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Abstract 

Background:  Bayesian genomic prediction methods were developed to simultaneously fit all genotyped markers 
to a set of available phenotypes for prediction of breeding values for quantitative traits, allowing for differences in 
the genetic architecture (distribution of marker effects) of traits. These methods also provide a flexible and reliable 
framework for genome-wide association (GWA) studies. The objective here was to review developments in Bayesian 
hierarchical and variable selection models for GWA analyses.

Results:  By fitting all genotyped markers simultaneously, Bayesian GWA methods implicitly account for population 
structure and the multiple-testing problem of classical single-marker GWA. Implemented using Markov chain Monte 
Carlo methods, Bayesian GWA methods allow for control of error rates using probabilities obtained from posterior dis-
tributions. Power of GWA studies using Bayesian methods can be enhanced by using informative priors based on pre-
vious association studies, gene expression analyses, or functional annotation information. Applied to multiple traits, 
Bayesian GWA analyses can give insight into pleiotropic effects by multi-trait, structural equation, or graphical models. 
Bayesian methods can also be used to combine genomic, transcriptomic, proteomic, and other -omics data to infer 
causal genotype to phenotype relationships and to suggest external interventions that can improve performance.

Conclusions:  Bayesian hierarchical and variable selection methods provide a unified and powerful framework for 
genomic prediction, GWA, integration of prior information, and integration of information from other -omics plat-
forms to identify causal mutations for complex quantitative traits.
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Background
The goal of genome-wide association (GWA) studies 
of quantitative traits is to identify genomic regions that 
explain a substantial proportion of the genetic variation 
for the trait, with the ultimate goal to identify causal 
mutations underlying the genetic basis of the trait. The 
standard GWA approach is to genotype a population 
that has been phenotyped for the trait(s) of interest and 
genotyped for many genetic markers across the genome 
and to analyze these data by estimating and testing the 
effects of marker genotypes on phenotypes using a 

regression-type of analysis for each SNP, one at a time 
[1, 2]. The boom in genotyping technologies, which has 
increased the number of genomic locations that can be 
interrogated per individual from several tens or hun-
dreds of restriction fragment length polymorphisms or 
microsatellites to tens of thousands or millions of single 
nucleotide polymorphisms (SNPs), has however created 
several challenges for classical GWA. These include the 
p >  > n problem (many more marker effects to be tested 
than available phenotypic observations) and false posi-
tives due to population structure. To overcome the latter, 
the standard GWA approach has been to fit the genotype 
at each SNP one at a time in a model of phenotype that 
also fits the effect of population structure, either as prin-
cipal components of all genotypes across the genome, 
or by including a polygenic effect with pedigree-based 
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or genomic relationships, or by a combination of these 
[3, 4]. However, such single-SNP GWA approaches only 
detect quantitative trait loci (QTL) for which at least one 
SNP is in substantial linkage disequilibrium (LD) with 
the causal SNP across the analyzed population. In addi-
tion, with limited power, the effects of significant mark-
ers tend to be overestimated, the so-called Beavis effect 
or “winner’s curse” [5, 6]. With large numbers of SNPs 
tested (most frequently tens of thousands to millions), 
control of hypothesis testing error rates is important to 
avoid an excessive number of false positives. Classical 
multiple-testing corrections such as Bonferroni do not 
account for dependencies of genotypes at SNPs that are 
in LD with each other, leading to very high stringency 
and low experimental power. Instead, Fernando et  al. 
[7] proposed to control the proportion of false positives 
(PFP) among the positive results, which is independ-
ent of the number of tests or correlations among them. 
This approach is similar to the false discovery rate (FDR) 
approach that has been applied in many other multiple-
testing situations [8].

Some of these issues can be overcome by using the 
Bayesian multiple regression methodology that was origi-
nally developed for genomic prediction [9]. Bayesian 
methods enable the effects of all genotyped markers to be 
fitted simultaneously, accommodating different prior dis-
tributions of marker effects, variable selection to identify 
important markers, and using additional sources of infor-
mation such as other omics data or annotation informa-
tion [10, 11]. Against this background, the purpose of 
this paper is to review selected developments in Bayesian 
models for GWA, for improving the use of information 
of sequence data, and for using additional omics data to 
explore biological processes that underlie genetic varia-
tion in quantitative traits.

The Bayesian Alphabet for genomic prediction and GWA​
Bayesian multiple regression methods for analysis of 
quantitative traits using genetic markers were origi-
nally developed by Meuwissen et  al. [9] for genomic 
prediction based on availability of high-density marker 
genotypes, allowing the effects of all genotyped mark-
ers to be accounted for simultaneously. These methods 
included best linear unbiased prediction (BLUP) (later 
called Bayes-C0 by Kizilkaya et al. [12]), in which a sin-
gle normal prior is used for the distribution of marker 
(haplotype) effects, Bayes-A, in which each marker (hap-
lotype) has a normal prior with its own variance, and 
the Bayesian variable selection (BVS) model Bayes-B, 
equivalent to Bayes-A but with a prespecified prior pro-
portion, π, of genetic markers (haplotypes) having zero 
effects. Methods were implemented using Markov chain 
Monte Carlo (MCMC) sampling using the corresponding 

prior distributions for the marker (haplotype) effects. 
Gianola et  al. [13] reviewed alternate Bayesian methods 
for genomic prediction and introduced the term Bayes-
ian Alphabet for the collection of proposed Bayesian 
genomic prediction methods. They also showed that the 
Bayes-A method is equivalent to using a single t-distri-
bution as the prior for marker effects. The Fernando 
group subsequently substantially extended the Bayesian 
Alphabet by contributing the Bayes-C BVS method [12], 
in which non-zero effects of markers are sampled from 
a single normal distribution, with Bayes-C0 as a special 
case, in which all SNPs are assumed to have non-zero 
effects and which is equivalent to genomic (G)BLUP. 
They also introduced the Bayes-Cπ and Bayes-Bπ meth-
ods [14], in which the proportion of markers with zero 
effects is not pre-specified but estimated from the data.

After their introduction for genomic prediction, the 
Bayesian Alphabet methods, in particular BVS meth-
ods such as Bayes-B, were very quickly adapted for use 
in GWA to differentiate SNPs or windows of SNPs that 
are associated with phenotype from those that capture 
just pedigree relationships or noise. Fernando and Gar-
rick [11] provided one of the earlier reviews of the appli-
cation of the Bayesian Alphabet methods to GWA. In 
contrast to the single-SNP GWA approaches, Bayesian 
GWA methods consider the effects of all SNPs simul-
taneously based on the specified prior distribution of 
marker effects. However, this also implies that the signal 
from a causative locus can be captured jointly by a group 
of SNPs that are in LD with the causal locus, either indi-
vidually or in combination, i.e. as a diplotype. This con-
trasts with the single-SNP GWA methods, in which the 
effect of only one SNP is interrogated at a time. Sahana 
et  al. [15] showed that, if genotypes for the causal loci 
are not included in the genotype data, which is typi-
cally the case when SNP panels are used for genotyping, 
a window of SNPs around the causative locus can better 
capture association signals than an individual SNP. The 
BVS GWA methods were shown to accurately identify 
association signals in simulated data [16] and have sub-
sequently been used in GWA for many traits in livestock 
species. In dairy cattle, Kemper et al. [17] showed that the 
Bayesian multiple regression method called Bayes-R [18], 
which fits a mixture of normal distributions as prior for 
marker effects, maps QTL more precisely than the stand-
ard single-SNP GWA. Similar results were obtained by 
Chen et al. [19], who found that Bayesian multiple regres-
sion methods resulted in higher accuracy (based on area 
under the receiver operator curve) for QTL detection in 
simulated data than single-SNP GWA.

Methods for genomic prediction and GWA using 
Bayesian Alphabet methods were implemented in the 
software Gensel by Fernando and Garrick [20], as well 
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as in the BGLR package in R language [21], among oth-
ers. Computational efficiency of the Bayes-B method 
for GWA using MCMC was improved by the Fernando 
group in Cheng et al. [22], resulting in improved imple-
mentation of several Bayesian Alphabet methods for 
GWA in the software JWAS [23]. Moser et al. [10] devel-
oped software that implements the BayesR method and 
popularized it in human GWA applications.

A concern of implementations of the Bayesian Alpha-
bet methods for both genomic prediction and GWA is 
the computational demand of the MCMC methods that 
are employed. To overcome this, a fast non-MCMC 
approach for genomic prediction using Bayes-B based on 
the expectation maximization (EM) algorithm was devel-
oped by Meuwissen et al. [24]. This method also provides 
estimates of SNP effects, akin to those obtained by Bayes-
B. In related work, Stranden and Garrick [25] showed 
that estimates of SNP effects can be obtained using the 
standard animal model GBLUP method for genomic pre-
diction by back-solving from genomic estimated breeding 
values (GEBV), and that the resulting estimates of SNP 
effects were equivalent to those obtained with the Bayes-
C0 approach. This allows GWA based on such a prior to 
be implemented using standard animal model GBLUP 
methodology and software, i.e. with the pedigree-based 
relationship matrix replaced by a genomic relationship 
matrix. The Fernando group subsequently extended the 
animal model GBLUP approach for genomic prediction 
and GWA by weighting the SNPs based on the estimates 
of their effect when constructing the genomic relation-
ship matrix, as described in Sun et al. [26]. This so-called 
fast-Bayes-A approach was implemented in an iterative 
manner using the expectation–maximization (EM) algo-
rithm [26]. Fast-Bayes-A results in estimates that are the 
maximum likelihood equivalent of the Bayes-A approach, 
i.e. providing estimates of the mode rather than the mean 
of the posterior distribution, but using a t distribution 
as the prior for SNP effects, as in Bayes-A [13]. Further 
adaptations of the EM approach to accommodate dif-
ferent prior distributions similar to the Bayesian Alpha-
bet were developed by Wang et  al. [27] and Chen and 
Tempelman [28]. Wang et al. [29] developed an efficient 
Bayes-R approach that is based on a combination of the 
EM algorithm and MCMC.

Gianola [30] pointed out that a concern with the use 
of Bayesian Alphabet methods for GWA is that results 
may heavily depend on the prior(s) used. Accordingly, 
based on analysis of body weight of broiler chickens, 
Wang et al. [31] concluded that, compared to the GBLUP 
method, which assumes a normal distribution as the 
prior for SNP effects, the Bayes-B method overly shrinks 
the effects of most genomic regions to zero and, thereby, 
overestimates the effects of other regions. However, Wolc 

et al. [32] found that the Bayes-B method was better able 
to detect and quantify the effects of large QTL for egg 
weight in layer chickens than GBLUP. They also showed 
that the accuracy of genomic predictions for egg weight 
based on Bayes-B was higher and more persistent over 
generations than the accuracy based on GBLUP, indi-
cating that the estimates of SNP effects obtained with 
Bayes-B were more accurate. In the end, which prior is 
most appropriate for GWA likely depends on the genetic 
architecture of the trait, i.e. on how well the prior fits the 
real distribution of SNP effects. Because information on 
genetic architecture is typically limited, it is prudent to 
implement GWA using different priors for each trait ana-
lyzed and compare the results or, alternatively, to fit mix-
ture models such as Bayes-R, which allow proportions for 
a mixture of prior normal distributions for SNP effects to 
be estimated from the data [10].

An important advantage of Bayesian multiple regres-
sion methods for GWA is that they implicitly account 
for population structure by fitting all markers simultane-
ously. Similarly, in single-SNP GWA methods, fitting a 
polygenic effect based on genomic relationships has been 
shown to account for population structure and to avoid 
false positives [33]. Kärkkäinen and Sillanpää [34] found 
that fitting an additional polygenic effect had limited 
impact on performance of the Bayesian LASSO method 
they used, indicating that the simultaneous fitting of all 
markers adequately accounts for population structure in 
Bayesian multiple regression methods. For admixed or 
multibreed populations, fitting admixture proportions or 
breed composition is typically advocated in order to fur-
ther reduce false positives from population structure [3]. 
A review of methods to explicitly account for admixture 
or breed composition in GWA is in Toosi et al. [35]. How-
ever, they argued that, rather than explicitly removing the 
effect of admixture or breed composition by fitting these 
population structure effects, GWA should capitalize on 
the QTL information that is contained in breed differ-
ences and showed that this can be accomplished by using 
BVS methods. Specifically, they found that BVS GWA 
without explicitly fitting breed composition resulted in 
higher power to detect QTL than single-SNP GWA with 
breed composition effects, without inflating the false 
positive rate. This does assume that breed differences in 
phenotype are entirely genetic, i.e. due to differences in 
QTL frequencies, and not in part the result of confound-
ing with environmental factors.

Availability of sequence data is the ultimate p >  > n 
situation, where all possible genomic locations are 
interrogated on a usually relatively small number of 
sequenced individuals, although this can be increased 
by imputing SNP-genotyped individuals up to sequence 
if an appropriate sequenced reference population is 
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available. Depending on the LD structure in the popu-
lation, sequence data, however, does not necessarily 
improve mapping accuracy, especially when GWA is 
based on single-SNP methods or GBLUP [36]. There is, 
however, evidence from human GWA studies, which 
include larger numbers of unrelated samples than avail-
able for most livestock populations, that multi-marker 
methods that allow variable selection or differential 
weighting of SNPs result in enrichment of causal variants 
among the top results [2].

Using data on both genotyped and ungenotyped animals 
for GWA​
While increasing numbers of animals are being geno-
typed in breeding programs for different livestock spe-
cies, still many animals that contribute phenotypic data 
are not genotyped. For genomic prediction, information 
from ungenotyped animals was initially incorporated 
using two-step methods that combined EBV derived 
using genomic data with EBV derived using pedigree-
based BLUP by selection index methods [37]. Others 
have shown how data from ungenotyped relatives can be 
incorporated in genomic prediction or GWA as pseudo-
phenotypes on genotyped animals, e.g. as pedigree-based 
daughter yield deviations [38], as deregressed pedigree-
based EBV [39], or as family means [40], with appro-
priate weights on residual terms to accommodate the 
accuracy of each pseudo-phenotype. Misztal et  al. [41] 
showed how phenotypes from non-genotyped individu-
als can be incorporated based on pedigree relationships 
in a so-called single-step GBLUP (ssGBLUP) method and 
that this increased the accuracy of genomic predictions. 
Computational methods for ssGBLUP were subsequently 
advanced by a more direct method to obtain a combined 
genomic and pedigree-based relationship matrix (the so-
called H matrix) by Legarra et  al. [42] and Christensen 
and Lund [43].

Wang et  al. [27] used the ssGBLUP framework for 
GWA using different iterative SNP weighting methods 
to compute genomic relationships, as originally pro-
posed by Sun et al. [26] for GBLUP. Using simulated data, 
Wang et al. [27] showed that incorporating phenotypes of 
ungenotyped animals not only improved the accuracy of 
genomic predictions but also the ability to detect QTL, 
compared to GBLUP based only on genotyped animals. 
Subsequently, weighting procedures for ssGBLUP were 
further optimized by Zhang et  al. [44], who found that 
iteratively deriving weights for windows of neighboring 
SNPs, rather than separate weights for each SNP, resulted 
in clearer QTL signals, similar to results obtained with 
the BVS method when analyzing only genotyped animals.

Fernando et al. [45, 46] extended the Bayesian Alpha-
bet methods to integrate phenotypes on ungenotyped 

animals for both genomic prediction and GWA. In their 
approach, genotypes of ungenotyped individuals are 
imputed using pedigree-based regression methods, while 
imputation errors are modeled directly to account for 
uncertainty [47]. These methods have been implemented 
in the software JWAS [23] to enable single-step Bayesian 
genomic prediction and GWA using complex models that 
maximize the use of genomic, pedigree, and phenotypic 
information. In an application to real data, the implemen-
tation of single-step Bayes-B in JWAS allowed identifica-
tion of more genomic regions associated with infectious 
hematopoietic necrosis virus resistance in trout than the 
Bayes-B method that used only data on genotyped ani-
mals [48]. Single-step Bayes-B detected similar numbers 
of QTL as the weighted ssGBLUP GWA method of Wang 
et  al. [27], but less than one third of the detected QTL 
overlapped between the two methods, emphasizing the 
potential impact of priors on the results.

Declaring evidence of QTL for Bayesian multiple‑regression 
GWA​
In single-SNP mixed linear model GWA approaches, 
with each SNP fitted as a fixed effect one at a time, along 
with a polygenic effect based on a pedigree-based or 
genomic relationship matrix, significance testing is typi-
cally conducted using a standard test for a fixed effect in 
mixed linear models based on its estimate divided by its 
standard error. However, Gianola et al. [49] pointed out 
that fitting a SNP as both a fixed and as a random effect 
(as part of the genomic relationship matrix) results in a 
very complex covariance structure for the estimates, with 
implications for significance testing in the single-SNP 
GWA, unless the SNP that is treated as a fixed effect is 
in complete linkage equilibrium with all other SNPs that 
are treated as random. Duarte et al. [50] showed that the 
single-SNP GWA test statistic from a linear mixed model 
that fits the genomic relationship matrix to account for 
population structure is effectively equivalent to that 
obtained from back-solved estimates from GBLUP, fol-
lowing [25], divided by the square root of its prediction 
error variance, which can be obtained from the inverse 
of the mixed model equations. This allows a GWA to be 
conducted based on a single GBLUP analysis, rather than 
a separate analysis for each SNP, similar to obtaining all 
GWA results from a single run when using Bayesian mul-
tiple regression methods. Lu et al. [51] and Aguilar et al. 
[52] showed that the same holds for ssGBLUP. However, 
this does not circumvent the multiple-testing problem 
that is associated with single-SNP GWA.

For Bayesian multiple regression GWA methods, sev-
eral approaches have been developed to identify which 
SNPs or windows of SNPs can be considered as explain-
ing a substantial or significant proportion of the genetic 
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variance. Because all SNPs are fitted simultaneously in 
these methods, these approaches must consider groups 
or windows of SNPs rather than individual SNPs, because 
the effect of a causative mutation may be distributed 
across multiple SNPs. Initial studies used the proportion 
of variance in GEBV among individuals in the population 
that is explained by a window or group of SNPs, i.e. the 
variance across individuals of the window GEBV (com-
puted for each individual and window as the sum across 
SNPs in the window of the product of the posterior mean 
and the genotype at each SNP) divided by the variance 
of genome-wide GEBV of those same individuals [53]. 
Onteru et al. [54] and Fan et al. [55] derived significance 
thresholds for these proportions using bootstrap meth-
ods. However, this requires a GWA for every bootstrap 
sample, which is a computationally very demanding. As a 
result, this approach has not been used extensively.

An alternative criterion to identify association signals 
in Bayesian multiple regression GWA is an estimate of 
the proportion of genetic variance that is explained by a 
group or window of SNPs. Instead of a ratio of variances 
of GEBV, as in Boddicker et  al. [54], this criterion is a 
ratio of estimates of the variance of true breeding values 
for the window and the variance of genome-wide true 
breeding values. This criterion was first implemented 
by Wolc et al. [40] by using the concept that after burn-
in, the SNP effects at a given iteration of the MCMC are 
sampled from the posterior distribution of SNP effects. 
Thus, the (window) breeding values that can be com-
puted for each individual based on the sampled SNP 
effects are draws from the posterior distribution of those 
breeding values, as are the variances of those breeding 
values across individuals. In contrast to the approach by 
Onteru et  al. [54], this approach does not require boot-
strapping but is implemented as part of the MCMC for 
GWA of the original data. These concepts were imple-
mented in Gensel 4.0 [56], providing posterior distribu-
tions and means of the variance of breeding values for 
non-overlapping 1-Mb windows across the genome, as 
well as for the genome-wide breeding values and the ratio 
of these variances for each iteration of the MCMC. How-
ever, de los Campos et al. [57] pointed out several issues 
with inferences about genetic variance from multiple 
marker regression models when the causal loci are not 
genotyped, including misspecification of the likelihood 
function, and lack of consistency and bias of estimates.

The posterior distribution of genetic variance explained 
by a window from the approach described in [40] also 
enables calculation of the posterior probability that a 
window or group of SNPs explains non-zero genetic 
variance or more genetic variance than expected under 
a polygenic model, i.e. with a uniform distribution of 
genetic variance across the genome. Whether the use of 

these posterior probabilities results in proper control of 
false positives and negatives under specific frequentist-
based hypotheses related to the genetic variance that is 
explained by a window or by group of SNPs has to our 
knowledge not been investigated.

For BVS methods, the MCMC samples after burn-in 
can also be used to compute the proportion of samples 
for which a particular SNP was included in the model 
with a non-zero effect, which is referred to as the pos-
terior probability of association (PPA) for that SNP. 
Similarly, the proportion of samples for which at least 
one SNP in a window was included in the model can be 
computed, which was referred to as the window pos-
terior probability of association (WPPA) by Fernando 
et  al. [58]. The WPPA was initially introduced as a sig-
nificance criterion by Sahana et  al. [15]. Using simula-
tion, Fernando et al. [58] showed the value of WPPA in 
the identification of association signals with control of 
the posterior type I error rate. They also showed how 
Bayesian multiple regression methods reduce the prob-
lem of signal dependence, which refers to SNPs that are 
some distance from QTL and exhibit a GWA signal, and 
was identified as an issue for linkage analysis by Chen 
and Storey [59]. Fernando et  al. [58], however, showed 
that simultaneously fitting all SNPs in the region results 
in a concentration of the association signals to a small 
region around the QTL, especially when based on LD. In 
a recent simulation study by Lima et al. [60], WPPA was 
found to be superior to other methods in terms of power 
to detect QTL for both traits with oligogenic and poly-
genic architectures. However, in follow-up work by the 
Fernando group, Li et al. [61] observed that WPPA may 
lead to spurious associations when the distribution of 
SNPs across the genome is uneven. To address this issue, 
they proposed two easy-to-implement methods, with 
good results, i.e., dividing the genome into windows with 
a fixed number of SNPs, or adjusting the WPPA for SNP 
density. In related work, Legarra et  al. [62] developed a 
method using Bayes factors to evaluate genomic windows 
but did not fully justify a significance threshold for this 
method.

Bayesian GWA models to detect pleiotropic QTL
In addition to analysis of individual traits, there is also an 
interest in understanding genetic correlations between 
traits, with particular interest in genomic regions that 
break unfavorable genetic correlations. Many studies 
have attempted to identify pleiotropic QTL regions by 
comparing results from single-trait GWA, i.e. by iden-
tifying overlap between windows that explain a large 
proportion of genetic variance across traits [63]. This 
is, however, hampered by the typically limited power 
of GWA, which leads to many false negatives and, as a 
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result, limited overlap between significant windows for 
two traits that may in fact have a high genetic correla-
tion. In a more direct approach, Gorbach [64] used cor-
relations and covariances of window GEBV of individuals 
from univariate genomic prediction analyses of two traits 
to identify pleiotropic regions. Applied to growth rate 
and feed intake in pigs, they identified several regions 
for which the correlation between window GEBV for 
these two traits was opposite to the expected undesirable 
positive genetic correlation between these two traits (i.e. 
cryptic pleiotropic regions). Using a similar approach, 
Bolormaa et al. [65] used the covariance between window 
GEBV for two traits divided by the product of the pheno-
typic standard deviation for each trait. Such a criterion 
is preferred over the correlation between window GEBV 
used by Gorbach [64] because the latter could be high for 
windows that explain very little genetic variance for one 
or both traits and which, therefore, contribute little to the 
genome-wide genetic correlation between the traits. In 
general, a problem with these window GEBV approaches 
is that predictions of breeding values are affected by both 
genetic and random environmental effects (they are a lin-
ear function of phenotypes) and, therefore, their correla-
tions and covariances are not proper estimates of genetic 
correlations or covariances. In a second approach, Bolor-
maa et al. [65] computed the probability that a SNP had 
no association with any trait as the product of (1-PPA) for 
that SNP from each of the single-trait BVS analyses. Note 
that this approach can be extended to identify pleiotropic 
genomic windows by using WPPA instead of PPA. The 
two approaches used by Bolormaa et  al. [65] to detect 
pleotropic SNPs or regions, i.e. based on the covariance 
of window GEBV and based on the product of (1-PPA), 
detected similar pleiotropic genomic regions and SNPs 
but these regions were different from another approach 
used by Bolormaa et al. [66] based on multi-trait analysis 
of single trait results from single-SNP GWA. These com-
parisons were, however, based on somewhat arbitrary 
significance thresholds that may not control the same 
error rates.

In a more formal approach, Jia and Jannink [67] 
extended the single-trait Bayesian multiple regression 
models to multi-trait analyses by specifying a multi-
variate prior distribution for marker effects. Although 
the focus of their study was to increase the accuracy of 
genomic prediction, these same models can also be used 
to identify and estimate the effects of pleiotropic QTL, 
especially when using BVS methods. However, when 
using BVS, Jia and Jannink [67] limited variable selection 
by allowing SNPs to only have a non-zero effect on either 
all or none of the traits. A similar approach was used 
by Calus and Veerkamp [68]. A more flexible model, in 
which any SNP can have an effect on any combination of 

traits, was used by Cheng et al. [69] and has been imple-
mented in the JWAS software [23].

In the multi-trait Bayesian GWA approaches of [67–
69], the multi-variate prior distributions used for SNP 
effects assume the same correlation for all SNPs. To avoid 
the potential impact of such priors on GWA results, 
Kemper et al. [70] developed and implemented a multiple 
trait Bayesian multiple regression method called Bayes-
MV, with a mixture of prior distributions for SNP effects 
following Bayes-R. These distributions were assumed to 
be independent between traits but with a specified prior 
proportion of SNPs having no effect on any trait. Signifi-
cance of effects was based on the mean posterior prob-
ability that a SNP had a non-zero effect on any trait, but 
this criterion can be expanded to windows of SNPs, as 
in Fernando et  al. [58]. Using simulated data, Kemper 
et  al. [70] showed that the Bayes-MV method detected 
a larger number of true QTL than the equivalent single-
trait method that assumed no SNPs with zero effects, i.e. 
Bayes-R.

In summary, Bayesian multiple regression methods 
provide a flexible approach for the detection of pleio-
tropic QTL. However, the impact of prior assumptions 
on SNP effects across traits requires further investigation. 
Also, an important limitation of all methods that attempt 
to use genotype–phenotype associations to detect pleio-
tropic QTL is that they cannot differentiate the presence 
of a pleiotropic QTL from the presence of two closely 
linked single-trait QTL, depending on the extent of LD 
in the region. In addition, similar to the issues with infer-
ences about genetic variance based on multiple-marker 
regression models raised by de los Campos et  al. [57], 
estimates of genetic covariances and correlations based 
on multiple-marker regression models can misrepresent 
the true genetic parameters if the causal loci are not gen-
otyped because of incomplete LD between markers and 
QTL and among QTL, as demonstrated by Gianola et al. 
[71].

Identification of pleiotropic QTL is important for 
understanding the biology behind traits and multi-trait 
GWA approaches are expected to increase power to 
detect QTL and increase the accuracy of genomic pre-
diction. However, it is not clear whether pleiotropic QTL 
should receive specific attention in multi-trait breeding 
programs, beyond the emphasis they receive in standard 
total merit selection criteria based on GEBV.

GWA using Bayesian structural equations models
Structural equation models (SEM) aim at going beyond 
correlations to making inferences on causal relationships 
between variables, as first proposed by Wright [72] based 
on path analysis. Adaptations of SEM to quantitative 
genetics and mixed models were proposed by Gianola 
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and Sorensen [73], including methods to infer causal rela-
tionships among traits. A review of applications of SEM 
in the context of analysis of relationships between traits 
in animal breeding is in Inoue [74]. Valente et  al. [75] 
clarified that, although SEM allow causal relationships 
between phenotypic traits to be investigated, they offer 
no advantage over multiple-trait models for standard 
multiple-trait selection purposes. This is because genetic 
correlations are (primarily) caused by pleiotropic QTL 
and pleiotropy has no causal direction, i.e. a QTL can be 
pleiotropic for two traits by either affecting both traits 
directly or by affecting one trait directly and the other 
indirectly via the causal influence of the first (assuming 
that both traits are causally connected). Thus, selection 
on trait 1 is expected to result in a correlated response in 
trait 2 by changing allele frequencies at pleiotropic QTL, 
regardless of its causal relationships with phenotypes 
for the two traits. However, Valente et al. [75] described 
a number of scenarios in which the additional informa-
tion that is obtained from SEM can be beneficial, includ-
ing allowing more accurate estimation of breeding values 
under new (unobserved) environmental conditions in the 
case of genotype-by-environment interactions.

Li et al. [76] applied SEM to QTL mapping by differen-
tiating between direct and indirect effects of a QTL on a 
trait. They distinguished three groups of QTL for a two-
trait scenario based on their direct effects: (i) QTL that 
directly affect only trait 1; (ii) QTL that directly affect 
only trait 2; and (iii) QTL that directly affect both traits. 
Note that QTL that directly affect only trait 1 (2) can 
have indirect effects on trait 2 (1) through a causal effect 
of the phenotype for trait 1 (2) on trait 2 (1). In addition, 
QTL that directly affect both traits can have two paths 
of effects on a trait, i.e. direct effects and indirect effects 
through the other trait. Thus, in contrast to multiple-trait 
models, which model the overall effects (direct plus indi-
rect) of QTL or markers, SEM differentiate between the 
direct and indirect effects of QTL or markers.

Momen et  al. [77] adapted the SEM-QTL model to 
single-SNP SEM-GWA for quantitative traits based on 
a mixed linear model with fixed effects for a single SNP 
(i.e. similar to a single-SNP GWA for individual traits), 
with application to the estimation of the direct and indi-
rect effects of SNPs on traits in broiler chickens. Wang 
et  al. [78] implemented multi-marker SEM-GWA BVS 
models, introducing the SEM Bayesian Alphabet. They 
showed that SEM-GWA BVS models have similar or 
greater power to detect QTL than multi-trait BVS, but 
provide greater insight into biological mechanisms of 
the effects of QTL on traits through direct and indirect 
effects. These methods were recently applied to the anal-
ysis of the structural genomic relationships and QTL for 
milk proteins in dairy cattle by Pegolo et al. [79]. Bayesian 

multi-SNP SEM-GWA has also been implemented in 
human genetics using Bayesian graphical models by Bri-
ollais et al. [80] and for meta-analysis using Bayesian net-
work analysis by Zhang et al. [81].

Use of functional information for (post‑)GWA analysis
Given the typically limited statistical power and map-
ping precision of GWA studies, interpretation of GWA 
results requires substantial post-GWA analyses. These 
can be based on evidence from other -omics data, results 
from previous QTL or GWA studies, and functional bio-
logical information about genes located in the identi-
fied genomic regions, as reviewed by Uffelmann et  al. 
[2]. Ramanan et  al. [82] proposed that one way to gain 
additional insight into GWA results and the importance 
of different biological pathways is to jointly evaluate the 
evidence of association for groups of markers or genes 
that are part of the same biological pathway. One strat-
egy is to use enrichment analyses to determine whether 
the top GWA regions are enriched for genes with certain 
biological features, such as membership of a biological 
pathway or having certain gene ontology (GO) terms. 
This requires setting a significance threshold for regions 
to include in the enrichment analysis, which can have a 
large impact on results. An alternative is to use all GWA 
results in a ranked gene set enrichment analysis, as pro-
posed by Subramanian et  al. [83] and implemented in 
their GSEA software. This requires GWA results to be 
assigned to each gene in the genome. For single-SNP 
GWA, this could be based on the average − log(p-value) 
of all SNPs in or around a gene. For Bayesian multiple 
regression GWA, a possible rank criterion is the per-
cent of genetic variance explained by each genomic win-
dow. This, however, would result in the same value to be 
assigned to all genes located in a window, which causes 
problems in the analyses. An alternative that was sug-
gested by Delpuech [84] and employed by Cheng et  al. 
[85] is to assign biological features to windows based on 
the features of genes that are present in the window.

Rather than for post-GWA analyses, functional bio-
logical information can also be integrated in the GWA 
analysis. One strategy is the feature GBLUP approach 
employed by, e.g., Edwards et  al. [86]. In this approach, 
SNPs are classified based on genomic features and a 
separate random genetic effect is fitted for each class of 
SNPs in a mixed linear GBLUP model, using a genomic 
relationship matrix derived using genotypes for that 
class of SNPs. Estimation of the variance component 
for each feature class then allows different weights to be 
assigned to different classes of SNPs. When working with 
SNP genotype or sequence data, feature classes can be 
assigned based on genome annotation, candidate gene 
lists, or known causal variants [87].
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An alternative approach is to incorporate prior biologi-
cal information in the Bayes-R approach of Kemper et al. 
[17], as proposed by MacLeod et al. [87]. In their Bayes-
RC method, the mixture of normal prior distributions 
with different variances of Bayes-R was cross-classified 
with feature classifications of the analyzed SNPs or vari-
ants. This approach allows the model to estimate the mix-
ture of each of the variance size distributions of Bayes-R 
for each feature class. The Bayes-RC method was shown 
to outperform Bayes-R in terms of power and precision 
of QTL discovery in simulated and real dairy cattle milk 
production phenotype data [87]. Xiang et  al. [88] used 
the Bayes-RC method to successfully prioritize potential 
causative variants for multiple traits across populations 
using (imputed) whole-genome sequence data on large 
numbers of dairy cattle, combined with classification of 
sequence variants based on functional information.

Combining multi‑omics data for prediction 
and fine‑mapping using Bayesian multiple regression 
methods
Combining multiple omics data to achieve improved 
phenotype prediction and fine-mapping of causal loci 
can be performed in a stepwise post-GWA interpreta-
tion of GWA results, using other -omics data, meta-
data from other GWA, and functional information, as 
reviewed by Uffelmann et  al. [2]. Alternatively, other 
-omics data can be directly integrated into the GWA. 
Huang et  al. [89] provide a recent review of meth-
ods to integrate multi-omics data for phenotype pre-
diction in the context of precision medicine. In this 
context, Bayesian methods can provide a very flex-
ible structure that can be used to extract information 
from multi-omics data individually or simultaneously. 
For example, Wang et  al. [90] developed a hierarchi-
cal BVS model to integrate information from different 
-omics platforms to identify genes or biomarkers that 
are associated with a phenotypic outcome. Fang et  al. 
[91] extended this method to allow for large amounts 
of missing data, since the different sets of -omics data 
are typically available on substantially non-overlapping 
groups of individuals. Xiang et  al. [92] used informa-
tion on functional annotation and evolutionary con-
servation to improve mapping precision for production 
traits in cattle. Maity et al. [93] used a Bayesian SEM to 
integrate information from copy number variants and 
gene expression to predict survival of cancer patients 
by specifying and predicting a number of latent vari-
ables that underlie the copy number and gene expres-
sion data. Bayesian prioritization models can be used 
to narrow down hits from transcriptome-wide associa-
tion (TWA) studies to gene sets that include causal loci 
with a predefined probability [94] and use information 

of both cis and trans acting expression QTL (eQTL) 
[95]. Bayesian sparse linear mixed models (BSLMM) 
[96] fit all SNPs nearby a gene into a model with two 
distributions, allowing larger and polygenic effects on 
gene expression. Based on a BSLMM, Wheeler et  al. 
[97] found cis gene expression regulation to be mostly 
oligogenic.

An additional level of information that can inform 
causal relationships between genotype and phenotype is 
the proteome [98], which in addition to interpretation of 
GWA and TWA results, can provide targets for future 
functional studies and drug targets [99]. Proteome-wide 
association studies aggregate the signal of all variants that 
jointly affect a protein-coding gene and assess their over-
all impact on the protein’s function and the phenotype of 
interest [100].

Flutre et al. [101] introduced an across-tissue Bayesian 
model that allows sharing of a proportion of eQTL across 
tissues, accounting for correlations among tissues within 
individuals. Across-tissue analysis helps to partly over-
come the issue of limitations in the availability of expres-
sion data for different tissues, which affects most studies 
and is due to the still relatively high cost of generating 
genome-wide gene expression data. In a similar manner, 
but using proteomic data, an algorithm called LOCUS 
[102] borrows strength across correlated protein levels 
and DNA markers on a genome-wide scale to effectively 
increase statistical power.

Another solution to missing data is to impute missing 
records using integrative techniques that use correlations 
and shared information across data sets [103, 104]. The 
integrative risk gene selector (iRIGS) [105] is a Bayesian 
framework that integrates multi-omics data and gene 
networks to infer risk genes for identified GWA signals. 
Bayesian tests of colocalization [106] integrate GWA 
results with eQTL, methylomics, or other -omics data 
to provide insights into context specific gene regulation 
[107]. Associations between protein levels and variation 
in DNA sequence that colocalize with disease risk alleles 
can suggest disease-associated pathways, revealing novel 
drug targets and translational biomarkers.

Hajiramezanali et  al. [108] proposed a graph-struc-
tured data integration method called Bayesian Relational 
Learning (BayReL) for integrative analysis of multi-omics 
data and applied it to explore microbiome-metabolome 
interactions in cystic fibrosis. They also applied the 
method to identify miRNA-mRNA interactions in breast 
cancer by integrating gene expression profiles and in vitro 
sensitivity of tumor samples to chemotherapy drugs. Zhu 
et al. [109] proposed another type of directed algorithm 
called MRLocus to investigate how perturbations of 
gene expression or individual regulatory elements affect 
downstream phenotypes.
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Challenges
While BVS methods continue to be improved, they 
remain computationally demanding, which in the era of 
increasing availability of sequence data on tens or hun-
dreds of thousands individuals with millions of SNPs 
becomes a challenge. Improved Gibbs-samplers and 
non-MCMC algorithms are expected to alleviate some 
of the computational burden. van der Berg et al. [110] 
proposed to reduce computational demands of BVS 
methods, while maintaining the accuracy of marker 
effect estimation, by splitting the sequence data by 
chromosome and dropping variants with small effects. 
Another strategy to reduce the number of variants is to 
use single-SNP GWA to preselect variants or to inform 
priors, but ideally this should be done on a separate 
data set, which in most cases is not available. Another 
possibility is analysis with LD pruned data, followed 
by full marker saturation only in regions with evidence 
of association. Strong LD can also limit the ability to 
identify causal mutations even if all markers can be fit-
ted simultaneously. Today this is mostly addressed by 
gathering large sample sizes with the hope of finding 
enough individuals with cross overs to break the LD in 
order to narrow candidate regions. Increasing under-
standing of gene expression, regulation, and interaction 
will help to develop better priors for Bayesian multi-
ple regression GWA methods, which can help narrow 
candidate regions. Ultimately, functional genomics and 
gene editing approaches are required to validate puta-
tive causal QTL.

Conclusions
In addition to genomic prediction, Bayesian multiple 
marker regression methods provide a flexible and reli-
able framework for GWA studies and for integrating 
multiple sources of functional and genomic informa-
tion (multi-omics data) to gain insight into the genetic 
architecture of complex traits. Further development of 
methods that are less dependent on choice of priors or 
that include more appropriate priors is, however, war-
ranted, as well as of methods for integration of multi-
omics, functional, and biological information.
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