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Abstract 

Background:  Linkage disequilibrium (LD) is commonly measured based on the squared coefficient of correlation 
(

r
2
)

 
between the alleles at two loci that are carried by haplotypes. LD can also be estimated as the r2 between unphased 
genotype dosage at two loci when the allele frequencies and inbreeding coefficients at both loci are identical for the 
parental lines. Here, we investigated whether r2 for a crossbred population (F1) can be estimated using genotype data. 
The parental lines of the crossbred (F1) can be purebred or crossbred.

Methods:  We approached this by first showing that inbreeding coefficients for an F1 crossbred population are nega-
tive, and typically differ in size between loci. Then, we proved that the expected r2 computed from unphased geno-
type data is expected to be identical to the r2 computed from haplotype data for an F1 crossbred population, regard-
less of the inbreeding coefficients at the two loci. Finally, we investigated the bias and precision of the r2 estimated 
using unphased genotype versus haplotype data in stochastic simulation.

Results:  Our findings show that estimates of r2 based on haplotype and unphased genotype data are both unbiased 
for different combinations of allele frequencies, sample sizes (900, 1800, and 2700), and levels of LD. In general, for any 
allele frequency combination and r2 value scenarios considered, and for both methods to estimate r2 , the precision of 
the estimates increased, and the bias of the estimates decreased as sample size increased, indicating that both esti-
mators are consistent. For a given scenario, the r2 estimates using haplotype data were more precise and less biased 
using haplotype data than using unphased genotype data. As sample size increased, the difference in precision and 
biasedness between the r2 estimates using haplotype data and unphased genotype data decreased.

Conclusions:  Our theoretical derivations showed that estimates of LD between loci based on unphased genotypes 
and haplotypes in F1 crossbreds have identical expectations. Based on our simulation results, we conclude that the 
LD for an F1 crossbred population can be accurately estimated from unphased genotype data. The results also apply 
for other crosses (F2, F3, Fn, BC1, BC2, and BCn), as long as (selected) individuals from the two parental lines mate 
randomly.
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Background
Linkage disequilibrium (LD) is the non-random asso-
ciation of alleles at different loci within haplotypes. 
LD plays an important role in both population and 
quantitative genetics. In population genetics, LD can 
for example be used to detect selection [1]. In quanti-
tative genetics, LD has been used to map quantitative 
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trait loci [1–3] and for marker-assisted selection [4] 
and genomic selection [5]. Thus, knowledge of LD is 
required for diverse applications in genetics.

LD is traditionally measured based on the compari-
son of the observed haplotype frequencies with the 
expected haplotype frequencies under linkage equilib-
rium. A common statistical measure of LD is the co-
variance between loci, D , which is equal to the excess of 
coupling phase haplotypes, Dij = Pij − PiPj , where Pij 
refers to the frequency of gametes (haplotypes) that 
carry the pair of alleles i and j at the two loci, Pi and Pj 
refer to the frequency at locus i and locus j , respec-
tively, and PiPj is the expected frequency of this haplo-
type under linkage equilibrium [6]. Another common 
measure is the squared coefficient of correlation ( r2 ) 
between the alleles at the two loci within haplotypes, 
r2ij = 

D2
ij

Pi(1−Pi)Pj(1−Pj)
 [7].

To calculate D and r2 using the expressions given 
above, the haplotypes carried by the individuals must 
be known. However, Rogers and Huff [8] showed that 
LD can also be estimated by correlating unphased gen-
otype dosages at the two loci, which makes the com-
putation simple and fast. They demonstrated that LD 
estimated from unphased genotypes yields very similar 
results to LD estimated from haplotypes. In their deri-
vation, however, they assumed equal inbreeding coef-
ficients for the two loci and equal allele frequencies 
for the paternal and maternal gametes that created the 
population. In this context, the inbreeding coefficient 
measures the departure from Hardy–Weinberg equi-
librium and, thus, can take positive or negative values. 
However, for crossbred individuals inbreeding coeffi-
cients can differ between the two loci, and paternal and 
maternal allele frequencies can differ because the two 
parents come from different lines.

Here, we investigated whether LD in crossbred popula-
tions can be estimated using unphased genotype data. We 
assumed that sires and dams of the crossbreds originate 
from two distinct lines but are otherwise mated to each 
other at random. We address this question in three steps. 
First, we derive the inbreeding coefficients of crossbreds, 
showing that they take negative values that typically dif-
fer between loci. As a result, the derivation of Rogers 
and Huff [8] cannot be used to demonstrate the equiva-
lence of genotype-based LD to haplotype-based LD for a 
crossbred population. Second, we show theoretically that 
LD computed from genotype frequencies has the same 
expected value for a given dataset as LD computed from 
haplotype frequencies, even for a crossbred population. 
Finally, we investigate the precision and potential bias of 
LD estimated from unphased genotype data versus hap-
lotype data, using stochastic simulation.

Methods
Inbreeding coefficients for a crossbred population
Consider two outbred lines, A and B . We want to inves-
tigate the inbreeding coefficients for two bi-allelic loci, 
M and N  , in the F1 crossbred offspring that result from 
the crossing of random individuals from two paren-
tal lines. With alleles denoted 0 and 1, pAM is the fre-
quency of allele 1 at locus M in line A , and pBM is the 
frequency of allele 1 at locus M in line B . The expected 
frequency of allele 1 at locus M in the crossbreds then is 
pM =

pAM+pBM
2

. With random mating between individu-
als from the two parental lines, the frequency of genotype 
11 in the crossbreds is pAMpBM . The deviation of this fre-
quency from Hardy–Weinberg equilibrium follows from 
[6, 9].

where fM is the inbreeding coefficient at locus M in the 
crossbreds.

The inbreeding coefficient follows from solving this 
expression for fM , substituting pM =

pAM+pBM
2

 , and sim-
plifying the expression, giving:

Similarly, fN =
−(pAN−pBN )2

(pAN+pBN )(2−pAN+pBN )
.

Note that the numerators of fM and fN are always neg-
ative, except when pAM = pBM and pAN = pBN , while 
the denominators are always positive. This shows that the 
inbreeding coefficients of crossbreds are negative, mean-
ing that heterozygosity is greater than would be expected 
under Hardy–Weinberg equilibrium (for example 
pAM = 0.05 , pBM = 0.09 , pAN = 0.25, and pBN = 0.29 
yields fM = −0.0056 and fN = −0.0015).

We investigated under which conditions the inbreed-
ing coefficients at the two loci are equal by solving the 
expression fN = fM for the allele frequencies, using 
Wolfram Mathematica (www.​wolfr​am.​com). Apart from 
the trivial solutions of p = 0, p = 1, and equal allele 

pAMpBM = p2M + pM(1− pM)fM ,

fM =
−(pAM − pBM)2

(pAM + pBM)(2− pAM + pBM)
.

Table 1  Haplotype frequencies and marginal allele frequencies 
for line Aa

a Corresponding symbols for line B are denoted by ′

Alleles at locus M Alleles at locus N

0 1 Marginal frequency

0 r s r + s

1 t u t + u

Marginal frequency r + t s+ u r + s+ t + u = 1

http://www.wolfram.com
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frequencies at both loci, we found only three solutions 
(see Appendix 1). Hence, this result demonstrates that 
the inbreeding coefficients at two arbitrary loci in a cross-
bred population will usually be different. This implies 

that the derivation of Rogers and Huff [8] cannot be used 
to demonstrate the equivalence of genotype-based LD to 
haplotype-based LD for a crossbred population.

Haplotype‑based linkage disequilibrium
In this section, we show that the expected LD based 
on r2 computed from the genotype frequencies of the 
crossbred population is identical to the true r2 based on 
haplotype frequencies, even when the inbreeding coeffi-
cients differ between the two loci. Note that we consider 
the true (i.e., population) value of r2 here, rather than an 
estimate from a sample. As we consider bi-allelic loci, we 
have four haplotype frequencies for each line, denoted r , 
s , t , and u for line A , and using ′  to refer to frequencies 
for line B , we have haplotype frequencies r′ , s′ , t ′ , and u′ 
for line B . Table 1 shows expressions for the marginal fre-
quency for each of the alleles. Although the expressions 
for the marginal frequencies in Table 1 can be simplified 
by formulating them in terms of allele frequencies, we 
stick to the haplotype frequencies to facilitate compari-
son with results for the genotype-based r2.

Crossbred genotypes consist of two sets of haplotypes, 
one from each parental line, which may have a different 
r2 . By definition, the r2 in the crossbreds depends on the 
(co)variances between loci in the crossbred population, 
so we cannot simply average the r2 of the two parental 
lines. From the definitions of correlation, variance, and 
covariance, it follows that the r2 for the crossbred popula-
tion equals the square of the average of the covariances 
between haplotypes for each of the two lines, divided by 
the product of the average variance across the two lines 
at each locus. For line A , the covariance between haplo-
types (i.e. D) follows from Table 1 as u− (t + u)(s + u) , 
where u is the expectation of the cross product of the 
allele frequencies at each locus, while (t + u)(s + u) is 
the cross product of the expectations of these allele fre-
quencies (expected haplotype frequency in line A under 
linkage equilibrum). Hence, this result follows imme-
diately from the definition of a covariance. The covari-
ance ( D ) for line B is analogous, using symbols denoted 
by ′  . The variance in allele count follows from the bino-
mial distribution with n = 1 for haplotypes and are thus 
equal to p(1− p) , p denoting the allele frequency. For 

line A the variance equals (s + u)(r + t) for locus N  , and 
(t + u)(r + s) for locus M , with analogous equations for 
line B . Using these values in the haplotype-based r2 for 
the crossbred population yields the following true r2 in 
the crossbred population:

where the numerator is the square of the average of the 
covariances for the two parental lines, while the denomi-
nator is the product of the average of the variances. Note 
that the constant 22 in the numerator of Eq. (1) and 22 in 
the demoninator of Eq. (1) (2 for each variance) cancelled 
out in the derivation of the equation.

Genotype‑based squared correlation
The following inputs are required to derive the genotype-
based r2 in crossbreds: genotype frequencies and the 
expectations of squares and cross products of genotype 
dosage, 0, 1, and 2, in crossbreds. Using the haplotype 
frequencies in Table 1 and the assumption that individu-
als of line A mate at random to individuals of line B , we 
find the genotype frequencies in the crossbred popula-
tion as shown in Table 2. Next, using these genotype fre-
quencies, Table 3 shows the expectations of squares and 
cross products of genotype dosages. Computations of the 
expectations of combinations of genotypic values are in 
Appendix 1.

Using the values in Table 3, the covariance of geno-
type dosage  at  the  two  loci  follows  from cov

(

MgNg

)

= E
(

MgNg

)

− E
(

Mg

)

E
(

Ng

)

 , where Mg and Ng are the 
genotype dosages at loci M and N  , and the variances 
of  genotype  dosage  follow  from  var

(

Mg

)

= E
(

M2
g

)

−E2
(

Mg

)

 and the corresponding expression for locus 
N  . Substituting the resulting expressions into the 

(1)r2hap =

[

(u− (t + u)(s + u))+
(

u′ −
(

t ′ + u′
)(

s′ + u′
))]2

[(s + u)(r + t)+ (s′ + u′)(r′ + t ′)][(t + u)(r + s)+ (t ′ + u′)(r′ + s′)]
,

Table 2  Expected genotype frequencies in the crossbred 
offspring when individuals from lines A and B are mated at 
random to each other

a Marginal frequencies are haplotype frequencies
b Joint frequencies are the genotype frequencies

Line A haplotype Line B haplotype

00 r′ 01 s′ 10 t′ 11 u′

00  ra 00

00
r
′
r
b 00

01
s
′
r

00

10
t
′
r

00

11
u
′
r

01 s 01

00
r
′
s

01

01
s
′
s

01

10
t
′
s

01

11
u
′
s

10 t 10

00
r
′
t

10

01
s
′
t

10

10
t
′
t

10

11
u
′
t

11 u 11

00
r
′
u

11

01
s
′
u

11

10
t
′
u

11

11
u
′
u
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expression for the correlation coefficient yields the fol-
lowing expectation of the genotype-based r2:

This expression is identical to the expression for the 
true haplotype-based r2 (Eq.  (1)). Thus, when two lines 
(the lines can be pure or crossbred) are crossed but indi-
viduals from the two lines are mated at random to each 
other, expectations of the genotype-based and the haplo-
type-based r2 in the crossbreds (F1, F2, Fn) and in other 
cross types (BC1, BC2, BCn) are identical, irrespective of 
differences in the inbreeding coefficients at the two loci. 
Note that our derivation also applies to other measures of 
LD, i.e. D and D′ . For example, measures of D based on 
genotypes and haplotypes are the numerators of Eqs. (1) 
and (2), which are identical. Furthermore, using Eqs. (1) 
and (2), the r in the crossbred population can be pre-
dicted if the haplotype and genotype frequencies of the 
two parental lines are known.

Note that Eq. (2) refers to the expected r2 between the 
genotype dosage at the two loci, not to an estimate 
thereof. Hence, although the expected values of r2geno and 
r2hap are identical, their estimates for a given data set may 
differ depending on sampling bias and the sampling 
errors of the estimates. This will be investigated using a 
simulation study in the next section.

(2)r2geno =

[

(u− (t + u)(s + u))+
(

u′ −
(

t ′ + u′
)(

s′ + u′
))]2

[(s + u)(r + t)+ (s′ + u′)(r′ + t ′)][(t + u)(r + s)+ (t ′ + u′)(r′ + s′)]
.

Simulation
The objective of the simulation was to investigate and 

compare the bias and precision of the genotype-based 
and haplotype-based estimates of r2 for a crossbred pop-
ulation. We investigated the bias and the precision for 
different sets of allele frequencies, levels of LD as meas-
ured by r2 , and sample sizes. To limit computation time, 
we directly sampled haplotypes according to their prob-
ability distribution, rather than simulating a population 
of individuals. The haplotype probability distribution fol-
lows from the allele frequencies at the two loci and the 
level of LD. Using the haplotype frequencies and sample 
size, haplotypes were sampled from a multinomial distri-
bution for each of the two parental lines. The genotypes 
of the crossbred individuals were obtained by random 
sampling of one haplotype from each line. Next, the gen-
otype-based and haplotype-based estimates of r2 were 
computed from the genotypes and haplotypes, respec-
tively, of the crossbred offspring. The parameter values 
(allele frequencies, r2 for each line, and sample size) that 
were used for simulation were used to compute the true 
r2 in the crossbreds, using Eq.  (1), which was used as a 
benchmark to evaluate the precision and bias of the two 
estimates of r2 . Thus, there were three measures of r2 : 

Table 3  Unordered genotypes, their genotype dosages, frequencies, and expectations of genotype dosages, and squares and cross 
products of genotype dosages, for locus M and N, in the crossbred offspring from random mating between lines A and B

a E
(

M2
g

)

 refers to the expectation of the squared genotype dosage for locusM , and similar definitions apply for theE
(

Mg

)

,E
(

N2
g

)

, E
(

Ng

)

,E
(

MgNg

)

 . The derivation of the 
expectations of genotype dosages is given in Appendix 2

Genotype 
dosage

Frequency Expectations

Mg Ng f E
(

M2
g

)

a E
(

Mg

)

E
(

N2
g

)

E
(

Ng

)

E
(

MgNg

)

0 0 rr
′ 0 0 0 0 0

0 1 r
′
s+ rs

′ 0 0 r
′
s+ rs

′
r
′
s+ rs

′ 0

0 2 s
′
s 0 0 4s

′
s 2s

′
s 0

1 0 r
′
t + rt

′
r
′
t + rt

′
r
′
t + rt

′ 0 0 0

1 1 r
′
u+ ru

′
+ s

′
t + st

′
r
′
u+ ru

′
+ s

′
t + st

′
r
′
u+ ru

′
+ s

′
t + st

′
r
′
u+ ru

′
+ s

′
t + st

′
r
′
u+ ru

′
+ s

′
t + st

′
r
′
u+ ru

′
+ s

′
t + st

′

1 2 s
′
u+ su

′
s
′
u+ su

′
s
′
u+ su

′
4s

′
u+ 4su

′
2s

′
u+ 2su

′
2s

′
u+ 2su

′

2 0 t
′
t 4t

′
t 2t

′
t 0 0 0

2 1 t
′
u+ tu

′
4t

′
u+ 4tu

′
2t

′
u+ 2tu

′
t
′
u+ tu

′
t
′
u+ tu

′
2t

′
u+ 2tu

′

2 2 u
′
u 4u

′
u 2u

′
u 4u

′
u 2u

′
u 4u

′
u

1 (t + u)+
(

t
′
+ u

′
)

+2
(

t
′
+ u

′
)

(t + u)

(t + u)+
(

t
′
+ u

′
)

(s+ u)+
(

s
′
+ u

′
)

+2
(

s
′
+ u

′
)

(s+ u)

(s+ u)+
(

s
′
+ u

′
)

u
′(1+ t + u)+ u

(

1+ t
′
+ u

′
)

+s
′(t + u)+ s

(

t
′
+ u

′
)

 w
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the true r2 calculated from the parameter values used for 
simulation, the haplotype-based estimate of r2 , and the 
genotype-based estimate of r2 . For each set of parame-
ters, results were based on 1000 replicates. We used the R 
software [10] to simulate the data and analyse the results. 
The source code for the simulation is available at the 
following GitHub repository. https://​github.​com/​seteg​
nworku/​Simul​ation-​code-​for_​LD_​cross​bred_​pop.

Scenarios investigated
We considered only biallelic loci at two loci in cross-
breds resulting from the random mating of two outbred 
lines ( A and B ). We varied three parameters: (i) allele 
frequencies and (ii) r2 in the parental lines, and (iii) the 

sample size. For the allele frequencies, we considered a 
range from 0.05 to 0.45, incremented by 0.10, for both 
lines. To limit the number of scenarios, we used equal 
allele frequencies at the two loci for most scenarios. 
Note that there is no true difference between the major 
and the minor allele, e.g., pA = 0.05 is equivalent to pA 
= 0.95, such that results for allele frequencies ranging 
from 0.55 to 0.95 are identical to those for 0.05 to 0.45. 
For r2 in the parental lines, we considered values of 0.2, 
0.4, 0.6, and 0.8. To reduce the number of scenarios, r2 
was the same in both lines. We considered sample sizes 
of 900, 1800, and 2700. This resulted in a total of 180 
scenarios with equal allele frequencies at the two loci 
within each line, of which 120 had different allele fre-
quencies between the two lines, and all had equal r2 in 
the two lines (Table  4). In addition to those 180 sce-
narios, we investigated a few scenarios where allele fre-
quencies differed between loci within the parental lines 
and for which r2 differed between the parental lines.

Results and discussion
The full results for all 180 simulated scenarios, includ-
ing bias, ratio of precision (ratio of standard deviation 
for the r2 estimates using unphased genotype and hap-
lotype data), correlation of the standard deviation, of 
the r2 estimate using unphased genotype and haplotype 
data is given in the following R shiny App (https://​seteg​
nmaths.​shiny​apps.​io/​LD_​App/). The source code for the 
Shiny App is available in the following github repository: 

Table 4  Combinations of minor allele frequencies for lines A and 
B investigated in the simulationa

a Allele frequencies were equal for the two loci ( M and N ) within a line. Apart 
from the diagonal elements, the allele frequencies differed between the two 
lines. Scenarios in this Table were replicated for sample sizes of 900, 1800, and 
2700, and r2 in the parental lines equal to 0.2, 0.4, 0.6, and 0.8 (equal for both 
lines), yielding a total of 3*4*15 = 180 scenarios

Line B Line A

0.05 0.15 0.25 0.35 0.45

0.05 X X X X X

0.15 X X X X

0.25 X X X

0.35 X X

0.45 X

900

0.
05

_0
.0

9_
0.

05
_0

.0
9

0.
05

_0
.0

9_
0.

15
_0

.1
9

0.
05

_0
.0

9_
0.

25
_0

.2
9

0.
05

_0
.0

9_
0.

35
_0

.3
9

0.
05

_0
.0

9_
0.

45
_0

.4
9

0.
15

_0
.1

7_
0.

05
_0

.0
9

0.
15

_0
.1

7_
0.

15
_0

.1
9

0.
15

_0
.1

7_
0.

25
_0

.2
9

0.
15

_0
.1

7_
0.

35
_0

.3
9

0.
15

_0
.1

7_
0.

45
_0

.4
9

0.
25

_0
.2

5_
0.

05
_0

.0
9

0.
25

_0
.2

5_
0.

15
_0

.1
9

0.
25

_0
.2

5_
0.

25
_0

.2
9

0.
25

_0
.2

5_
0.

35
_0

.3
9

0.
25

_0
.2

5_
0.

45
_0

.4
9

0.
35

_0
.3

3_
0.

05
_0

.0
9

0.
35

_0
.3

3_
0.

15
_0

.1
9

0.
35

_0
.3

3_
0.

25
_0

.2
9

0.
35

_0
.3

3_
0.

35
_0

.3
9

0.
35

_0
.3

3_
0.

45
_0

.4
9

0.
45

_0
.4

1_
0.

05
_0

.0
9

0.
45

_0
.4

1_
0.

15
_0

.1
9

0.
45

_0
.4

1_
0.

25
_0

.2
9

0.
45

_0
.4

1_
0.

35
_0

.3
9

0.
45

_0
.4

1_
0.

45
_0

.4
9

0.0

0.1

0.2

0.3

0.4

Allele 0 frequency for line locus AM_AN_BM_BN

r2

Method

Haplotype

Genotype

Fig. 1  Comparison of estimates of linkage disequilibrium (r2 ± SD) based on unphased genotype and haplotype data for scenarios where allele 
frequencies differed between loci and between lines, with r2 = 0.2 for line A and r2 = 0.4 for line B . Sample size was 900 (1000 replicates)

https://github.com/setegnworku/Simulation-code-for_LD_crossbred_pop
https://github.com/setegnworku/Simulation-code-for_LD_crossbred_pop
https://setegnmaths.shinyapps.io/LD_App/
https://setegnmaths.shinyapps.io/LD_App/
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https://​github.​com/​seteg​nworku/​Linka​ge_​diseq​uilib​
rium_​cross​bred_​Shiny​App.

Results showed that the estimates of r2 for 180 sce-
narios were unbiased, both for the haplotype-based and 
the unphased genotype-based estimates of r2 . Moreover, 
simulation results also confirmed our theoretical finding 
that unphased genotype-based and haplotype-based r2 
on average are the same for a given dataset, irrespective 
of differences in inbreeding coefficients between the two 
loci (Fig. 1).

As shown in Fig. 1, r2 for a given dataset was unbiased 
for scenarios where allele frequencies differed between 
loci (i.e., inbreeding coefficients differed between the two 
loci) and between lines, and when the r2 differed between 
the lines (0.2 and 0.4). We also tested the bias of LD esti-
mates using unphased genotype and haplotype data for 
different sample sizes (Fig. 2). As shown in Fig. 2, for all 
scenarios, both estimators were unbiased for a sample 
size above 300. However, with sample size of 300 or less 
(100, 200, and 300), we found a small downward bias for 
both the unphased genotype- and haplotype-based esti-
mates (the independent sample t-test showed the bias 
was significant for some of the scenarios for both the 
unphases genotype- and haplotype-based estimates). It is 
well known that the estimator of the correlation coeffi-
cient is known to be biased, and more so for smaller sam-
ples [11], which may explain the bias we found in small 
samples.

Bias
For all scenarios (180), the estimates of the r2 using 
unphased genotype and haplotype data were both unbi-
ased. We ran an independent sample t-test to test the 

bias of the estimates of r2 using unphased genotype and 
haplotype data from the true r2 . For all 180 scenarios, 
the bias of the estimates was not significantly different 
from zero for both methods (p value > 0.05). The aver-
age absolute bias across 180 scenarios was 0.0004 when 
using unphased genotype data, and 0.0003 when using 
haplotype data (Table  5). The maximum absolute bias 
across the 180 scenarios was 0.003 when using unphased 
genotype data and 0.002 when using haplotype data. As 
expected, the bias decreased as sample size increased. For 
example, with unphased genotype data, the average abso-
lute bias was 0.0005 for a sample size of 900 and 0.0001 
for a sample size of 2700. Corresponding values for hap-
lotype data were 0.0003 and 0.0001. These results show 
that the estimators of r2 are consistent for both unphased 
genotype data and haplotype data, because the bias of the 
r2 estimates decreased as sample size increased.

Precision
For all scenarios, estimates of LD based on haplo-
type data were more precise than estimates based on 
unphased genotype data, although the differences were 
small. For example, the mean standard deviation of the 
estimates of r2 across all scenarios was 0.023 when using 
unphased genotype data and 0.021 when using haplotype 
data. The maximum standard deviation for estimates of 
r2 across all scenarios was 0.057 using unphased geno-
type data and 0.055 using haplotype data. The precision 
of the estimates of r2 increased as sample size increased, 
both with unphased genotype and with haplotype data. 
For example, the average standard deviation across 
all scenarios with a sample size of 900 was 0.031 with 
unphased genotype data and 0.027 with haplotype data. 
The corresponding values for a sample size of 2700 were 
0.018 and 0.016. This result was as expected because 
the standard error of the estimate of a correlation coef-
ficient decreases as sample size increases [12]. Thus, with 
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Fig. 2  Comparison of linkage disequilibrium estimated from 
unphased genotype and haplotype data, for different sample sizes

Table 5  Summary of estimates of bias and precision (standard 
deviation) of r2 using unphased genotype and haplotype data

Parameter Haplotype Genotype

Average absolute bias across 180 scenarios 0.0003 0.0004

Maximum absolute bias 0.002 0.003

Average absolute bias sample size 900 0.0003 0.0005

Average absolute bias sample size 2700 0.0001 0.0001

Standard deviation (SD) across 180 scenarios 0.021 0.023

Maximum SD 0.055 0.057

Average SD with sample size of 900 0.027 0.031

Average SD with sample size of 2700 0.016 0.018

https://github.com/setegnworku/Linkage_disequilibrium_crossbred_ShinyApp
https://github.com/setegnworku/Linkage_disequilibrium_crossbred_ShinyApp
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a sufficient sample size, r2 in crossbreds can be estimated 
accurately based on unphased genotype data.

We further investigated in which scenarios the differ-
ence in precision for the estimates of r2 using unphased 
genotype versus haplotype data was the largest. We 
investigated this by computing the ratio of the standard 
deviations of the estimates of r2 using haplotype data 
and unphased genotype data. Thus, smaller values of this 
ratio indicate a greater superiority of estimates based 
on haplotypes. As shown in Fig. 3, the ratio of precision 
was less than 1 for all scenarios, indicating that the esti-
mate based on haplotype data was more precise than that 
based on unphased genotype data. The ratio of the preci-
sion increased as the level of LD increased. For example, 
for an r2 of 0.2, the ratio of precision ranged from 0.75 
to 0.9, while with an r2 of 0.8, the ratio ranged from 0.92 
to 0.98. The difference between the estimates of r2 based 
on unphased genotype vs. haplotype data originates 
solely from the double heterozygotes (00/11 for coupling 
phase, or 01/10 for repulsion phase). As r2 increases, the 
frequencies of the coupling phase haplotypes 00 and 11 
or of the repulsion phase haplotypes 01 and 10, increase, 
which reduces the opportunity for the haplotype method 
to provide extra information by distinguishing between 
them. As a result, at larger r2 , the precision of the esti-
mates of r2 using unphased genotype and haplotype data 
are expected to be closer to each other. On the other 
hand, at low r2 , all haplotypes (00, 01, 10, 11) are possi-
ble and the haplotype-based method provides additional 

information. For this reason, the estimate of r2 based on 
haplotype data is more precise than the estimate based 
on unphased genotype data, in particular when the true 
r2 is small.

The ratio of precision decreased when the minor allele 
frequencies for the two loci increased (Figs. 3 and 4). For 
example, for allele frequencies of 0.05 and 0.05 at the 
two loci, the ratio of precision ranged from 0.93 to 0.99, 
while it ranged from 0.73 to 0.94 for allele frequencies 
of 0.45 and 0.45. This is because the proportion of the 
double heterozygotes in the population decreases when 
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the minor allele frequencies at the two loci decrease, 
which reduces the extra information provided by the 
haplotype-based method. This is in agreement with [13]. 
There was also an interaction between the level of LD 
and the minor allele frequency, with the ratio of preci-
sion increasing when the level of LD increased but this 
increase was larger for higher values of the minor allele 
frequency (Fig.  4). The ratio of precision at allele fre-
quencies of 0.05 and 0.05 was 0.91 when r2 was 0.2 and 
0.99 for an r2 of 0.9. However, the corresponding values 
for allele frequencies of 0.45 and 0.45 were 0.70 when r2 
was 0.2 and 0.94 for an r2 of 0.9. When the minor allele 
frequencies at the two loci decrease, the proportion of 
double heterozygotes decreases, which reduces the extra 
information provided by the haplotype-based method. 
Thus, with extreme allele frequencies at the loci (e.g. 0.05 
and 0.05), both methods yielded similar results, irrespec-
tive of the level of LD. On the other hand, at intermediate 
allele frequencies, such as 0.45 and 0.45, the proportion 
of double heterozygotes in the population increases, 
which increases the extra information provided by the 
haplotype-based method, particularly when LD is weak.

In real applications, the true r2 is unknown and the 
r2 computed using haplotype data would serve as the 
reference value. In that case, the comparison would be 
between the r2 computed using unphased genotype data 
relative to the estimate based on haplotype data. In this 
case, the average absolute bias across the 180 scenarios 
using unphased genotype was very close to zero (0.00017) 
and the average standard deviation of estimates based on 
unphased genotype data across all scenarios relative to 
haplotype data was 0.0026. In addition, the haplotype-
based method assumes that the haplotype can be deter-
mined without error for each individual, which means 
that in reality the absolute bias may be lower than the 
above value of 0.00017, depending on the error of hap-

lotype estimation. Thus, estimates of r2 computed using 
unphased genotype and haplotype data are indistinguish-
able in terms of both bias and precision in practice, par-
ticularly with sufficient sample size.

This paper extends the work of Rogers and Huff [8] and 
Weir [14], who showed that LD can be estimated from 
unphased genotype data when the allele frequency in line 
A and line B is the same, and when the inbreeding coeffi-
cient is identical for the two loci. Here, we showed that LD 
can also be estimated using unphased genotype data when 

the allele frequencies differ between lines A and B and the 
inbreeding coefficients differ between the two loci. This is 
particularly relevant for hybrids in plant breeding [15] and 
for crossbreds in animal breeding [16, 17].

Conclusions
This work shows that the expectation of estimates of linkage 
disequilibrum (LD) between loci based on unphased geno-
types and haplotypes in F1 crossbreds are identical. Esti-
mates of LD, i.e. r2 , are more precise and less biased when 
based on haplotype data compared to unphased genotype 
data. For both unphased genotype and haplotype data, 
the precision of r2 increases and the bias of the estimates 
decreases as sample size increases. More importantly, the 
difference in precision and bias between estimates of r2 using 
haplotype and unphased genotype data decreases as sample 
size increases. Thus, LD in a crossbred population can be 
estimated using unphased genotyped data with little bias and 
good precision, particularly with sufficient sample size.

Appendix 1
This appendix shows under which conditions the inbreed-
ing coefficients at the two loci ( M and N  ) are equal when 
two outbred lines ( A and B ) mate randomly. The alleles 
are denoted 0 and 1, pAM is the frequency of allele 1 at 
locus M in line A , and pBM is the frequency of allele 1 at 
locus M in line B.

To simplify the symbols notation let a = pAM , 
b = pBM , c = pAN , and d = pBN . The inbreeding coef-
ficient for locus M is fM =

−(a−b)2

(a+b)(2−a+b)
 and for locus N  

is fN =
−(c−d)2

(c+d)(2−c+d)
 . By solving the expression fN = fM , 

using Wolfram Mathematica (www.​wolfr​am.​com), we get 
the following complex solutions:

Conclusion: there are two trivial solutions, i.e. 
p = 0((

{

a → 0, b → 0
}

), and p = 1(
{

a → 1, b → 1
}

) ; two 
simple solutions (

{

a →
b

−1+2b
, d →

c
−1+2c

}

, ) , and two 
rather complex solutions; thus, in general the two inbreed-
ing coefficients are different.

{

d →
a2 − 2ab+ b2 + 2ac − 2a2c + 2bc − 2b2c − (a− b)

√

a2 − 2ab+ b2 + 8ac − 4a2c + 8bc − 8abc − 4b2c − 8ac2 + 4a2c2 − 8bc2 + 8abc2 + 4b2c2

2(a+ b− 2ab)

}

,

{

a →
b

−1+ 2b
, d →

c

−1+ 2c

}

,

{

a → 0, b → 0
}

,
{

a → 1, b → 1
}

http://www.wolfram.com
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Appendix 2
This appendix shows the computation of the expectation 
for different linear combination of genotypic values Mg and 
Ng at loci M and N  , respectively, as indicated in Table 3.

Computation of E
(

Mg

)

Simplifying this yields:

Computation of E
(

M2
g

)

Simplifying this yields:

Computation of E
(

Ng

)

E
(

Mg

)

=r′t + rt ′ + r′u+ ru′ + s′t

+ st ′ + s′u+ su′ + 2t ′t

+ 2u′t + 2ut ′ + 2u′u

E
(

Mg

)

=r′(t + u)+ t ′(r + s)+ u′(r + s)

+ s′(t + u)+ 2t
(

t ′ + u′
)

+ 2u
(

t ′ + u′
)

E
(

Mg

)

=
(

r′ + s′
)

(t + u)+
(

t ′ + u′
)

(r + s)

+ 2(t + u)
(

t ′ + u′
)

.

(3)E
(

Mg

)

= (t + u)+
(

t ′ + u′
)

.

E
(

M2
g

)

= r′t + rt ′ + r′u+ ru′ + s′t + st ′ + s′u+ su′ + 4t ′t + 4u′t + 4ut ′ + 4u′u

E
(

M2
g

)

= r′(t + u)+ t ′(r + s)+ u′(r + s)+ s′(u+ t)+ 4t ′(t + u)+ 4u′(t + u)

E
(

M2
g

)

= r′(t + u)+t ′(r + s)+u′(r + s)+s′(u+ t)+2
(

t ′ + u′
)

(t + u)+2
(

t ′ + u′
)

(t + u).

(4)
E
(

M2
g

)

= (t + u)+
(

t ′ + u′
)

+ 2(t + u)
(

t ′ + u′
)

.

E
(

Ng

)

=r′s + rs′ + 2s′s + r′u+ ru′ + s′t + st ′

+ 2s′u+ 2su′ + tu′ + t ′u+ 2u′u

Simplifying this yields

Computation of E
(

N2
g

)

E
(

Ng

)

=r′(s + u)+ s′(r + t)+ u′(r + t)+ t ′(s + u)

+ 2s′u+ 2s′s + 2su′ + 2u′u

E
(

Ng

)

=
(

r′ + t ′
)

(s + u)+
(

s′ + u′
)

(r + t)

+ 2
(

s′ + u′
)

(s + u)

E
(

Ng

)

=
(

r′ + t ′
)

(s + u)+
(

s′ + u′
)

(r + t)

+
(

s′ + u′
)

(s + u)+
(

s′ + u′
)

(s + u).

(5)E
(

Ng

)

= (s + u)+
(

s′ + u′
)

.

E
(

N 2

g

)

=r′s + rs′ + r′u+ ru′ + s′t

+ st ′ + t ′u+ tu′ + 4s′s

+ 4s′u+ 4su′ + 4u′u

E
(

N 2

g

)

=r′s + r′u+ rs′ + s′t + ru′

+ st ′ + t ′u+ tu′

+ 4s′(s + u)+ 4u′(s + u)

E
(

N 2

g

)

=r′(s + u)+ s′(r + t)+ u′(r + t)

+ t ′(s + u)+ 4(s + u)
(

s′ + u′
)

E
(

N 2

g

)

=r′(s + u)+ s′(r + t)+ u′(r + t)

+ t ′(s + u)+ 2(s + u)
(

s′ + u′
)

+ 2(s + u)
(

s′ + u′
)

.



Page 10 of 10Alemu et al. Genetics Selection Evolution           (2022) 54:12 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Simplifying this yields:

Computation of E
(

MgNg

)

Simplifying this yields:

Acknowledgements
SWA thanks Bernt Guldbrandtsen and Dorian Garrick for helpful discussions on this 
topic.

Authors’ contributions
SWA, PB, JCMD and RF conceived the study. SWA derived the equations, wrote 
the simulation script, and drafted the manuscript. PB, HL and MPLC involved in 
simulation. PB, JCMD and MPLC edited the drafted manuscript. PB, RF and JCMD 
involved in the derivation of the equations. All authors read and approved the final 
manuscript.

Funding
Iowa State University, Wageningen University and Research Centre.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 AL Rae Centre for Genetics and Breeding, Massey University, 10 Bisley Drive, 
Hamilton 3240, New Zealand. 2 Animal Breeding and Genomics, Wageningen 
University and Research, 6700 AH Wageningen, The Netherlands. 3 Department 
of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark. 
4 Department of Animal Science, Iowa State University, Ames, IA 50011, USA. 

Received: 4 February 2021   Accepted: 21 January 2022

(6)
E
(

N 2
g

)

= (s + u)+
(

s′ + u′
)

+ 2(s + u)+
(

s′ + u′
)

.

E
(

MgNg

)

=r′u+ ru′ + t ′s + ts′

+ 2s′u+ 2su′ + 2t ′u

+ 2u′t + 4u′u

E
(

MgNg

)

=u
(

r′ + s′
)

+ 2u
(

t ′ + u′
)

+ u′(r + s)+ 2u′(t + u)

+ s
(

t ′ + u′
)

+ s′(t + u).

(7)

E
(

MgNg

)

=u
(

1+ t ′ + u′
)

+ u′(1+ t + u)

+ s
(

t ′ + u′
)

+ s′(t + u).

References
	1.	 Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models 

and data. Am J Hum Genet. 2001;69:1–14.
	2.	 Goddard ME, Hayes BJ. Mapping genes for complex traits in domes-

tic animals and their use in breeding programmes. Nat Rev Genet. 
2009;10:381–91.

	3.	 Dekkers JCM, Hospital F. The use of molecular genetics in the improve-
ment of agricultural populations. Nat Rev Genet. 2002;3:22–32.

	4.	 Fernando RL, Grossman M. Marker assisted selection using best linear 
unbiased prediction. Genet Sel Evol. 1989;21:467–77.

	5.	 Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 
using genome-wide dense marker maps. Genetics. 2001;157:1819–29.

	6.	 Lynch M, Walsh B. Genetics and analysis of quantitative traits. 1st ed. 
Sunderland: Sinauer Associates; 1998.

	7.	 Hill WG, Robertson A. Linkage disequilibrium in finite populations. Theor 
Appl Genet. 1968;38:226–31.

	8.	 Rogers AR, Huff C. Linkage disequilibrium between loci with unknown 
phase. Genetics. 2009;182:839–44.

	9.	 Falconer D, Mackay T. Introduction to quantitative genetics. Harlow: 
Pearson Education Limited; 1996.

	10.	 R Core Team, R: A language and environment for statistical computing. 
R Foundation for Statistical Computin; 2021. http://​www.R-​proje​ct.​org/. 
Accessed 01 Nov 2021.

	11.	 Fisher RA. Frequency distribution of the values of the correlation coef-
ficient in samples from an indefinitely large population. Biometrika. 
1915;10:507–21.

	12.	 Stuart A, Ord JK. Kendall’s advanced theory of statistics: distribution 
theory. 6th ed. London: Halsted Press; 1994.

	13.	 Berger S, Schlather M, de los Campos G, Weigend S, Preisinger R, Erbe 
M, et al. A scale-corrected comparison of linkage disequilibrium levels 
between genic and non-genic regions. PLoS One. 2015;10:e0141216.

	14.	 Weir BS. Linkage disequilibrium and association mapping. Ann Rev 
Genomics Hum Genet. 2008;9:129–42.

	15.	 Breeding AG, Cultivars H. In Principles of plant genetics and breeding. 
Chichester: John Wiley & Sons Ltd; 2012. p. 355–73.

	16.	 Dekkers JCM, Mathur PK, Knol EF. Genetic improvement of the pig. In: 
Rothschild MF, Ruvinsky A, editors. The genetics of the pig. Wallingford: 
CABI Publishing; 2011. p. 390–425.

	17.	 Arthur JA, Albers GAA. Industrial perspective on problems and issues 
associated with poultry breeding. In: Muir WM, Aggrey SE, editors. Poultry 
genetics, breeding and biotechnology. Wallingford: CABI Publishing; 
2003. p. 1–12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.R-project.org/

	Comparison of linkage disequilibrium estimated from genotypes versus haplotypes for crossbred populations
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Inbreeding coefficients for a crossbred population
	Haplotype-based linkage disequilibrium
	Genotype-based squared correlation
	Simulation
	Scenarios investigated

	Results and discussion
	Bias
	Precision

	Conclusions
	Acknowledgements
	References




