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Abstract 

Background:  Resilient animals are minimally affected by disturbances, such as diseases and heat stress, and quickly 
recover. Daily activity data can potentially indicate resilience, because resilient animals likely keep variations due 
to disturbances that threat animal homeostasis at a low magnitude. We used daily step count of cows to define 
resilience indicators based on theory, exploratory analysis and literature, and then investigated if they can be used 
to genetically improve resilience by estimating heritability and repeatability, and genetic associations with other 
resilience-related traits, i.e. health traits, longevity, fertility, and body condition score (BCS).

Results:  Two groups of resilience indicators were defined: indicators describing (1) mean step count at different 
lactation stages for individual cows, and (2) fluctuations in step count from individual step count curves. Heritability 
estimates were highest for resilience indicators describing mean step count, from 0.22 for the 2-week period pre-
partum to 0.45 for the whole lactation. High mean step count was consistently, but weakly, genetically correlated with 
good health, fertility, and longevity, and high BCS. Heritability estimates of resilience indicators describing fluctua-
tions ranged from 0.01 for number of step count drops to 0.15 for the mean of negative residuals from individual 
curves. Genetic correlations with health traits, longevity, fertility, and BCS were mostly weak, but were moderate and 
favorable for autocorrelation of residuals (− 0.33 to − 0.44) and number of step count drops (− 0.44 to − 0.56) with 
hoof health, fertility, and BCS. Resilience indicators describing variability of residuals and mean of negative residuals 
showed strong genetic correlations with mean step count (0.86 to 0.95, absolute), which suggests that adjustment for 
step count level is needed. After adjustment, ‘mean of negative residuals’ was highly genetically correlated with hoof 
health, fertility, and BCS.

Conclusions:  Mean step count, autocorrelation and mean of negative residuals showed most potential as resilience 
indicators based on resilience theory, heritability, and genetic associations with health, fertility, and body condition 
score. Other resilience indicators were heritable, but had unfavorable genetic correlations with several health traits. 
This study is an important first step in the exploration of the use of activity data to breed more resilient livestock.
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Background
Cows are exposed to various environmental disturbances 
that threaten homeostasis throughout their lives, such as 
pathogens, heat waves, and sudden changes in feed com-
position. The number of disturbances and their sever-
ity are expected to increase in the future. For example, 
due to climate change the number of extreme weather 
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events will likely increase [1, 2]. Therefore, it is important 
to improve the resilience of cows, which was defined by 
Colditz and Hine [3] as their capacity to be minimally 
affected by disturbances, and if they are affected, to 
quickly recover. One option to improve the resilience of 
cows is through genetic selection [4, 5]. The advantage of 
genetic selection is that it can tackle problems through 
prevention strategies, rather than through the treatment 
of stress or disease.

The response of cows to environmental disturbances 
can often be observed through temporary changes in 
traits such as milk yield [6, 7] and activity [8, 9]. There-
fore, patterns in longitudinal data records, such as daily 
production, activity, or feed intake data, contain infor-
mation on their response to many kinds of naturally 
occurring disturbances. When such data are routinely 
collected, they provide the potential to derive indicators 
of resilience for animal breeding.

Several resilience indicators based on longitudinal data 
have been proposed, which were originally aimed at indi-
cating resilience of ecosystems [10–12]. These resilience 
indicators were the variance and lag-1 autocorrelation of 
longitudinal traits. Variance indicates how severely a lon-
gitudinal trait fluctuates around its expected value. Resil-
ient animals are not expected to have large fluctuations, 
and therefore a small variance is an indicator of good 
resilience. Lag-1 autocorrelation indicates how depend-
ent subsequent records are on each other and therefore 
how slowly the trait recovers from small natural distur-
bances. Resilient animals are expected to recover quickly 
and therefore have low lag-1 autocorrelations [13].

The proposed resilience indicators based on patterns in 
longitudinal data have been investigated in animals. For 
example, variance and autocorrelation of daily milk yield 
data and deviations from expected yield have been shown 
to be promising indicators to select for better resilience: 
they are heritable [4, 5] and have favorable genetic cor-
relations with response to actual disturbances [14] and 
health and longevity traits [4, 5]. Similar indicator traits 
have been successfully calculated from daily feed intake 
data in pigs [15, 16] and 4-weekly body weight records in 
layers [17].

In dairy cattle, the development of resilience indica-
tors for genetic selection has mainly focused on daily 
milk yield data. However, currently sensors generate daily 
activity data on a large scale. Activity data are expected 
to be more directly affected by disturbances than milk 
yield. Most disturbances will first result in a change in 
activity, followed by a change in milk yield [8]. In addi-
tion, numerous studies have shown that diseases [8, 
18–20] and heat stress [9, 21] have an effect on activity 
traits, such as number of steps per day, lying time, stand-
ing time, and eating time. Therefore, longitudinal activity 

data may provide an excellent opportunity to develop 
resilience indicators. The aim of this research was to use 
daily step count data of cows to define potential resilience 
indicators based on theory, literature and exploratory 
analysis of relations between step count and diseases, and 
then to investigate if they can really be used to genetically 
improve resilience by estimating their heritability and 
repeatability, and their genetic associations with other 
resilience-related traits, i.e. health traits, longevity, fertil-
ity, and body condition score.

Methods
This study consists of two parts. In the first part, poten-
tial resilience indicators for genetic selection based on 
theory and data exploration are calculated and their 
genetic parameters are estimated. In the second part, we 
assess whether the potential resilience indicators indeed 
reflect resilience by estimating genetic correlations with 
traits from current Dutch genetic evaluations that are 
related to resilience, i.e. udder health, hoof health, keto-
sis, fertility, longevity, and body condition score.

Data and data preparation
Most data editing was performed in Python versions 
3.6 and 3.8.5 using the NumPy [22], Pandas [23], and 
Statsmodels [24] packages, and when other languages or 
packages were used, they are indicated in text.

Step count data were measured by Nedap Smarttag leg 
accelerometers (Nedap, Groenlo, the Netherlands). Part 
of the accelerometers measured additional traits, such as 
lying time and standing time. However, since the number 
of cows with data was largest for step count, we focused 
on this trait. The data consisted of 9,472,978 records of 
daily step count, for 18,622 cows from 86 Dutch farms 
with automatic milking systems between July 1st 2016 
and July 1st 2019. Cows were in parities 0 to 14, but only 
the cows in the first three parities were selected based on 
records of calving dates available from CRV (Arnhem, 
the Netherlands): 9429 cows in parity 1, 8608 cows in 
parity 2, and 6759 cows in parity 3. Other exclusion crite-
ria were: cows not registered in the herd-book, cows that 
were less than 87.5% Holstein Friesian, cows that calved 
before 640, 855, or 1070 days of age for first, second, and 
third lactation, respectively [25], or cows that had a calv-
ing interval between the current and previous lactation 
shorter than 215 days. In addition, data after 450 days in 
milk (DIM) were removed, and records measured dur-
ing estrus (explained later) and those with step counts 
less than 200 steps per day were also removed because 
the latter are likely to be due to errors from the device 
after visual inspection (long periods with consistently the 
same small number of steps). The remaining number of 
records was 1,823,789 on 7569 cows in parity 1, 1,735,669 
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on 6840 cows in parity 2, and 1,295,398 on 5342 cows in 
parity 3. The data contained 11,086 unique cows.

In addition to the step count data, other data sets were 
available from CRV to assist in data preparation. The first 
data set contained milk yield of cows measured during 
single milk visits to automatic milking systems and con-
ventional milking systems, and these data were used to 
determine when cows were lactating or dry. From these 
data, only the data of the cows in the step count data set 
were selected, i.e. 15,955,347 records on 7568 cows in 
parity 1, 18,543,964 records on 6840 cows in parity 2, and 
17,487,044 records on 5342 cows in parity 3. The second 
data set contained insemination records and was used as 
one of two ways to determine when a cow was in estrus 
(explained in the following paragraph). From the insemi-
nation dataset, data on cows from the step count dataset 
were selected, i.e. 35,149 records on 9971 cows.

Part of the step count records (61%) contained a vari-
able that describes the number of seconds during which 
the accelerometer was actually measuring during a day, 
which was usually 86,400 s (whole day). For 0.6% of the 
records with a known measuring time, the measured 
time was less than 86,400 s, which means that the device 
was not working during the whole day. We were inter-
ested in complete time series for as many cows as pos-
sible, to be able to calculate resilience indicators based on 
complete step count patterns. Complete time series are 
especially important for calculating autocorrelations [12]. 
Therefore, we decided to keep the records with a record-
ing time less than 86,400  s, and to estimate the num-
ber of steps for the whole day by multiplying them by 
86,400 divided by the time measured. For records with an 
unknown measuring time, it was assumed that the device 
did measure during the whole day. Records before or after 
a period of at least 7 days without records were removed, 
because it is likely that, on those days, the device was 
attached to or removed from the leg of the cow and did 
not measure during the whole day. Finally, based on the 
step count data, the days that cows were in estrus were 
determined. Since estrus detection measurements of 
Nedap (Groenlo, the Netherlands) were not available, a 
method adapted from Roelofs et al. [26] was used as fol-
lows. If the number of steps for a day was larger than the 
mean for the 10 days before plus 2.5 times the standard 
deviation for the 10 days before, that day was determined 
as an estrus day. Estrus could not occur before 14 DIM or 
when a cow was pregnant. The timing of pregnancy was 
estimated based on the next calving date minus 278 days 
(gestation length of Holsteins according to [27]). In addi-
tion to the determination of estrus based on step count 
level, records were classified as estrus records if the cow 
was inseminated on that day according to the data set 
with insemination records. Records classified as estrus 

records were excluded from all analyses, to avoid an 
effect of estrus on the resilience indicators.

Calculation of resilience indicators
Before calculating resilience indicators, a preliminary phe-
notypic analysis was performed to investigate how step 
count differed between cows in lactations 1, 2, and 3 with 
and without several diseases, i.e. mastitis, ketosis, claw 
disorders, and uterus disorders. Knowing how step count 
differs, helps to define traits that could potentially indicate 
resilience. Disease registrations were available from two 
sources of data: (1) registrations of clinical mastitis, clinical 
ketosis, claw disorders, and uterus disorders done by farm-
ers, and professional claw trimmers within the Digiklauw 
program [28], and (2) milk production registration records, 
which included indications of mastitis, and indications of 
clinical or subclinical ketosis based on milk acetone level, 
milk β-hydroxybutyric acid level, and fat-to-protein ratio. 
For each lactation with step count records, presence or 
absence of registration or indication of mastitis, ketosis, 
claw disorders, and uterus disorders was determined. Since 
registrations or indications were not available for all the 
farms, we focused on farms with at least one registration 
or indication of the disease in question, and with step count 
data for at least five lactations, which resulted in: 48 farms 
with mastitis records (30 had farmer registrations and 26 
had milk production registrations), and 5.7% of the lacta-
tions (1–3) with step count data for these farms had mas-
titis according to the data; 75 farms with ketosis records 
(8 had farmer registrations and 75 had milk production 
recording registrations), and 9.5% of the lactations with 
step count data for these farms had ketosis; 40 farms with 
claw disorder registrations, and 31% of the lactations with 
step count data for these farms had a claw disorder; and 23 
farms with uterus disorder registrations, and 4.7% of the 
lactations with step count data for these farms had a uterus 
disorder. The proportion of lactations with disorders varied 
largely between farms, as illustrated in Fig. 1, which may be 
partly due to registration not being mandatory, which may 
also cause a lower incidence of diseases than that found 
in the literature for the Netherlands [29–31], except for 
ketosis indications from milk production registration [32]. 
Therefore, in this study these data were used for explora-
tion purposes only, and not for genetic analysis. The data 
exploration performed on the relation between step count 
and disease is presented in Fig.  2, which shows number 
of steps (corrected for parity, herd-month, and pregnancy 
status) for lactations (1–3) with and without registered 
diseases on the farms with registrations. Disease seems to 
coincide with decreased step count, for short or long peri-
ods of time and sometimes during particular stages in the 
lactation. Therefore, two types of resilience indicators were 
derived from the daily step count data: (1) indicators based 
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on mean step count level at different stages throughout 
lactation, and (2) indicators based on fluctuations in step 
count level.

Indicators based on mean step count level
Because of the general association of disturbances with 
decreased number of steps shown in Fig.  2, mean step 
count at different stages of the lactation was calculated as 
a resilience indicator. To avoid differences in step count 
level between cows due to differences in season and preg-
nancy status rather than resilience, first a model was fitted 
to adjust the number of steps per day for these factors as 
follows:

where yijk is a step count record, HMj is herd-month 
j (herd 1 to 86 and month 1 to 12), pregk is pregnancy 
status k (not pregnant, pregnant, dry, close-up, or 

(1)yijk = HMj + pregk + eijk ,

Fig. 1  Boxplots of the proportion of lactations with a registration of 
a disease within farms. Each boxplot includes only the farms with at 
least one registration of the disease. Only cows in lactations 1, 2, and 
3 were included, and the proportion of diseased lactations within 
each herd was calculated as the number of lactations with a disease 
registration, divided by the total number of lactations

Fig. 2  Comparison of step count between lactations with and without registered disease. Step count is corrected for parity, herd-month, and 
pregnancy status. The mean number of corrected steps is indicated in orange for lactations with a registered disorder, and in blue for lactations 
without a registered disorder. a mastitis, b ketosis, c claw disorders, and d uterus disorders. 95% confidence intervals indicated by lighter areas 
around the lines
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unknown), and eijk is the residual. A record was assigned 
as ‘pregnant’ if it was within 278  days before the next 
calving date, as “not pregnant” if the next calving date was 
known but the record was not within 278 days before that 
date, as “dry” if the record was between the last milking 
of the lactation and the next calving date, as “close-up” 
if the record was less than 14 days before the next calv-
ing date, and as “unknown” if the next calving date was 
unknown. The “unknown” class was included, because 
otherwise cows that were selected for culling after the 
current lactation or that did not manage to become preg-
nant would be excluded, which potentially could exclude 
non-resilient cows. The estimates of herd-month effect 
from the model are shown in Fig.  3, represented as the 
herd-month estimate + intercept (pregnancy status ‘not 
pregnant’). For clarity, only the effects for January and 
July are shown. Figure 3 shows that, for some herds, the 
difference between the estimates for January and July was 
large, while for others it was small, which suggests that 
some herds may be grazing in summer and some were 
not. Because the herds were anonymous, no information 
about grazing, other management practices, or location 
was known. By correcting for herd-month, we adjusted 
for any differences in management practices or weather 
conditions between herds over the year. Differences in 
management between cows within herds were unknown 
and thus were not taken into account.

After fitting Model (1) on the data, the residuals eijk 
were used as the “corrected number of steps”. For each 
lactation, the mean of the corrected number of steps 
was calculated for different stages of the lactation: (1) 
complete lactation: DIM 1–450, (2) early lactation: DIM 
1–28, (3) later lactation: DIM 75–450, and (4) pre-par-
tum: DIM −  14 to −  1. The three stages of lactation—
early lactation, later lactation, and pre-partum—were 

selected based on a preliminary analysis that showed dif-
ferent step count levels for different stages of the lacta-
tion upon visual inspection (blue lines in Fig.  2), which 
may mean that step count at different lactation stages 
contains different information about resilience. A sharp 
average decline in step count was shown approximately 
in the first four weeks after calving (also observed by 
Brzozowska et al. [33]), which may represent adaptation 
to lactation after calving. Hence this stage was named 
‘early lactation’. A steady step count level was observed 
from ~ 75 DIM onwards, averaged over parities, which 
may represent the baseline step count level. Hence this 
stage was named ‘later lactation’. Lower step count lev-
els were observed in the two-week period before calv-
ing, and activity in this period may be informative about 
resilience during the transition period. Hence, this stage 
was named ‘pre-partum’. The mean number of corrected 
steps for the whole lactation and for later lactation were 
only calculated for cows with data for at least four weeks. 
The mean numbers of corrected steps for early lactation 
and pre-partum were calculated for cows with data for at 
least one week (and not 4 weeks as for the other indica-
tors), because these periods consisted of a maximum of 4 
and 2 weeks, respectively. After calculating the resilience 
indicators (mean number of corrected steps at different 
stages of the lactation), for each parity, outliers of these 
indicators were removed when values deviated more than 
4 times the standard deviation from the mean of all lacta-
tions in that parity. The final number of records for each 
of the resilience indicators based on mean step count per 
parity are in Table 1.

Indicators based on fluctuations in step count
Because disturbances may result in temporary drops in 
step count (Fig.  2), additional resilience indicators were 

Fig. 3  Estimated herd-month effects for all herds for January and July. Estimates are estimated herd-month effects plus intercept (reference: 
pregnancy status ‘not pregnant’). Effects were estimated for all months of the year, but for clarity only the estimates for January and July are shown
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calculated based on fluctuations in step count level. To be 
able to study short-term fluctuations that are independ-
ent of the long-term trend throughout lactation, first a 
model was fitted on each individual lactation to adjust 
for the long-term trend. The same model was used as in 
Poppe et al. [4] to adjust the daily milk yield for the lac-
tation curve shape. This model is a quantile polynomial 
regression model with a 0.7 quantile, and it was fitted on 
the corrected number of steps per day from Model (1) as 
follows:

where yt is the corrected number of steps from Model (1) 
on DIM t , tn are DIM to the power of n , where n is equal 
to 1, 2, 3, or 4, βn are regression coefficients describing 
the relationships between tn and yt , and ε is the error 
term. The quantreg package [34] and the poly function 
in R 3.5.3 [35] were used. Quantile regression [36] with 
a quantile of 0.7 was used instead of classical regression 
to reduce the effect of drops in step count due to distur-
bances on the expected step count level. This generates a 
curve that is expected to be close to an unperturbed step 
count curve. After fitting the step count models, for each 
cow the residuals from her expected step count curve 
were calculated as yt − ŷt . A number of resilience indica-
tors were then calculated from the step count residuals. 
The first two resilience indicators were equivalent to the 
resilience indicators developed by Poppe et al. [4] based 
on milk yield residuals: the natural log-transformed vari-
ance (LnVarsteps) and lag-1 autocorrelation (rauto_steps) of 
the step count residuals. Low LnVarsteps and low rauto_steps 
were expected to indicate good resilience, because of 

(2)
yt = β0 + β1 ∗ t + β2 ∗ t

2
+ β3 ∗ t

3
+ β4 ∗ t

4
+ ε,

few fluctuations in step count and quick return to the 
baseline [11, 12]. In addition to LnVarsteps and rauto_steps, 
a resilience indicator was calculated that describes the 
mean of the negative residuals from Model 2 (referred 
to as the ‘mean of all negative residuals’). Resilient cows 
are expected to have less extreme negative deviations 
than less-resilient cows. Furthermore, for each lactation, 
the number of step count drops with at least 10 negative 
deviations in a row was calculated, expressed as the num-
ber of drops per 100 days (referred to as the ‘number of 
step count drops’). During such drops, it is likely that the 
cow had to cope with a disturbance. Step count drops of 
less than 10 negative deviations (e.g. 5), were also inves-
tigated, but they did not seem to have any relationships 
with diseases based on exploratory phenotypic observa-
tions. Therefore, it was decided to base the step count 
drops on 10  days of negative deviations. Resilient cows 
are expected to have less step count drops than less-resil-
ient cows. Finally, the mean of the negative residuals dur-
ing these step count drops was calculated (referred to as 
the ‘mean of negative residuals during step count drops’). 
Resilient cows are expected to have less extreme step 
count drops than less-resilient cows. All of the above-
mentioned resilience indicators were calculated only for 
lactations with data for at least four weeks. After calcu-
lating the resilience indicators, for each parity, outliers 
were removed when values deviated more than 4 times 
the standard deviation from the mean of all lactations in 
that parity. The final number of records on the resilience 
indicators describing fluctuations in step count are in 
Table 1.

Table 1  Descriptive statistics of potential resilience indicators based on daily step count

Step count data were adjusted for herd x month, which explains the low means
a LnVarsteps = natural log-transformed variance of step residuals; rauto_steps = lag-1 autocorrelation of step residuals; SD standard deviation

Resilience indicatora Number of 
records parity 1

Number of 
records parity 2

Number of 
records parity 3

Mean SD Min Max

Mean complete lactation 6877 6059 4593 10.90 769.63 − 2912.94 3518.49

Mean early lactation 3555 4712 3632 405.50 1142.96 − 3913.73 5803.58

Mean later lactation 6452 5567 4122 − 55.89 741.57 − 3133.34 3143.33

Mean prepartum 2030 4303 3336 − 97.99 1143.46 − 4650.73 4859.06

Mean negative residuals 6800 6005 4524 − 620.29 281.01 − 1876.08 − 157.27

LnVarsteps 6830 6041 4556 13.18 0.87 10.34 16.28

rauto_steps 6825 6042 4555 0.32 0.19 − 0.43 0.89

Number of step count drops 6826 6042 4556 1.39 0.70 0.00 4.11

Mean residuals during step count drops 6816 6023 4534 − 685.34 429.89 − 2528.28 0.00
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Analysis
Phenotypic exploration of relation between resilience 
indicators and disease registrations
Phenotypic associations between the resilience indica-
tors and the registered diseases mentioned earlier were 
explored using an analysis of variance:

where yijklm is the resilience indicator, pari is parity i (1 
to 3), mastj is mastitis group j (0 for no recorded masti-
tis and 1 for recorded mastitis), ketk is ketosis group k (0 
for no recorded ketosis and 1 for recorded ketosis), clawl 
is claw disorder group l (0 for no recorded claw disorder 
and 1 for recorded claw disorder), utm is uterus disor-
der group m (0 for no recorded uterus disorder and 1 for 
recorded uterus disorder), and eijklm is the error term. For 
each disease, only records from herds with registrations 
of that disease were included, as explained earlier. Effects 
of mastitis, ketosis, claw disorders, and uterus disorders 
were considered significant at a p-value of 0.05.

Univariate genetic analysis of resilience indicators
A genetic analysis was performed on the resilience indi-
cators using mixed animal models in ASReml 4.1 [37]. 
The pedigree contained five generations of ancestors. The 
following univariate repeatability model was used:

where y is a vector of repeated records on the resilience 
indicator in parities 1, 2, and 3; b is a vector of the fixed 
effects for the analyzed trait, i.e. parity, age at calving in 
months nested within parity, year-season of calving 
nested within parity, herd-year nested within parity, and 
a covariate describing the first available DIM with a step 
count record nested within parity; a is a vector of the 
additive genetic effects of the cows in y for the analyzed 
trait, a ∼ N(0,Aσ

2
a ) where A is the additive genetic rela-

tionship matrix and σ 2
a  is the additive genetic variance; p 

is a vector of the permanent environmental effects of the 
cows in y for the analyzed trait, p ∼ N

(
0, Iσ 2

pe

)
 where I is 

the identity matrix and σ 2
pe is the permanent environmen-

tal variance; e is a vector of the residuals, e ∼ N
(
0, Iσ 2

e

)
 

where σ 2
e  is the residual variance. X , Z1 and Z2 are inci-

dence matrices linking the phenotypic records of the ana-
lyzed resilience indicator to the fixed effects and 
covariates, additive genetic effects, and permanent envi-
ronmental effects, respectively.

Bivariate genetic analysis of resilience indicators
Genetic correlations and permanent environmental cor-
relations among the resilience indicators were estimated 
using the following bivariate repeatability model:

(3)
yijklm = pari +mastj + ketk + clawl + utm + eijklm,

(4)y = Xb+ Z1a + Z2p+ e,

where yi is a vector of repeated records on a resilience 
indicator in parities 1, 2, and 3; bi is a vector of the fixed 
effects for the trait, which are the same as in the univari-
ate analysis; ai is a vector of the additive genetic effects 
of the cows in yi ; pi is a vector of the permanent envi-
ronmental effects of the cows in yi ; ei is a vector of the 
residuals. The following assumptions were made about 
the additive genetic effects, the permanent environmen-
tal effects and the residuals:

where σ 2
ai

 is the additive genetic variance for trait i , σa1a2 
is the additive genetic covariance between two traits, σ 2

pei
 

is the permanent environmental variance for trait i , 
σpe1pe2 is the permanent environmental covariance 
between two traits, and σ 2

ei
 is the residual variance for 

trait i . X1 and X2 , as well as Za1 and Za2 , and Zp1 and Zp2 
are the incidence matrices linking the phenotypic records 
of the two analyzed traits to the fixed effects and covari-
ates, additive genetic effects, and permanent environ-
mental effects, respectively. Genetic correlations ( rg ) and 
permanent environmental correlations ( rpe ) were calcu-
lated as rg =

σa1a2
σa1

σa2
 and rpe =

σpe1pe2
σpe1

σpe2
.

Genetic associations between resilience indicators and health 
traits, longevity, fertility, and body condition score
Genetic associations between the resilience indicators 
and several health traits, longevity, fertility, and body 
condition score were estimated, to obtain more support 
about whether the resilience indicators really contain 
information about resilience. Resilient cows are expected 
to be healthy, live long and be fertile, and have sufficient 
body condition to cope with disturbances. Genetic cor-
relations with these traits were estimated using the mul-
tiple trait across country evaluation (MACE) procedure 
[38], which requires sire estimated breeding values (EBV) 
instead of phenotypes to estimate genetic correlations 
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[39–41]. Therefore, it enabled us to explore genetic asso-
ciations of the resilience indicators with these traits, for 
which we did not have (a sufficient amount of ) pheno-
types available for this study, while the official sire EBV 
are based on phenotypes from the entire Dutch-Flemish 
population. The sire EBV that we used were the udder 
health index, hoof health index, ketosis index, fertility 
index, productive longevity, and body condition score 
(for clarity, these EBV were based on official genetic eval-
uations, which included the data used in this study, but 
the national data was much larger and the overlap has 
limited impact on the results). The udder health index 
is based on clinical mastitis registrations of farmers and 
somatic cell count records in parities 1, 2, and 3 [42]. The 
hoof health index is based on hoof disorder registrations 
by professional hoof trimmers in parity 1 and in parity 2 
and older, and feet and leg conformation in parity 1 [43]. 
The ketosis index is based on milk acetone level, milk 
β-hydroxybutyric acid level, and fat-to-protein ratio on 
test-days in parities 1 and 2, and parity 3 and older [44]. 
The fertility index is based on interval between first and 
last insemination and interval between calving and first 
insemination, measured in parities 1, 2 and 3 [45]. EBV 
for productive longevity were based on a random regres-
sion on observations for survival in months 1 to 72 after 
first calving [46]. EBV for body condition score were 
based on single observations per cow in parity 1, scored 
by professional type classifiers [47]. High values of the 
indices and EBV indicate good health, fertility, and lon-
gevity, and high body condition score.

As input for the MACE procedure, sire EBV from 
Cooperation CRV and CRV BV from the official run of 
December 2020 were used for the health, longevity, fer-
tility and body condition score traits. For the resilience 
indicators, sire EBV resulting from the univariate analy-
ses were used. EBV for the resilience indicators were 
required to have a minimum reliability of 10% to be 
included in the MACE procedure, and sires were required 
to be born after 1985 and be officially registered as a sire 
for artificial insemination. Differences in reliability of 
EBV between sires were accounted for in the MACE pro-
cedure by de-regressing the EBV. De-regression adjusts 
EBV for their reliability and makes the genetic variance 
in de-regressed proofs constant and independent of the 
reliability of the EBV, while the total variance of the de-
regressed proofs is still a function of the reliability [41, 
48]. The number of sires with EBV that were used was 
larger than 800 (and maximally 1164) for all traits except 
for number of step count drops (297 sires).

Partial genetic correlations
Because LnVarsteps, mean of all negative residuals, and 
mean of negative residuals during step count drops were 

strongly genetically correlated with mean number of 
steps, for these traits, partial genetic correlations with the 
health traits, longevity, fertility, and body condition score 
were calculated. Partial genetic correlations represent the 
genetic association between these resilience indicators 
and the health traits, longevity, fertility, and body condi-
tion score among cows with the same step count level. 
Partial genetic correlations ( rxy,z ) between resilience 
indicators ( x ) and the health traits, longevity, fertility, 
and body condition score ( y ), adjusted for mean number 
of steps for the whole lactation ( z ) were calculated as:

The genetic correlations between the resilience indica-
tors and mean number of steps for the whole lactation 
were obtained from the bivariate analyses. The other 
genetic correlations were estimated using the MACE 
procedure.

Results
Descriptive statistics of the resilience indicators
The resilience indicators that describe mean step count 
consider step count corrected for herd-month and 
pregnancy stage, and are thus centered to 0. Therefore, 
means of the corrected number of steps can be nega-
tive and such negative values correspond to a mean 
number of steps smaller than expected based on herd-
month and pregnancy stage. Raw step count values were 
between ~ 3000 and 700 steps per day (Fig. 2). The mean 
corrected number of steps was on average largest in the 
first four weeks of lactation (405.5; Table  1) and small-
est in the two weeks before calving (−  98.0). In other 
words, cows had on average 503.5 (405.5 + 98.0) steps per 
day more in the first four weeks after calving than in the 
two weeks before calving. The mean corrected number 
of steps was on average − 55.89 steps per day from DIM 
75 onwards and 10.90 per day across the whole lactation. 
The mean of all negative residuals from the lactation-
specific models was on average -620.3 steps. LnVarsteps 
was on average 13.2 and rauto_steps was on average 0.32. 
On average, 1.39 step count drops occurred per 100 days, 
and the mean of the negative residuals during these drops 
was on average − 685.34.

Phenotypic associations between diseases and resilience 
indicators
None of the resilience indicators had a significant asso-
ciation with mastitis (Table 2). However, lactations with 
a ketosis registration had a significantly lower mean step 
count throughout lactation after calving, less extreme 
negative residuals throughout lactation, lower LnVarsteps, 

(6)rxy,z =
rxy − rxzryz

√
1− r2xz

√
1− r2yz

.
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and less extreme negative residuals during step count 
drops than lactations without a ketosis registration. Lac-
tations with a claw disorder registration had a signifi-
cantly lower mean step count for later lactation and the 
whole lactation, less extreme negative residuals through-
out lactation, lower LnVarsteps, lower rauto_steps, and less 
extreme negative residuals during step count drops than 
lactations without a claw disorder registration. Lactations 
with a uterus disorder registration had a significantly 
lower mean step count for early lactation, less extreme 
negative residuals throughout lactation, lower LnVarsteps 
and rauto_steps, and less step count drops than lactations 
without a uterus disorder registration. Mean steps pre-
partum was the only trait without a significant associa-
tion with any of the diseases.

Genetic analysis
Heritabilities and repeatabilities
Table  3 shows estimates of variance components, herit-
abilities, and repeatabilities of all resilience indicators. 
The heritability and repeatability estimates were highest 
for the traits describing means of corrected number of 
steps at different stages of the lactation, and ranged from 
0.22 and 0.39, respectively, for the mean corrected steps 
prepartum, to 0.45 and 0.74, respectively, for the mean 
corrected steps during the whole lactation. For the other 
resilience indicators, the heritabilities ranged from 0.01 
for the number of step count drops to 0.15 for the mean 
of negative deviations, and the repeatabilities ranged 
from 0.03 to 0.37.

Table 2  Effect of diseases on the resilience indicators based on daily step count

a LnVarsteps = natural log-transformed variance of step residuals; rauto_steps = lag-1 autocorrelation of step residuals

Resilience 
indicatora

Effect of mastitis 
(SE)

P-value Effect of ketosis 
(SE)

P-value Effect of claw 
disorder (SE)

P-value Effect of uterus 
disorder (SE)

P-value

Mean complete 
lactation

6.85 (35.49) 0.85 − 137.86 (38.51) 0.00 − 182.36 (27.57) 0.00 − 31.85 (52.91) 0.55

Mean early lactation − 4.91 (57.89) 0.93 − 267.20 (64.04) 0.00 − 37.93 (49.64) 0.45 − 235.69 (103.69) 0.02

Mean later lactation 20.15 (36.63) 0.58 − 142.78 (40.41) 0.00 − 188.96 (28.06) 0.00 13.50 (53.67) 0.80

Mean prepartum 66.40 (76.78) 0.39 − 41.60 (81.71) 0.61 − 4.38 (65.13) 0.95 − 181.36 (144.50) 0.21

Mean negative 
residuals

15.19 (12.87) 0.24 51.40 (14.05) 0.00 80.10 (10.05) 0.00 44.16 (19.31) 0.02

LnVarsteps − 0.024 (0.038) 0.53 − 0.20 (0.042) 0.00 − 0.25 (0.030) 0.00 − 0.17 (0.057) 0.00

rauto_steps 0.0086 (0.009) 0.32 − 0.0047 (0.009) 0.62 − 0.015 (0.007) 0.03 − 0.054 (0.013) 0.00

Number of step 
count drops

0.025 (0.032) 0.45 − 0.035 (0.035) 0.32 0.0080 (0.025) 0.75 − 0.11 (0.049) 0.02

Mean residuals 
during step count 
drops

8.84 (20.14) 0.66 97.09 (21.99) 0.00 87.94 (15.72) 0.00 60.27 (30.13) 0.05

Table 3  Estimates (SE) of genetic parameters from the univariate analyses of the resilience indicators based on daily step count

σ
2
a  = additive genetic variance, σ 2

pe = permanent environmental variance, σ 2
e  = error variance, r=repeatability, h2=heritability

a LnVarsteps = natural log-transformed variance of step residuals, rauto_steps = lag-1 autocorrelation of step residuals

Resilience indicatora
σ
2
a σ

2
pe σ

2
e

r h2

Mean complete lactation 223,780 (16,406) 372,050 (8596) 130,859 (2287) 0.74 (0.0060) 0.45 (0.027)

Mean early lactation 261,591 (31,631) 468,060 (18,124) 503,072 (11,624) 0.48 (0.013) 0.27 (0.030)

Mean later lactation 204,592 (16,097) 349,870 (8366) 128,566 (2396) 0.73 (0.0060) 0.43 (0.029)

Mean prepartum 221,480 (34,552) 385,560 (20,767) 602,422 (16,203) 0.39 (0.017) 0.22 (0.033)

Mean negative residuals 4578.21 (682.30) 11,302 (439.26) 19,678.1 (338.64) 0.37 (0.011) 0.15 (0.021)

LnVarsteps 0.050 (0.0078) 0.13 (0.0051) 0.24 (0.0041) 0.35 (0.012) 0.14 (0.020)

rauto_steps 0.00091 (0.00025) 0.0026 (0.00030) 0.022 (0.00036) 0.11 (0.012) 0.037 (0.010)

Number of step count drops 0.005 (0.002) 0.012 (0.0050) 0.37 (0.0060) 0.033 (0.012) 0.012 (0.006)

Mean residuals during step count drops 5205.14 (1317.76) 18,390 (1367.90) 84,593.5 (1449.51) 0.18 (0.013) 0.051 (0.013)
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Genetic and permanent environmental correlations 
among resilience indicators
The four traits related to mean corrected number of steps 
at different stages of the lactation were all strongly genet-
ically correlated with each other (Table  4). The weakest 
genetic correlation was 0.80 between mean corrected 
steps prepartum and mean corrected steps in early lac-
tation, and the strongest one was 1.00 between mean 
corrected steps during the whole lactation and mean cor-
rected steps in later lactation, which is a part-whole rela-
tionship. The traits that describe means of corrected steps 
were also strongly genetically correlated with most traits 
that describe step count fluctuations, namely LnVarsteps 
( rg from 0.65 to 0.94), mean of all negative residuals ( rg 
from −  0.79 to −  0.93), and mean of negative residuals 
during step count drops ( rg from − 0.85 to − 0.95). These 
strong genetic correlations suggest that cows with a high 
mean step count, genetically, tend to have more extreme 
negative deviations throughout lactation and during step 
count drops, and higher variability in step count than 
cows with a low mean step count. Among the traits that 

describe step count fluctuations, the genetic correlations 
were strongest between mean of all negative residu-
als and LnVarsteps (−  0.93), between mean of negative 
residuals during step count drops and LnVarsteps (− 0.93), 
between rauto_steps and number of step count drops (0.94), 
and between mean of negative residuals during step 
count drops and mean of all negative residuals (0.96). 
The remaining genetic correlations were weaker, rang-
ing from − 0.73 between number of step count drops and 
mean of negative residuals during step count drops, to 
0.48 between LnVarsteps and number of step count drops. 
Most permanent environmental correlations had the 
same sign as the corresponding genetic correlations, but 
were weaker. Only the permanent environmental correla-
tions of the number of step count drops with other traits 
were very different from the corresponding genetic cor-
relations with sometimes a different sign, but with large 
standard errors. In summary, many resilience indicators 
were strongly genetically correlated between each other 
and genetic selection on only one of them will therefore 
change many others.

Table 4  Genetic (above diagonal) and permanent environmental (below diagonal) correlations (SE) among the resilience indicators 
based on daily step count

LnVarsteps = natural log-transformed variance of step residuals, rauto_steps = lag-1 autocorrelation of step residuals

Mean 
complete 
lactation

Mean early 
lactation

Mean later 
lactation

Mean 
prepartum

Mean 
negative 
residuals

LnVarsteps rauto_steps Number of 
step count 
drops

Mean 
residuals 
during step 
count drops

Mean 
complete 
lactation

0.96 (0.013) 1.00 (0.0005) 0.91 (0.037) − 0.93 (0.025) 0.86 (0.034) 0.25 (0.12) 0.26 (0.18) − 0.95 (0.049)

Mean 
early 
lactation

0.87 (0.023) 0.94 (0.019) 0.80 (0.055) − 0.88 (0.039) 0.94 (0.032) 0.25 (0.13) 0.21 (0.20) − 0.92 (0.063)

Mean 
later 
lactation

0.99 (0.0012) 0.80 (0.033) 0.92 (0.035) − 0.93 (0.026) 0.86 (0.036) 0.23 (0.12) 0.33 (0.18) − 0.93 (0.049)

Mean 
prepar-
tum

0.73 (0.052) 0.57 (0.074) 0.70 (0.054) − 0.79 (0.065) 0.65 (0.084) 0.13 (0.15) 0.24 (0.22) − 0.85 (0.079)

Mean 
negative 
residuals

− 0.75 (0.028) − 0.65 (0.046) − 0.76 (0.027) − 0.63 (0.073) − 0.93 (0.022) − 0.40 (0.13) − 0.65 (0.17) 0.96 (0.037)

LnVarsteps 0.67 (0.035) 0.71 (0.041) 0.64 (0.036) 0.67 (0.076) − 0.83 (0.023) 0.36 (0.13) 0.48 (0.18) − 0.93 (0.041)

rauto_steps 0.0079 (0.090) 0.045 (0.11) 0.091 (0.089) 0.26 (0.14) − 0.14 (0.094) 0.00090 (0.10) 0.94 (0.14) − 0.50 (0.14)

Number 
of step 
count 
drops

− 0.28 (0.17) − 0.20 (0.20) − 0.21 (0.17) − 0.21 (0.25) 0.24 (0.20) − 0.44 (0.25) 0.78 (0.20) − 0.73 (0.16)

Mean 
residuals 
during 
step 
count 
drops

− 0.65 (0.061) − 0.69 (0.071) − 0.75 (0.052) − 0.66 (0.097) 1.00 (0.061) − 0.70 (0.057) − 0.46 (0.090) − 0.29 (0.17)
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Genetic associations with diseases, longevity, fertility, 
and body condition score
Most resilience indicators had weak or negligible 
genetic correlations with the health traits, longevity, 
fertility, and body condition score (Table  5). However, 
rauto_steps and the number of step count drops had mod-
erate genetic correlations with hoof health, fertility, and 
body condition score, ranging from −  0.33 to −  0.44 
for rauto_steps and from −  0.44 to −  0.56 for number of 
step count drops. These genetic correlations mean 
that cows with a genetically low autocorrelation or a 
small number of step count drops often had genetically 
good hoof health and fertility, and a high body condi-
tion score. Although the genetic correlations between 
the resilience indicators based on mean step count and 
the health traits, longevity, fertility, and body condition 
score were weak, they were all favorable (from 0.021 to 
0.22). This means that a high step count level, especially 
during lactation and not before calving, was genetically 
related with good functionality, and particularly good 
hoof health, little ketosis, good longevity, and a high 
body condition score. LnVarsteps also had consistently 
positive genetic correlations with the health traits, lon-
gevity, fertility, and body condition score, which means 
that high LnVarsteps was genetically associated with 

good health and functionality. The partial genetic cor-
relations (Table  6) suggest that among the cows with 
the same step count level, LnVarsteps was still posi-
tively genetically associated with the other traits, but 
at a weaker level. Mean of all negative residuals and 
mean of negative residuals during step count drops had 
mainly negative and weak genetic correlations with the 
health traits, longevity, fertility, and body condition 
score (Table 5). However, most partial genetic correla-
tions (Table  6) were considerably larger in magnitude 
than the original correlations and the largest ones 
were positive. In particular, between Tables  5 and 6, 
the difference in the genetic correlation between mean 
residuals during step count drops and body condition 
score was especially large. This was due to the strong 
negative genetic correlation (−  0.95; Table  4) between 
mean residuals during step count drops and mean step 
count, which means that mean of residuals during step 
count drops was largely determined by step count level. 
Mean step count itself had a positive genetic correla-
tion with body condition score, which cancelled out the 
genetic correlation between mean residuals during step 
count drops and body condition score not explained by 
step count level. The results from Table 6 suggest that 
among the cows with the same step count level, those 

Table 5  Genetic correlations between resilience indicators based on daily step counta and other traitsb, estimated using multiple trait 
across country evaluation

a LnVarsteps = natural log-transformed variance of step residuals, rauto_steps = lag-1 autocorrelation of step residuals
b UH = udder health, HH = hoof health, KET = ketosis resistance, LON = longevity, FER = fertility, BCS = body condition score

UH HH KET LON FER BCS

Mean complete lactation 0.015 0.16 0.20 0.15 0.062 0.17

Mean early lactation 0.025 0.17 0.18 0.22 0.067 0.20

Mean later lactation 0.033 0.16 0.17 0.13 0.065 0.17

Mean prepartum 0.11 0.021 0.036 0.061 0.061 0.029

Mean negative residuals − 0.047 0.021 − 0.23 − 0.13 0.051 − 0.034

LnVarsteps 0.11 0.16 0.24 0.12 0.056 0.12

rauto_steps − 0.16 − 0.33 0.0019 0.0022 − 0.44 − 0.34

Number of step count drops − 0.063 − 0.56 − 0.24 0.16 − 0.44 − 0.56

Mean residuals during step count drops − 0.031 − 0.044 − 0.11 − 0.14 0.053 0.057

Table 6  Partial genetic correlations between resilience indicators based on daily step counta and other traitsb, adjusted for mean 
number of steps

a LnVarsteps = natural log-transformed variance of step residuals
b UH = udder health, HH = hoof health, KET = ketosis resistance, LON = longevity, FER = fertility, BCS = body condition score

UH HH KET LON FER BCS

Mean negative residuals − 0.090 0.47 − 0.12 0.026 0.30 0.34

LnVarsteps 0.19 0.04 0.14 − 0.018 0.0053 − 0.052

Mean residuals during step count 
drops

− 0.054 0.35 0.26 0.0081 0.36 0.71
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with smaller negative deviations from the expected step 
count had genetically better health and fertility and a 
higher body condition score than those with larger neg-
ative deviations. In summary, genetic associations of 
resilience indicators with health and functionality were 
observed, and the strongest genetic correlations were 
shown for rauto_steps and number of step count drops 
with hoof health, fertility, and body condition score.

Discussion
The aims of this study were to (1) define potential resil-
ience indicators based on daily step count data accord-
ing to theory, literature, and data exploration, and (2) 
to investigate their usefulness for genetically improving 
resilience by estimating heritability and genetic asso-
ciations with other resilience-related traits, i.e. health 
traits, longevity, fertility, and body condition score. Traits 
that describe the mean number of steps per day at dif-
ferent stages of the lactation were selected based on the 
assumption that resilient cows do not show many severe 
declines in step count (Fig. 2; [8, 9]) and therefore have 
a high step count level. Traits that describe fluctuations 
in number of steps between days were selected based on 
the assumption that resilient cows keep, at a low magni-
tude, variations due to disturbances which threat animal 
homeostasis and therefore do not show many drops and 
large fluctuations in step count and recover quickly [10, 
11, 13]. The resilience indicators that describe mean step 
count had a moderately high heritability, and those that 
describe fluctuations in step count had a lower heritabil-
ity. Genetic correlations of the step count level traits with 
health traits, longevity, fertility, and body condition score 
were all favorable but weak. This means that mean step 
count can easily be increased through genetic selection, 
but will coincide with limited improvement of health, 
longevity, fertility, and body condition score. However, 
genetic correlations of number of step count drops and 
rauto_steps with health traits, longevity, fertility, and body 
condition score were moderately strong and favorable.

This study is one of the first to investigate the herit-
ability of step count level and other step count traits 
calculated from sensor data in cattle not focused on 
estrus or fertility. One other study that investigated the 
heritability of activity traits outside estrus, reported a 
much lower heritability of mean activity than we did 
[49]. These authors found a heritability of 0.05 and 0.03 
for mean activity index based on head and neck move-
ments, recorded in Israeli Holsteins by electronic activity 
neck tags in the two-week non-estrus period before and 
after successful insemination, respectively. The differ-
ence between the estimated heritabilities in their study 
and ours may be explained by differences between the 
activity trait we measured (step count measured by leg 

accelerometers from Nedap (Groenlo, the Netherlands) 
and the activity index based on head and neck move-
ments measured by neck accelerometers from SCR (Net-
anya, Israel), and between the populations studied. The 
difference in the length of the measurement period (up to 
450 days versus 2 weeks) could also play a role, but this is 
likely not the main cause: our trait ‘mean step count pre-
partum’ was also based on a two-week period, but its her-
itability was much higher (0.22). Furthermore, Schöpke 
and Weigel [49] found a heritability of 0.03 for the 
standard deviation of daily activity, which is much lower 
than the heritability of the similar trait LnVarsteps in this 
study. However, for this trait Schöpke and Weigel [49] 
included measurements during estrus, while in our study 
they were excluded. In addition, they took the standard 
deviation of the raw data, while we first adjusted for gen-
eral trend across lactation. Furthermore, differences in 
trait definition and population studied likely play a role. 
Because of the moderate to moderately high heritability 
for the traits calculated from step count data in our study, 
these traits offer great opportunity for genetic selection, 
potentially for the benefit of improving resilience and 
possibly also for other benefits.

In this study, we performed a genetic analysis, while 
most studies on the development of resilience indicators 
from activity data are phenotypic analyses (e.g. [20, 50]). 
However, genetic analysis has a useful advantage over 
phenotypic analysis, which is that it is not necessary that 
the animal itself has enough data on response to distur-
bances to be able to predict its resilience to the follow-
ing disturbances, as is the case for phenotypic prediction. 
It has been shown that predicting resilience to a major 
disturbance using activity data before that disturbance 
is challenging [50]. With genetic analysis, it is possible 
to use patterns in activity data on relatives or on animals 
with shared single nucleotide polymorphisms (SNPs). 
Such animals with a similar genetic background offer 
data on response in activity to a wide variety of distur-
bances, and together give a general picture of the genetic 
merit for resilience. Therefore, based on genetic analysis, 
it is possible to estimate the genetic merit for resilience 
of an animal without data on response to disturbances, 
when they have family members or animals with shared 
genotypes that do have data on response to many types of 
disturbances.

Step count traits are heritable and can be changed 
through genetic selection, but the question is whether 
these traits can serve as a proxy to select more resilient 
cows. According to resilience theory, low variance and 
autocorrelation of longitudinal traits that are sensitive 
to disturbances indicate good resilience [10]. Activity is 
indeed sensitive to disturbances [8, 9, 51], which supports 
the hypothesis that variance and autocorrelation of step 
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count data contain information on resilience. Moreover, 
low variability of other traits that are sensitive to distur-
bances, such as milk yield [4, 5, 14], and daily feed intake 
in pigs [15, 16] and 4-weekly body weight records in lay-
ers [17] has already been shown to be genetically associ-
ated with good resilience. Therefore, selection for lower 
LnVarsteps and rauto_steps is expected to result in more resil-
ient cows. For rauto_steps, this assumption is supported by 
its strong positive genetic correlation with number of 
step count drops and because low values were genetically 
correlated with good hoof health and fertility and high 
body condition score. However, for LnVarsteps it is impor-
tant to note that low values were genetically correlated 
with poor instead of good health, even when adjusted for 
step count level, although these correlations were weak. It 
is possible that LnVarsteps is associated with other aspects 
of resilience that are not covered by the existing traits, 
such as strength of response to disturbances, or response 
to disturbances other than diseases. However, it is nec-
essary to investigate if this is true, and it is important to 
consider that selection for lower LnVarsteps will coincide 
with an undesired increase in incidence of health prob-
lems. For the trait ‘number of step count drops’, it is intui-
tively clear that selection for lower values will result in 
better resilience, and this is also supported by its moder-
ately strong genetic correlation with hoof health, fertility 
and body condition score. However, because of its very 
low heritability and its strong genetic correlation with 
rauto_steps, it is more efficient to select for rauto_steps rather 
than number of step count drops. For the traits that 
describe mean step count, the hypothesis was that a low 
step count level indicates poor resilience, because most 
disturbances, including the diseases explored in Fig.  2 
and Table 2, will decrease activity [8, 9]. Indeed, low step 
count was genetically related with poor health, fertility, 
and body condition score, albeit weakly. However, it is 
important to consider that the step count level of a cow is 
probably not only associated with resilience, but also with 
the personality of the cow. Therefore, traits that describe 
fluctuations in step count are probably more directly 
related with resilience than traits that describe mean step 
count. Nevertheless, it is worthwhile to investigate the 
association between mean step count and resilience fur-
ther, because it offers great opportunity for genetic selec-
tion because of its high heritability. For the traits that 
describe mean of negative residuals throughout lactation 
and during step count drops, it was hypothesized that 
more extreme residuals (low values) represent poor resil-
ience, which is rather intuitive. However, the unfavorable 
genetic correlations with the health traits, but favorable 
partial genetic correlations suggest that a statistical scale 
effect [52] is present, where higher mean automatically 

coincides with higher deviations from the mean. There-
fore, these traits should be adjusted for step count level 
to be useful as resilience indicators. In summary, selec-
tion for rauto_steps and number of step count drops steps 
is likely to result in better resilience. Mean of negative 
residuals and mean step count are promising resilience 
indicators as well, but need an adjustment for step count 
level or more research into the biology of the trait.

The positive genetic correlations of LnVarsteps with the 
health traits, longevity, fertility, and body condition score 
were surprising. They are likely not, or not entirely, due 
to a statistical scale effect, because although LnVarsteps 
was strongly genetically correlated with mean step count, 
the partial genetic correlations adjusted for mean step 
count were still generally positive. Another explanation 
is that a very stable step count is not necessarily associ-
ated with good resilience, because of the existence of a 
lower step count limit. Cows have a minimum distance 
to walk each day to get milked and fed. When severely 
challenged, for example by a claw disorder, they will likely 
function at this minimum activity level for a certain time 
period. Step count will then be very stable, but this is a 
sign of reduced resilience rather than good resilience. 
Other studies found varying phenotypic associations of 
variability of activity with health and resilience traits, 
ranging from positive [20, 53] to negative [19] associa-
tions. The association between LnVarsteps and resilience 
may be curvilinear, where an optimum exists for interme-
diate LnVarsteps values. A curvilinear relationship was also 
found between the log-transformed variance of clutch 
size in great tits and fitness, where an intermediate vari-
ance was related to the highest fitness [54]. The existence 
of an optimum level of LnVarsteps should be investigated 
further before it can be used as a resilience indicator.

This study provides important insights into the herit-
ability of resilience indicators from daily step count data 
and associations with other traits related to resilience 
that are already in the breeding goal. However, the most 
important question to be answered before the new traits 
can be used in practice is how the new resilience indica-
tors are associated with aspects of resilience not covered 
by the already existing traits. Resilience is a broad con-
cept which is difficult to capture by a single measure [13, 
55], and selection for current health traits and longev-
ity already helps to improve resilience. However, health 
traits consider resilience only to a limited number of dis-
eases and they only include incidence of disease and not 
severity or recovery rate. Longevity could be considered 
as a resultant of resilience to all types of disturbances 
[56], but it is also a resultant of traits not related to resil-
ience, such as productivity. The resilience indicators pro-
posed in this study could offer additional information 
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about resilience, in particular strength of response to 
disturbances and recovery rate and response to addi-
tional disturbances such as heat stress. However, this 
additional information needs to be investigated first, for 
example through a validation study similar to Poppe et al. 
[14] for resilience indicators based on daily milk yield. 
Furthermore, even if the proposed resilience indicators 
do not include additional information about resilience 
compared to the health traits investigated in this paper, 
rauto_steps and the number of step count drops may offer 
opportunities to improve hoof health in countries where 
claw disorders are not recorded. Claw health recording is 
still performed in a limited number of countries [57, 58], 
while step count data is increasingly becoming available 
[59, 60]. Having evidence on how step count data can be 
used to breed for resilience or more specific health traits 
is relevant.

Furthermore, the added value of resilience indicators 
based on daily step count data compared to daily milk 
yield data, which is more widely available, should be 
investigated. We hypothesize that resilience indicators 
based on step count data should be regarded as com-
plementary to resilience indicators based on milk yield, 
and not as a replacement. While both attempt to serve as 
indicators of ‘general resilience’ to many types of distur-
bances, it is impossible for a single longitudinal trait to be 
sensitive to all types of disturbances [55, 61]. Therefore, 
a combination of traits is needed to reflect general resil-
ience as well as possible [3]. Indeed, sensitivity to par-
ticular disturbances differs for milk yield and step count. 
For example, step count seems more sensitive to loco-
motion problems than milk yield, while milk yield seems 
more sensitive to udder health problems, as suggested 
by the genetic correlations with claw health and udder 
health in this study and Poppe et  al. [4]. Together, the 
resilience indicators based on step count data and based 
on milk yield data will generate a more complete picture 
of resilience to a wider variety of disturbances than any 
of them alone. Furthermore, exploitation of simultane-
ous response profiles in milk yield and step count could 
offer additional tools to indicate resilience. Similarly, Ben 
Abdelkrim et al. [55] have explored milk yield and body 
weight data and showed that 24% of the detected milk 
yield perturbations coincided with a body weight pertur-
bation, giving additional support that these detected per-
turbations were really due to a disturbance. In addition, 
simultaneously tracking perturbations of multiple meas-
ures may help to identify differences in coping mecha-
nisms between cows [55]. The benefit of combining 
multiple longitudinal traits has also been shown when 
multiple profiles were used to obtain a robust quantifica-
tion of degree of infection of mastitis [62].

In summary, more research is needed on the added 
value of the new resilience indicators compared to exist-
ing traits related to resilience. However, this study pro-
vides an important first step for genetic selection for 
resilience using activity data.

Conclusions
This study investigated potential resilience indicators 
based on daily step count data for genetic selection, 
based on theory, literature and data exploration. The 
most promising resilience indicators were autocorrela-
tion, mean step count, and mean of negative residuals 
from individual curves. Autocorrelation had consider-
able and favorable genetic correlations with other resil-
ience-related traits (health, fertility, body condition 
score) but a low heritability (0.04). Mean step count 
had only weak but favorable genetic correlations with 
all other resilience-related traits, and a moderately high 
heritability (0.22 to 0.45). The mean of negative residu-
als from individual curves had a heritability of 0.15, but 
needs an adjustment for step count level to have con-
siderable and favorable genetic correlations with other 
resilience-related traits and thus to be informative 
about resilience. This research is an important first step 
in the exploration of the use of activity data for breed-
ing for resilience.
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