). The EBV for 
cNurADG as a function of CL for four representative ani-
mals based on the linear reaction norm model are shown 
in Fig. 11, representing an animal with high performance 
at CL = 0 and high resilience (animal 1312), an animal 
with high performance at CL = 0 and low resilience (ani-
mal 3064), an animal with low performance at CL = 0 and 
high resilience (animal 2690), and an animal with low 
performance at CL = 0 and low resilience (animal 2573). 
The EBV at a given CL was computed as the EBV for the 
intercept plus CL times the estimate of the slope, which 
was the sum of the fixed effect estimate and the EBV of 
the slope. The EBV for FinADG, cNurTRT, and AllTRT 
for the same four animals are shown in Fig. 11. It should 
be noted that a resilient animal has a less negative slope 
for ADG and a less positive slope for TRT. Animal 3064 
was not resilient based on cNurADG, FinADG, and TRT. 
Animal 2573 was not resilient based on cNurADG and 
TRT but resilient based on FinADG. Animal 1312 was 
resilient based on ADG but less resilient based on TRT. 
Animal 2690 was also resilient based on ADG but less 
resilient based on TRT. As expected, EBV for cNurTRT 
had very similar patterns as EBV for AllTRT, indicat-
ing pigs that were genetically resilient or that had a high 
treatment rate at a given CL based on cNurTRT were 
also resilient based on AllTRT. This is because the slope 
EBV for cNurTRT were highly correlated with those for 
AllTRT (corr = 0.82). The EBV based on the cubic spline 
model for the same four animals are shown in Additional 
file 2: Fig. S7. The EBV were computed as the sum of esti-
mates for intercept, CL*slope, and z*spline coefficient. 
The EBV based on the cubic spline model had a similar 
pattern to those based on the linear model but in general 
had less variation, e.g. none of the animals were resilient 
based on AllTRT but their curves were almost identical.

Implementation in breeding programs
Using EBV derived from reaction norm models, different 
selection strategies can be implemented, depending on 
the breeding goal. If the breeding goal is to select pigs that 

are more resilient to disease across different CL, selection 
should be for low EBV for slope of ADG or TRT only, 
regardless of the intercept (CL = 0). Another strategy is to 
select animals with both higher performance and higher 
resilience by selecting on EBV for both intercept and 
slope. A special case is to select pigs that perform better 
at a given CL level, in which case selection should be on 
the sum of EBV for intercept and for CL*slope at a given 
CL, provided the CL is well defined. The low positive 
estimates of the genetic correlation between the intercept 
and slope of the linear reaction norm model for growth 
rate (0.25 for cNurADG; 0.33 for FinADG) suggest that it 
is possible to select for both increased performance and 
resilience. Typically, phenotypes for ADG are available 
on selection candidates in the nucleus farm, representing 
very low CL. Thus, EBV for ADG in the nucleus can be 
added to the selection index, coupled with EBV obtained 
for resilience, which will target genetic improvement 
of ADG in a commercial farm with a harsher environ-
ment. High positive estimates of the genetic correlation 
between intercept and slope for treatment rates (0.74 
for cNurTRT and 0.69 for AllTRT) also suggests a cor-
related response of higher resilience with selection only 
on EBV for treatment rate at CL = 0. Selection programs 
of breeding organizations are typically conducted under 
favorable environments in the nucleus farm, i.e. low CL, 
which could result in low responses to selection in com-
mercial farms that have unfavorable environmental con-
ditions (high CL). One solution to this is to incorporate 
the trait collected at the commercial farm as a separate 
trait and conduct a two-trait analysis, estimating EBV 
for commercial performance for animals in the nucleus. 
Strategies to optimize selection in the nucleus on data 
collected in the nucleus and under a disease challenge to 
maximize response in a target environment were recently 
explored by Dekkers [30].

Conclusions
Clinical disease traits such as health scores and health 
treatment, mortality, and growth rates can be used to 
estimate the disease challenge load that pigs in a pen 
are exposed to. The linear reaction norm models fitted 
the disease challenge data significantly better than the 
standard genetic model without a reaction norm. Reac-
tion norm models also fitted the data better than mul-
tivariate models. Cubic spline reaction norm models 
fitted the data significantly better than the linear reac-
tion norm model for most traits, indicating non-linear 
relationships between disease resilience traits and the 
estimated challenge load. With increasing challenge 
load, estimates of heritability for growth rate initially 
went down and then increased, while estimates of her-
itability for treatment rate generally increased with 
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challenge load. Estimates of genetic correlations for a 
phenotype between extreme challenge loads were low 
and even negative, but high when the challenge loads 
were close. The results of this study identified impor-
tant genotype-by-environment interactions for disease 
resilience traits and that reaction norm models can be 
implemented to select more resilient animals across 
different challenge load levels or high-performance ani-
mals at a given challenge load level, or both.
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