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Abstract 

Background:  The covariance matrix of breeding values is at the heart of prediction methods. Prediction of breed‑
ing values can be formulated using either an “observed” or a theoretical covariance matrix, and a major argument for 
choosing one or the other is the reduction of the computational burden for inverting such a matrix. In this regard, 
covariance matrices that are derived from Markov causal models possess properties that deliver sparse inverses.

Results:  By using causal Markov models, we express the breeding value of an individual as a linear regression on 
ancestral breeding values, plus a residual term, which we call residual breeding value (RBV). The latter is a noise term 
that accounts for the uncertainty in prediction due to lack of fit of the linear regression. A notable property of these 
models is the parental Markov condition, through which the multivariate distribution of breeding values is uniquely 
determined by the distribution of the mutually independent RBV. Animal breeders have long been relying on a causal 
Markov model, while using the additive relationship matrix as the covariance matrix structure of breeding values, 
which is calculated assuming gametic equilibrium. However, additional covariances among breeding values arise 
due to identity disequilibrium, which is defined as the difference between the covariance matrix under the multi-loci 
probability of identity-by-descent ( � ) and its expectation under gametic phase equilibrium, i.e., A. The disequilibrium 
term �−A is considered in the model for predicting breeding values called the “ancestral regression” (AR), a causal 
Markov model. Here, we introduce the “ancestral regression to parents” (PAR) causal Markov model, which reduces the 
computational burden of the AR approach. By taking advantage of the conditional independence property of the 
PAR Markov model, we derive covariances between the breeding values of grandparents and grand-offspring and 
between parents and offspring. In addition, we obtain analytical expressions for the covariance between collateral 
relatives under the PAR model, as well as for the inbreeding coefficient.

Conclusions:  We introduced the causal PAR Markov model that captures identity disequilibrium in the covariances 
among breeding values and produces a sparse inverse covariance matrix to build and solve a set of mixed model 
equations.
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Background
In genetic evaluations, the best linear unbiased predictor 
(BLUP, [1]) is used to predict the breeding values (BV) 
of selection candidates. Breeding values are a presumed 
compound random variable that arises from the effect of 
a large number of genes in gametic equilibrium and fol-
lows a multivariate normal distribution across the popu-
lation [1–3]. Prediction of BV can be formulated using 
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either an “observed” or a theoretical covariance matrix of 
BV. The latter model takes advantage from the parental 
Markov condition of the covariance between BV of the 
parents and their offspring [4] and theorem 1.2.7 in [5]. 
Throughout this paper, we will refer to these models as 
recursive causal Markov models or Markov models for 
short.

In Markov models, the BV of an individual is expressed 
as a linear regression on parental, or parental and grand-
parental BV, plus a residual breeding value (RBV) term. 
RBV is a noise term that accounts for the lack of fit of the 
regression with respect to the statistical information that 
the ancestors convey to predict the BV of an individual. 
The parental Markov condition implies that the multivar-
iate distribution of BV is uniquely determined by the dis-
tribution of these RBV, which are mutually independent 
random variables. This is a familiar property of a Markov 
model well-known to animal breeders: the regular Ani-
mal Model [1] where the RBV are termed “Mendelian 
sampling terms”.

The theoretical covariance matrix of a Markov model 
describes the sequences of BV across generations as a 
stochastic process, which is represented by the regression 
of the BV of an individual on ancestral BV [1, 6]. Start-
ing with the additive relationship matrix as the covari-
ance structure for BV under the regular Animal Model, 
more informative and realistic Markov models should 
account for the different proportions of the genomes 
from the grandparents in the gametes that form the indi-
vidual, which originate at meiosis due to recombination. 
We will show that this can be accomplished by extending 
the concept of identity disequilibrium of Weir and Cock-
erham [7]. Identity disequilibrium is accounted for in the 
ancestral regression (AR) Markov model of Cantet et al. 
[8].

In the original presentation of the AR model, we came 
short of deriving the covariances between the BV of rela-
tives. Therefore, our objective is threefold. The first goal 
is to present a causal Markov model that we refer to as 
the ancestral regression to parents (PAR) and that sim-
plifies inversion of the covariance matrix of BV when 
the AR model is correct. The second objective is to give 
explicit expressions for the covariances between the BV 
of an animal with those of its grandparents and parents 
under identity disequilibrium. Finally, we derive the 
covariance of the BV of an individual with its collaterals 
(full and half-sibs) assuming that PAR is correct. These 
latter covariances are needed for genomic prediction of 
animals without an own record and without progeny. 
However, issues with parameter estimation and how to 
specifically use the AR and PAR models for genomic pre-
diction will be pursued elsewhere. In the three additional 

files of this paper, we describe in detail some theoretical 
arguments and all the derivations.

Methods
Covariance between breeding values under segmental 
inheritance
The covariance matrix of breeding values (BV) has tradi-
tionally been calculated by conditioning on relatedness 
[1]. In this section, we extend the definition of genetic 
relationships at one locus to the multilocus situation 
with segmental inheritance and obtain the parameters 
that enter into the covariance of BV from the recursive 
regression of the BV of an animal on the parental and 
grandparental breeding values [8].

Covariance between BV under gametic phase equilibrium
Under the assumption of gametic phase equilibrium and 
for any two animals X and Y that share one or more com-
mon ancestors, Cockerham [9], Kempthorne [10], and 
Harris [11] obtained the expression:

where aX and aY stand for the BV of X and Y , AXY is the 
additive genetic relationship between X and Y , and σ2

A
 is 

the additive variance. The additive genetic relationship is 
related to probabilities of identity-by-descent (IBD, [12]) 
and thus cov(aX, aY) in Eq. (1) is always greater or equal 
to zero. In other words, related individuals X and Y have 
a positive covariance that is due to a non-zero probability 
of sharing genes that are IBD. On the other hand, a zero 
covariance indicates that X and Y are unrelated.

In addition, the fact that cov(aX, aY ) is ≥ 0 explains a joint 
behavior of the breeding values of X and Y by which they 
are likely to simultaneously take large (or small) values. 
As a result, the non-negative covariance property ensures 
that animals with larger BV than the mean will tend to 
have progeny with larger BV than the mean, whereas ani-
mals with smaller BV than the mean will produce progeny 
that tend to have smaller BV than the mean. Consequently, 
cov(aX, aY) ≥ 0 ensures the success of selection in either 
direction when employing predictions of BV calculated 
under such a premise. This useful stochastic behavior is 
known as “positive quadrant dependence” [13] and we seek 
to extend this property to multilocus distributions of IBD.

Under gametic phase equilibrium, the additive rela-
tionship AXY in Eq. (1) is equal to twice the coefficient of 
coancestry between X and Y [12], which in turn is equal 
to the probability that one random sampled allele in any 
locus in the genome of X is IBD to a random sampled 
allele at the same locus but in individual Y ; this probabil-
ity is denoted as P(X ≡ Y) . As a measure of relatedness 

(1)cov(aX, aY) = AXYσ
2
A,
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between two animals, the coefficient of coancestry is then 
a probability of IBD at a single locus, which is the same 
for any autosomal loci under the assumption of gametic 
phase equilibrium. The concept of IBD is always in rela-
tion to a “founder population” [14–16].

Covariance between breeding values under segmental 
inheritance
The original definition of IBD alludes to a discrete ran-
dom variable at a single locus. However, the genome is 
inherited in segments produced by recombination during 
meiosis [15], which introduces dependence among mul-
tiple loci. When calculating the covariance matrix of BV, 
the assumption of independence of causal locus effects is 
challenged by physical dependence due to closeness, i.e., 
linkage, and pervasive dependence among non-allelic loci 
[17] due to population structure [18] and/or selection 
[19]. Therefore, the genotypic frequencies may deviate 
from their expectation under a scenario of random union 
of gametes [20], a phenomenon that is called gametic 
phase disequilibrium. Recombination that occurs dur-
ing meiosis breaks these associations among non-allelic 
loci and produces segments of DNA that are carried by 
descendant animals after several generations [15, 17].

Donnelly [21] proposed a “continuous IBD” model to 
calculate the probability that individuals in a given rela-
tionship share any part of their genomes IBD. Their pro-
posal takes recombination into account and serves to 
model inheritance of segments [15]. After [21], Guo [22] 
defined the proportion of genome that is shared IBD by 
two individuals as the sum of all the chromosome seg-
ments that are IBD at the same chromosome loci. How-
ever, for this relationship to comply with Eq.  (1) and to 
produce a proper covariance matrix of BV that is invers-
ible and Markovian, some theoretical considerations 
should be met.

First, we need a generalization of the definition of 
pointwise probabilities of IBD to segments. Nolan [23] 
defined the probability of IBD for shared segments 
through a multivariate binary random variable as fol-
lows. Let j be a position on chromosome k such that 
j = 1, . . . , n . Also let ij be a binary random variable that is 
equal to 1 if a recombination occurred between positions 
j and j + 1 on the chromosome, and equal to 0 otherwise. 
A given sequence ( i1, . . . , in ) of 0s and 1s on chromosome 
k is called a “recombination pattern” and has a prob-
ability Pk(i1, . . . , in) attached to it. The continuous IBD 
random variable X(t) is a binary function equal to 1 if at 
position t the genetic material on chromosome k of a pair 
of gametes, from either the same or from different indi-
viduals, originates in the same grandparent, whereas it is 
0 otherwise. The positions in the recombination pattern 
i1, . . . , in where X(t) changes from 0 to 1 or from 1 to 0 

are the precise locations where a crossover has occurred 
[23]. The multilocus probabilities of IBD are then equal 
to:

Next, we use definition (2) to write a covariance matrix 
of BV with elements equal to the product of the multi-
locus probabilities of IBD, summed over chromosomes, 
times the additive variance:

where K  is the number of chromosomes of the diploid 
species. The scalar �XY is termed “multilocus additive 
relationship”, and it is defined to be equal to:

Notice that the covariance in Eq. (3) is greater or equal 
to zero because it is a product of a sum of probabilities 
times a positive number, and this guarantees that BV are 
positive quadrant dependent [13] random variables.

If we now add and subtract AXY to �XY in Eq.  (4) we 
obtain:

Thus, the multilocus additive relationship is equal to 
the single-locus additive relationship plus a “disequi-
librium” term that measures how distant is the realized 
relationship from AXY . In the next section, we relate 
�XY − AXY to the parameters of the ‘ancestral regression’ 
(AR) of Cantet et al. [8].

We call the disequilibrium term �XY − AXY “identity 
disequilibrium” after ideas that were first discussed by 
Weir and Cockerham [7] and Cockerham and Weir [24]. 
When considering the effect of recombination on the 
probability of IBD of alleles at two linked loci (say 1 and 
2) for animals X and Y , Weir and Cockerham [7] attrib-
uted to JBS Haldane the following inequality:

In words, Eq.  (6) says that the probability of IBD at 
two linked locations on a chromosome is higher or 
equal than the product of the marginal probabilities 
at each locus when X and Y are related. The value of 
P(X1 ≡ Y1, X2 ≡ Y2) depends on the pedigree and on the 
recombination rate between loci 1 and 2. Weir and Cock-
erham [7] called identity disequilibrium the difference 

(2)

P(X1 ≡ Y1, .., Xn ≡ Yn)

= P(X(t1) = i1, X(t2)− X(t1)

= |i2 − i1|, .., X(tn+1)− X(tn)

= |in+1 − in|).

(3)
cov(aX, aY) =

∑K

k=1
Pk(X1 ≡ Y1, .., Xn ≡ Yn)σ

2
A = �XYσ

2
A,

(4)�XY =
∑K

k=1
Pk(X1 ≡ Y1, .., Xn ≡ Yn).

(5)�XY = AXY + (�XY − AXY).

(6)P(X1 ≡ Y1, X2 ≡ Y2) ≥ P(X1 ≡ Y1)P(X2 ≡ Y2).
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between the joint probability of IBD at two loci and the 
product of the single locus probabilities of IBD. Formally, 
identity disequilibrium at two loci is equal to:

Identity disequilibrium is the main source for variation 
in actual inbreeding [7] or relationships [25]. Expres-

sion (4) in Weir et al. [26] (page 401) formalizes the link 
between the variance of the inbreeding coefficient at two 
linked loci and identity disequilibrium as displayed in 
Eq. (7).

Ancestral regression
The “ancestral regression” (AR) model is a recursive 
causal Markov model for BV under identity disequilib-
rium that was developed by Cantet et  al. [8]. For com-
pleteness, more details about this model are in Additional 
file 2. According to this model, the regression equation of 
the BV of X on the BV of its parents and grandparents is:

where subscripts refer to parents ( S = sire and D = dam) 
and grandparents ( SS = paternal grandsire; DS = pater-
nal granddam; SD = maternal grandsire; DD = maternal 
granddam) of individual X , and φX is the residual breed-
ing value (RBV). It is shown in  Additional file 2 that the 
disequilibrium term in the ancestral regression is equal 
to:

Either side of the equalities 0.5(PS − 0.5) = βS and 
0.5(PD − 0.5) = βD expresses identity disequilibrium. In 
the ancestral regression, βS and βD contain the identity 
disequilibrium and represent the excess, or the defi-
ciency, in the BV of the paternal and maternal grand-
sires, i.e., aSS and aSD , with respect to the paternal and 
maternal granddams, i.e., aDS and aDD , in the pater-
nal and maternal gametes, respectively (see Additional 
file 2). On the other hand, βS and βD may be zero due to 
the fact that under identity equilibrium PS = PD = 0.5 . 
For standardized covariances, as used here (i.e., additive 
genetic variance equal to 1), βS is the path coefficient for 

(7)P(X1 ≡ Y1, X2 ≡ Y2)− P(X1 ≡ Y1)P(X2 ≡ Y2).

(8)
aX = 0.5aS + 0.5aD + βS(aSS − aDS)+ βD(aSD − aDD)+ φX,

(9)

0.5(PS − 0.5)(aSS − aDS)+ 0.5(PD − 0.5)(aSD − aDD)

= βS(aSS − aDS)+ βD(aSD − aDD).

the contrast aSS − aDS , while βD is that for the contrast 
aSD − aDD (see Eq. (2) in Wright [27]). For the more gen-
eral case in which the additive variance differs from 1, βS 
and βD are path regressions (see Eq. (1) in Wright [27]) or, 
simply, partial regression coefficients [4]. In Appendix  1, 
the general expression for the variance of a BV under 
the ancestral regression (i.e., without setting the additive 
genetic variance to 1) is shown to be equal to:

Inbreeding also increases identity disequilibrium [7, 
24] and, thus, the variance of the � relationships. Equa-
tion (10) is complex because the AR model involves the 
BV of six individuals that may be related and may also be 
inbred.

The inbreeding values of the grandparents and parents 
of X that appear in Eq. (10), i.e., Fi ( i = 1, …, 6), should 
not be confused with the usual measure of inbreeding of 
Wright [28] under gametic equilibrium. Under identity 
disequilibrium, the inbreeding coefficient must be rede-
fined, and this is done in Appendix 2. The formula to cal-
culate inbreeding under AR is:

If all Fi in Eq.  (9) are 0, the expression for Var(ax) 
reduces to:

For the purpose of comparison, the variance of the 
BV of individual X under identity equilibrium is equal 
to Var(ax) = 0.5σ2A + Var

(

φ∗
X

)

 , where the asterisk on 
φX refers to the assumption of identity equilibrium. 
Since 2(β2S + β2D) ≥ 0 , Var(φX) ≤ Var

(

φ∗
X

)

 , the equality 
of Var(φX) and Var

(

φ∗
X

)

 holds only if βS = βD = 0 . This 
result was previously obtained by Cantet and Vitezica 
[29] for any predictor of BV that incorporates pedigree 
and genomic information. Pourahmadi [30] found that 
there is a negative relationship between the diagonal ele-
ment of the inverse covariance matrix and prediction 
error variance of the random variable. Therefore, in gen-
eral AR displays smaller variance of RBV, higher inverse 
diagonal elements of, reduced prediction error variance 
of BV, and increased accuracy of BV prediction, when 
compared to the regular animal model.

(10)Var(ax) =







0.25[2+ FS + FD + 2�S,D]+ β2S[2+ FSS + FDS − 2�SS,DS]

+β2D[2+ FSD + FDD − 2�SD,DD]+ 2βSβD[�SS,SD −�SS,DD −�DS,SD +�DS,DD]
+0.5βS[�SS,S −�DS,S +�SS,D −�DS,D]+ 0.5βD[�SD,S −�DD,S +�SD,D −�DD,D]







σ2A+Var(φX).

(11)

FX = 0.5

[

�SD + βS
(

�SS,D −�DS,D

)

+ βD
(

�SD,S −�DD,S

)

+βSβD(�SS,SD −�SS,DD −�DS,SD +�DS,DD)

]

.

(12)Var(ax) =
[

0.5+ 2(β2S + β2D)

]

σ2A + Var(φX).
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For a vector of BV under the AR model ordered such 
that the BV of any ancestor precedes those of all its 
descendants, we can write the causal Markov model in 
vector–matrix form as [31, 32]:

Matrix B is lower triangular because genomes always 
descend from ancestors to descendants. There are at 
most seven elements different from zero in any row of 
B: 0.5 for the columns belonging to the parents S and D , 
βS for SS , −βS for DS , βD for SD , −βD for DD and 1 for 
the diagonal, all other elements are zero. Working alge-
braically in Eq. (13) results in a triangular system of equa-
tions [32]:

The expectation and covariance matrix of a in Eq. (13) 
are respectively equal to:

In Eq.  (15), Var(φ) is a diagonal matrix ( D ), which 
implies independence among the RBV of different ani-
mals due to the parental Markov property. The inverse of 
the covariance matrix is:

Cantet et al. [8] proposed an algorithm to calculate �−1 
that was derived from the method to compute A−1 [33], 
by inferring the pattern of non-zero elements in �−1 from 
the sparsity pattern of B and the diagonal elements of D.

Ancestral regression to parents (PAR)
Whereas the algorithm to easily invert � [8] makes it pos-
sible to build the mixed model equations to fit the AR 
without direct inversion of the covariance matrix of BV, 
the amount of memory needed is greater than that to cal-
culate A−1 . Let the rows of B related to animals i and j be 

(13)a = Ba + φ.

(14)(I− B)a = φ ⇒ a = (I− B)−1φ.

E(a) = (I− B)−1E(φ) = 0

(15)
andVar(a) = � = (I− B)−1Var(φ)

(

I− B
′
)−1

.

(16)�
−1 =

(

I− B
′
)

D
−1(I− B).

Bi and Bj , respectively, whereas let Dii be the variance of 
the RBV of i , each non-zero element of the sparse matrix 
BiDiiB

′

j is called a ‘contribution’ to the elements of �−1 . 
For a single trait model, �−1 is written down in symmet-
ric sparse format with 28 contributions per animal, com-
pared to six contributions per animal to calculate A−1 
[33]. In the multiple trait case ( t traits and q animals), 
the number of contributions in the animal model where 
the covariance matrix comes from a Kronecker product 
of the t × t covariance matrix of BV from different traits 
times A , the total number of contributions is equal to 
(6t + 4.5t(t − 1))q , whereas in the AR model, the num-
ber of contributions is (28t + 24.5t(t − 1))q . For the 
genetic evaluation of growth in beef cattle where t = 4 
and assuming that one million animals are evaluated, the 
number of non-zero elements in the mixed model equa-
tions is equal at least to 78 million in the animal model 
with A−1 and 406 million in the AR model, i.e., more than 
5.2 times larger. Thus, with data from several million ani-
mals, fitting a multiple trait AR model may be prohibi-
tive. Therefore, we will look for a causal model of genetic 
evaluation that induces a storage of non-zeros similar 
to the animal model and that also accounts for identity 
disequilibrium.

As discussed in the section of Additional file  3 enti-
tled A recursive calculation of the rows and columns of 
� , the BV of an animal in the AR model is independ-
ent of the BV of any other animal when conditioning on 
those of its grandparents and parents. The random vec-
tor a′

A
= [aSSaDSaSDaDDaSaD] contains a Markov blanket 

[34] for estimating βS and βd , i.e., a set of locally sufficient 
statistics for both parameters [5]. The covariance matrix 
of aA is equal to:

Matrix �G is 4 × 4 and contains the covariances among 
the BV of the grandparents, and �G,P is a 4 × 2 matrix of 
the covariances between the grandparents and parents. 
They are respectively equal to:

(17)�A =

















�SS,SS �SS,DS �SS,SD �SS,DD

�

� �SS,S �SS,D

�DS,SS �DS,DS �DS,SD �DS,DD

�

� �DS,S �DS,D

�SD,SS �SD,DS �SD,SD �SD,DD

�

� �SD,S �SD,D

�DD,SS �DD,DS �DD,SD �DD,DD

�

� �DD,S �DD,D

�S,SS �S,DS �S,SD �S,DD

�

� �S,S �S,D

�D,SS �D,DS �D,SD �D,DD

�

� �D,S �D,D

















=
�

�G �G,P

�P,G �P

�

.

�G =







1+ FSS �SS,DS �SS,SD �SS,DD

�SS,DS 1+ FDS �DS,SD �DS,DD

�SS,SD �DS,SD 1+ FSD �SD,DD

�SS,DD �DS,DD �SD,DD 1+ FDD






,
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The vectors �G,S and �G,D in Eq.  (18) are the rows of 
�P,G , and the covariance matrix of parental BV is equal 
to:

We now write the 6 × 1 vector of covariances between 
the grandparents and parents of individual X as follows:

The vector �G,X includes the covariances between the 
BV of X and those of the four grandparents, whereas �P,X 
includes the covariances between the BV of X and those 
of its parents. Finally, the vector BX,r of path coefficients 
in Eq. (17) is defined in the following manner:

From Expression (20) in [8], we can write vector �AX as 
a function of BX as: �ABX,r = �A,X , and in more detail, 
as:

As first done in [35] to obtain the reduced animal 
model, we now absorb the first four equations in Eq. (22), 
which correspond to the grandparents, into the last two 
parental equations. The solution of the resulting system is 
the vector ρ ( ρ′ = [ρS, ρD] ), which contains the regression 
coefficients to regress the BV of X on those of its parents, 
that is:

In scalar notation system, Eq. (23) is equal to:

Thus, the ancestral regression to the parents parallels 
the recursion equation for BV in the animal model (i.e., a 
“parental regression”), but with unequal parental contri-
butions due to distinct contributions of the grandparen-
tal BV. The equation for the PAR model is then equal to:

(18)

and�P,G =
[

�G,S

�G,D

]

=
[

�SS,S �DS,S �SD,S �DD,S

�SS,D �DS,D �SD,D �DD,D

]

(19)�P =
[

1+ FS �SD

�SD 1+ FD

]

.

(20)
�

′
AX

=
[

�
′
G,X

∣

∣

∣
�

′
P,X

]

=
[

�SS,X�DS,X�SD,X�DD,X

∣

∣�S,X�D,X

]′
.

(21)BX,r =
[

βS,−βS, βD,−βD, 0.5, 0.5
]′
.

(22)
[

�G �G,P

�P,G �P

]

BX,r =
[

�G,X

�P,X

]

(23)

[

�P−�P,G�
−1
G �G,P

]

ρ =
[

�P,X−�P,G�
−1
G �G,X

]

.

(24)
[

1+ FS−�S,G �−1
G �G,S �S,D−�S,G �−1

G �G,D

�D,S−�D,G �−1
G �G,S 1+ FD−�D,G �−1

G �G,D

] [

ρS
ρD

]

=
[

�S,X−�S,G �−1
G �G,X

�D,X−�D,G �−1
G �G,X

]

(25)aX = ρSaS + ρDaD + φP,X.

The random variable φP,X is the RBV in the PAR model. 
The parameter spaces of ρS and ρD are 0.25 ≤  ρS , ρD ≤ 
0.75, and almost always ρS and ρD will be different from 
each other. Rather than the proportion of the genome of 
the individual that originates from a given parent, the dif-
ference between ρS or ρD with 0.50 is not a genome pro-
portion but the amount of statistical information on their 
BV that the sire and the dam pass to a particular progeny 
under identity disequilibrium, instead of 0.5.

The variance of the BV in PAR is as follows:

where φPi is the RBV under the PAR model for ani-
mal i . The subscript ρ in the variance operator or in �ρ 
emphasizes the fact that the variance is calculated under 
the PAR. Elements of � and �ρ are different because AR 
and PAR are not equivalent models in the sense of [36] 
(see Appendix 4). Using variance operator rules, Eq. (26) 
results in being equal to:

Finally, we obtain the variance of the RBV by solving 
Eq. (27) for Varρ(φPi) as:

where �ρS,D is the covariance between the BV of the par-
ents of X under the PAR model.

As the PAR model displays the same set of conditional 
independencies as the animal model [1], the number of 
non-zeros in the coefficient matrix of the mixed model 
equations under PAR is equal to that in the animal 
model that is generated with pedigree to calculate A−1 . 
To obtain predictions of BV using Henderson’s mixed 
model equations [1], the inverse covariance structure of 

BV under PAR, �−1
ρ  , can be calculated by simply modi-

fying the algorithm of Henderson [33] for A−1 without 
ever calculating �ρ , by replacing the 0.5 values in the 
contributions to A−1 by ρS or ρD and 0.25 values by the 
product of ρS and ρD , or the squared values of these path 
coefficients.

(26)Varρ(aX) = Varρ(ρSaS + ρDad)+ Varρ(φPi),

(27)

Varρ(aX) = ρ2SVarρ[aS]+ ρ2D Varρ[aD]

+ 2ρSρDcovρ[aS, aD]+ Varρ(φPi)

= ρ2S(1+ FS)+ ρ2D(1+ FD)

+ 2ρSρD�ρS,D + Varρ(φPi).

(28)
Varρ(φPi) =1+ FX −

[

ρ2S(1+ FS)

+ρ2D(1+ FD)+ 2ρSρD�ρS,D

]

,
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Covariance between the breeding values of an ancestor 
and a descendant in causal Markov models
For any causal Markov model, the covariance between 
the BV of an ancestor ( aA ) and the BV of a descendant 
( aX ) results from the recursion of aX to a linear combina-
tion of BV of direct ancestors, until reaching the BV of 
the ancestor. At that point, cov(aA, aA) = V ar(aA ) and 
the recursion ends. Calculating this covariance is then 
similar to calculating additive relationships using the 
tabular method [37], for which individuals in a pedigree 
are ordered by date of birth to ensure that a descendant is 
never placed before a direct ancestor. The correctness of 
the algebraic procedure for the tabular method was dem-
onstrated in a paper from Rohan Fernando’s group back 
in the 1990s [38].

The ancestor–descendant covariance of breeding values 
in the ancestral regression model
As explained in the above paragraph, the ancestor–
descendant covariance of BV results from the recursion 
of the BV of the descendant only, because of the parental 
Markov property. By definition:

Now we replace the BV of the descendant with the AR 
expression for the BV of X in Eq. (8), as follows:

Because the covariance between the BV of animals j 
and k in AR is defined to be equal to cov

(

aj , ak
)

= �j,k , 
i.e., the elements of � , the above equation results in being 
equal to:

The covariance between the BV of a sire and an off-
spring (say X ) is obtained after setting the ancestor to the 
sire in Eq. (29), i.e., A = S , such that:

Now, since �S,S is the variance of the BV of the sire and 
is equal to �S,S = 1+ FS , the sire – offspring covariance 
of BV is equal to:

�A,X = cov(aA, aX).

cov(aA, aX) = cov(aA, 0.5aS + 0.5aD

+βS(aSS − aDS)+ βD(aSD − aDD))

= 0.5cov(aA, aS)+ 0.5cov(aA, aD)

+ βS[cov(aA, aSS)− cov(aA, aDS)]

+ βD[cov(aA, aSD)− cov(aA, aDD)].

(29)
�A,X = 0.5

(

�A,S +�A,D

)

+βS
(

�A,SS −�A,DS

)

+ βD
(

�A,SD −�A,DD

)

.

�S,X = 0.5
(

�S,S +�S,D

)

+βS
(

�S,SS −�S,DS

)

+ βD
(

�S,SD −�S,DD

)

.

In case of gametic equilibrium, βS = βD = 0 and 
�S,X = 0.5(1+ FS + 2FX) = AS,X , as for Expression (7.4) 
in [38].

By a similar reasoning, the covariance between the BV 
of X and of its dam is equal to:

If the paternal grandsire is the ancestor in Eq.  (31), 
cov(aSS, aX) under the AR model becomes equal to:

In the absence of inbreeding, �SS,D = FSS = �SS,DS

= �SS,SD = �SS,DD = 0 , and with �SS,S = 0.5 , the covari-
ance between the BV of a grandsire and grand-offspring 
is equal to:

Under gametic equilibrium, βS = 0 and �SS,X = 0.25.
Similarly, the covariance between the BV of the pater-

nal granddam and of X is:

If there is no inbreeding, Eq. (34) becomes equal to:

From Eqs. (33) and (35), it is deduced that 
−0.25≤ βS ≤ 0.25 . As with the regular animal model 
and in the absence of inbreeding, the sum of the 
covariances between the grandsire and X and the 
granddam and X in AR give the parent–offspring covari-
ance. To see this, add Eq.  (33) to Eq.  (35) to obtain 
�SS,X +�DS,X = 0.25+ βS + 0.25−βS = 0.5 , which is 
precisely the value of the covariance between the BV of 
parent and offspring in the absence of inbreeding. As the 
values of βS and βD are set arbitrarily to the positive sign 
for the grandsire and the covariance parent–offspring is 
the same under identity equilibrium or gametic disequi-
librium, it follows that the resemblance gained (or lost) 
by the grandsire with respect to the expected value of 

(30)
�S,X = 0.5

(

1+ FS +�S,D

)

+βS
(

�SS,S −�DS,S

)

+βD
(

�SD,S −�DD,S

)

.

(31)

�D,X = 0.5
(

1+ FD +�S,D

)

+βS
(

�SS,D −�DS,D

)

+βD
(

�SD,D −�DD,D

)

.

(32)

�SS,X = 0.5�SS,S + 0.5�SS,D

+βS
(

1+ FSS −�SS,DS

)

+ βD
(

�SS,SD −�SS,DD

)

.

(33)�SS,X = 0.25+ βS.

(34)

�DS,X = 0.5�DS,S + 0.5�DS,D

−βS
(

1+ FDS −�SS,DS

)

+ βD
(

�DS,SD −�DS,DD

)

.

(35)�DS,X = 0.25−βS.
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0.25 under gametic equilibrium is lost (or gained) by the 
granddam.

The covariances of the BV of the maternal grandsire 
and the maternal granddam with the BV of X are, respec-
tively, equal to:

and

Similar expressions to Eqs. (36) and (37) but in the 
absence of inbreeding are:

Covariances between breeding values when relatives are 
not ancestors of each other in Markov causal models
Two related individuals X and Y that do not descend from 
each other have one or more common ancestors CA1 , …, 
CAI , where I is the number of common ancestors. A trek 
is the path between the BV of X and Y passing through 
the BV of the common ancestor CAi and is represented 
by aX ← · · · ← aCAi

→ · · · → aY (see page 12 in [4] and 
Expression (3.1) in [39]). Each trek contributes a value 
that is equal to the product of all single path coefficients 
involved in the trek times the variance of the BV of the 
common ancestor. Then, the covariance between the BV 
of X and Y can be calculated by summing contributions 
over all possible treks [40]:

where bj stands for the single path coefficient of the j-
th ancestor in the trek. Note that these path coefficients 
take either the value 0.5 or β . In the parental regression 
model, all path coefficients are equal to 0.5.

A difficulty with the AR model is that the covariance 
between the BV of two relatives, none of which is an 
ancestor of the other, involves the calculation of up to 
36 covariances among possibly 12 different animals (see 
the derivation in Appendix 3). The resulting expression is 
formidable and suggests the need for a simpler method 
to calculate covariances between collateral individuals, 
which is what we present in the next section.

(36)

�SD,X = 0.5�SD,S + 0.5�SD,D

+βS
(

�SD,SS −�SD,DS

)

+ βD
(

1+ FSD −�SD,DD

)

,

(37)

�DD,X = 0.5�DD,S + 0.5�DD,D

+βS
(

�DD,SS −�DD,DS

)

− βD
(

1+ FDD −�SD,DD

)

.

�SD,X = 0.25+ βD,

(38)and�DD,X = 0.25− βD.

(39)cov(aX, aY) =
I

∑

i=1

(

bj . . . bj′
)

Var
(

aCAi

)

,

Covariance between breeding values under the ancestral 
regression model to parents when neither animal 
is an ancestor of each other
Once parameters ρ are estimated using Eq.  (24), the 
genetic covariances under the PAR model are calculated 
by a recursion to the youngest individual, in the following 
manner:

The subscript ρ in the elements of the covariance matrix 
indicates that those elements are defined under PAR. In 
Appendix 4, we explain the reason why AR and PAR are 
not Markov equivalent models and display an example in 
which the covariances between the BV of parent and off-
spring under AR and PAR are numerically different.

When neither individual is an ancestor of the other, the 
covariance of the BV of relatives under PAR results from 
replacing BV by the PAR model for breeding values:

Then, the resulting covariance between BV is:

In general, we can write the covariance terms in 
Eq. (41) using Eq. (39) as follows: 

Specific expressions for the covariance between BV 
of full-sibs ( FS ), paternal half-sibs ( PHS ), and maternal 
half-sibs ( MHS ) are calculated by replacing in Eq.  (41) 
with appropriate elements of � . The respective covari-
ances between BV of FS , PHS , and MHS are:

(40)�ρA,X = ρS�ρA,S + ρD�ρA,D.

covρ(aX, aY)

= covρ
(

ρSXaSX + ρDX
aDX

, ρSYaSY + ρDY
aDY

)

= covρ
(

ρSXaSX , ρSYaSY
)

+covρ
(

ρSXaSX , ρDY
aDY

)

+covρ
(

ρDX
aDX

, ρSYaSY
)

+ covρ
(

ρDX
aDX

, ρDY
aDY

)

.

(41)

covρ(aX, aY) =ρSXρSY covρ
(

aSX , aSY
)

+ ρSXρDY
covρ

(

aSX , aDY

)

+ ρDX
ρSY covρ

(

aDX
, aSY

)

+ ρDX
ρDY

covρ
(

aDX
, aDY

)

.

covρ
(

aSX , aSY
)

=
(

1+ FρS
)

σ2A,

covρ
(

aSX , aDY

)

= covρ
(

aDX
, aSY

)

= �ρSDσ
2
A,

covρ
(

aDX
, aDY

)

=
(

1+ FρD
)

σ2A.

(42)

covρ(FS) =
[

ρSXρSY
(

1+ FρS

)

+
[

ρSXρDY
+ ρDX

ρSY
]

�ρSD

+ρDX
ρDY

(

1+ FρD

)]

σ2A
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Discussion
In this paper, we introduce the ancestral regression to 
parents (PAR) model, which derives from the ancestral 
regression model (AR) introduced by Cantet et  al. [8] 
and show how to calculate additive covariances between 
the breeding values of related individuals under identity 
disequilibrium. Both, the AR and PAR models, and the 
standard parental regression model, are recursive causal 
Markov models [4, 5] under a multivariate Gaussian 
distribution of BV. The expressions for the covariances 
between the BV of relatives are derived using the recur-
sive causal framework. In particular, the covariances 
between the BV of grandparents and grand-offspring, 
between parents and offspring, and the covariance 
between collaterals for the AR and PAR models. These 
covariances are different from the usual additive covari-
ances under gametic equilibrium because they account 
for identity disequilibrium [7]: the difference between 
the realized relationship and its expected value under 
gametic equilibrium, which is originated in the individ-
ual processes of whole genome recombination during 
the formation of the gametes that originated both indi-
viduals in the relationship. These recombinations involve 
the genomes of the grandsire and the granddam during 
meiosis, and result in unique gametes that form each 
individual.

Causal Markov models for BV possess the property 
that their residual terms (referred to as RBV) are inde-
pendent, thus they allow for a recursive calculation of 
the covariance between parent and offspring. In Markov 
causal models, this covariance is always positive and, in 
general, the covariance between the BV of any two ani-
mals in a pedigree is non-negative and, therefore, BV 
are positive quadrant dependent [13] random variables. 
Moreover, the covariance matrix of BV under PAR can 
be inverted with a computational effort that is propor-
tional to the number of animals and, particularly, the 
inversion of the covariance matrix under PAR is similar 
to inverting A [33], but with the paternal and maternal 
path coefficients ρ of PAR replacing the 0.5 in the paren-
tal contributions.

While in the pre-genomic era covariances between BV 
of relatives were calculated on the basis of the degree 
of relatedness between animals [1] using only informa-
tion from the pedigree, in recent times, animal breeders 
have also used dense sets of SNPs. The use of pedigree 

(43)covρ(PHS) =
[

ρSXρSY(1+ FρS)+ ρSXρDY
�ρSXDY

+ ρSYρDX
�ρSYDX

]

σ2A

(44)covPρ(MHS) =
[

ρSXρDY
�ρSXDY

+ ρSYρDX
�ρSYDX

+ ρDX
ρDY

(

1+ FρD
)]

σ2A

relationships is compatible with a stochastic process that 
mimics a “regression” to the BV of equally contributing 
parents, whereas genomic relationships result from using 
sample statistics, specifically marker frequencies, to build 
an observed “empirical genetic relatedness matrix” (see 
VanRaden [41]). Although BLUP of BV can be obtained 
by using either a theoretically-derived or an observed 
covariance matrix, the variance of the elements of the 
latter may be quite large. For example, Garcia-Baccino 
et al. [42] found that the variance of half-sib relationships 
among crossbred pigs was half as large when relatedness 
was measured in IBD segments compared to using single-
loci relatedness based on the method of Han and Abney 
[43], and almost one fourth of the variance of “identity-
by-state” calculated with the method described in [41]. In 
addition, and for the same crossbred population and for 
either ancestor–descendant relationships or for relation-
ships of collateral relatives, Forneris et al. [44] found that 
the variance of relatedness measures was smaller when 
conditioning on pedigree and SNPs than when condition-
ing on markers only. More importantly, observed prob-
abilities of IBD result in non-zero covariances between 
RBV [45] and, neither the parent–offspring covariance 
of BV does not have the parental Markov property, and 
the resulting covariance matrix of BV does not admit a 
Cholesky-root-free decomposition such as in Eq. (15).

When considering the transmission of DNA across 
generations in a lineage or a pedigree (see Additional 
file  1), Matsen and Evans [46] differentiated the genea-
logical or ancestry process from the differential recom-
bination of the grandparental genomes when producing 
the parental gamete that produces their grand progeny. 
Accounting for recombination, the fraction of the addi-
tive variance that is explained by the regression of the 
BV of a progeny on the BV of parents and grandparents 
exceeds the genetic variance explained by the “paren-
tal regression” by βS(aSS − aDS)+ βD(aSD − aDD) , such 
that the difference of variances for the RBV in the ani-
mal model with the one from the AR is non-negative, i.e., 
Var(φ∗)− Var(φAR) ≥ 0 , as proven in [29]. In general, 
identity disequilibrium can be expressed as the matrix 
difference ( � − A) . When the matrix ( � − A) is positive 
definite, it is possible to recover more additive variance 
and thus, heritability, by using our covariance matri-
ces � (of AR) or �ρ (of PAR) in the resulting estimating 



Page 10 of 14Cantet et al. Genetics Selection Evolution           (2022) 54:64 

equations, than by using the standard A matrix calcu-
lated with pedigree information solely.

Conclusions
The ancestral regression (AR) and ancestral regression to 
parents (PAR) are causal Markov models that guarantee a 
positive dependence between breeding values of relatives 
which, in turn, result in sparse inverses of the respective 
covariance matrices. We have derived the covariances 
between the breeding values of relatives that are needed 
to fit the AR and PAR models to phenotypes, pedigree, 
and genotypes to obtain BLUP of breeding values. The 
inbreeding coefficient was also derived under gametic 
disequilibrium due to differential recombination of 
grandparental genomes in the gametes.

Appendix 1

Variance of breeding values under the ancestral 
regression model (AR) and under the ancestral 
regression to parents (PAR)
By using the variance operator in the ancestral regression 
of Eq. (8) we obtain:

Var(aX) =Var(0.5aS + 0.5aD

+ βS(aSS − aDS)

+ βD(aSD − aDD)+ φX)

= Var(0.5aS + 0.5aD)+ Var(βS(aSS − aDS)

+βD(aSD − aDD))

+ 2cov(0.5aS + 0.5aD, βS(aSS − aDS)

+βD(aSD − aDD)+ Var(φX)

= 0.25Var(aS + aD)+ β2SVar(aSS − aDS)

+β2DVar(aSD − aDD)

+ 2βSβDcov(aSS − aDS, aSD − aDD)

+ 0.5cov(aS + aD, βS(aSS − aDS))

+0.5cov(aS + aD, βD(aSD − aDD)+ Var(φX)

Finally, writing all the terms as a function of elements 
of � results in the following expression:

Application of the variance operator for the ancestral 
regression to parents (PAR) model, i.e., Eq. (25) results in 
being equal to:

Appendix 2

Inbreeding under the models of ancestral 
regression and the ancestral regression to parents
Wright [28] “defined” the coefficient of inbreeding of 
individual X ( F(W) ) as FX(W) = 0.5rSD

√

(

1+ FS(W)

)(

1+ FD(W)

) , 

where FS(W) and FD(W) are the inbreeding of the sire and 
dam of X , respectively, and rSD is the correlation between 
the parental breeding values rSD = cov(aS, aD)/√
Var(aS)Var(aD) . By replacing with this correlation in 

= 0.25[Var(aS)+ Var(aD)+ 2cov(aS, aD)]

+ β2S[Var(aSS)+ Var(aDS)− 2cov(aSS, aDS)]

+ β2D[Var(aSD)

+Var(aDD)− 2cov(aSD, aDD)]

+ 2βSβDcov(aSS, aDS)− cov(aSS, aDD)

−cov(aDS, aSD)+ cov(aDS, aDD)

+0.5βS[cov(aS, aSS)− cov(aS, aDS)

+cov(aD, aSS)− cov(aD, aDS)]

+ 0.5 βD[cov(aS, aSD)− cov(aS, aDD)

+cov(aD, aSD)− cov(aD, aDD)]+ Var(φX),

(45)

Var(aX) =
{

0.25[2+ FS + FD + 2�S,D]

+β2S[2+ FSS + FDS − 2�SS,DS]

+β2D[2+ FSD + FDD − 2�SD,DD]

+2βSβD[�SS,SD −�SS,DD −�DS,SD +�DS,DD]

+0.5βS[�SS,S −�DS,S +�SS,D −�DS,D]

+0.5βD[�SD,S −�DD,S +�SD,D −�DD,D]
}

σ2A

+ Var(φX).

(46)
Varρ(aX) = Varρ(ρSaS + ρDaD)+ Varρ(φi)

= ρ2SVarρ(aS)+ ρ2DVarρ(aD)+ 2ρSρD covρ(aS, aD)+ Varρ(φi)

=
[

ρ2S(1+ FS)+ ρ2D(1+ FD)+ 2ρSρD �ρS,D

]

�2
A
+ Var(φi),
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FX(W) , we obtain the value of the inbreeding of X under 
the AR model ( FX ) in the following manner:

Consider now the cross-covariance between the pater-
nal and maternal identity disequilibrium terms:

If we replace with Eq. (48) in Eq. (47), inbreeding under 
AR is equal to:

For the PAR model inbreeding is defined to be equal to:

Hence, Varρ(aX) is:

such that ρ2S
(

1+ FρS
)

+ ρ2D

(

1+ FρD
)

+ Varρ(φi)
(

σ2
A

)−1 
= 1.

Appendix 3

Covariance between breeding values 
under the ancestral regression model 
when neither animal is an ancestor of each other
Let the BV of the related individuals X and Y be aX and 
aY . The notation, for example, will be that DDY is the 
maternal granddam of Y , SSX is the paternal grandsire 
of X , SX is the sire of X and DY the dam of Y . By using 
the covariance operator in the AR model when neither 
individual is an ancestor of each other, the covariance 
between the BV of X and Y is equal to:

(47)

FX = 0.5

[

cov(aS,aD)√
Var(aS)Var(aD)

]√
(1+ FS)(1+ FD)

= 0.5cov(aS, aD)

= 0.5cov(aS + βS(aSS − aDS), aD + βD(aSD − aDD))

= 0.5[cov(aS, aD)

+cov(aS, βD(aSD − aDD))+ cov(βS(aSS − aDS), aD)

+cov(βS(aSS − aDS), βD(aSD − aDD))]

= 0.5
[

�S,D + βD
(

�SD,S −�DD,S

)

+ βS
(

�SS,D −�DS,D

)]

+ cov(βS(aSS − aDS), βD(aSD − aDD)).

(48)

cov(βS(aSS − aDS), βD(aSD − aDD))

= βSβDcov(aSS − aDS, aSD − aDD)

= βSβD[cov(aSS, aDS)− cov(aSS, aDD)

−cov(aDS, aSD)+ cov(aDS, aDD)]
= βSβD[�SS,SD −�SS,DD −�DS,SD +�DS,DD].

(49)

FX = 0.5
[

�SD + βS
(

�SS,D −�DS,D

)

+βD
(

�SD,S −�DD,S

)

+βSβD(�SS,SD −�SS,DD −�DS,SD +�DS,DD)].

(50)FρX = 2ρSρD�ρS,D.

(51)Varρ(aX) =
(

1+ FρX
)

σ2A,

The final expression is equal to:

This is a formidable expression but will be generally 
much less involved because many of the elements of � 
will be zero, especially if inbreeding is absent.

As an example, consider the covariances among full-
sibs and half-sibs in the absence of inbreeding. For 
full-sibs SX = SY , DX = DY , SSX = SSY , DSX = DSY , 
SDX = SDY , and DDX = DDY . Then, order the indi-
viduals SS , DS , SD , DD , S , and D in a matrix array that 

�X,Y = cov[0.5(aSX + aDX)+ βSX(aSSX − aDSX)

+βDX(aSDX − aDDX), 0.5(aSY + aDY)

+βSY(aSSY − aDSY)+ βDY(aSDY − aDDY)]

= 0.25cov[aSX + aDX, aSY + aDY]

+ 0.5βSYcov[aSX + aDX, aSSY − aDSY]

+ 0.5βDYcov[aSX + aDX, aSDY − aDDY]

+ 0.5βSXcov[aSSX − aDSX, aSY + aDY]

+ βSXβSYcov[aSSX − aDSX, aSSY − aDSY]

+ βSXβDYcov[aSSX − aDSX, aSDY − aDDY]

+ 0.5βDXcov[aSDX − aDDX, aSY + aDY]

+ βDXβSYcov[aSDX − aDDX, aSSY − aDSY]

+ βDXβDYcov[aSDX − aDDX, aSDY − aDDY],

=0.25[�SX,SY +�SX,DY +�DX,SY +�DX,DY]

+ 0.5βSY[�SX,SSY −�SX,DSY +�DX,SSY −�DX,DSY]

+ 0.5βDY[�SX,SDY −�SX,DDY +�DX,SDY −�DX,DDY]

+ 0.5βSX[�SSX,SY +�SSX,DY −�DSX,SY −�DSX,DY]

+ 0.5βDX[�SDX,SY +�SDX,DY −�DDX,SY −�DDX,DY]

+ βSXβSY[�SSX,SSY −�SSX,DSY −�DSX,SSY +�DSX,DSY]

+ βSXβDY[�SSX,SDY −�SSX,DDY −�DSX,SDY +�DSX,DDY]

+ βDXβSY[�SDX,SSY −�SDX,DSY −�DDX,SSY +�DDX,DSY]

+ βDXβDY[�SDX,SDY −�SDX,DDY −�DDX,SDY +�DDX,DDY],

(52)

�X,Y = 0.5
{

0.5[�SX,SY +�SX,DY +�DX,SY +�DX,DY]

+βSY[�SX,SSY −�SX,DSY +�DX,SSY −�DX,DSY]

+βDY[�SX,SDY −�SX,DDY +�DX,SDY −�DX,DDY]

+βSX[�SSX,SY +�SSX,DY −�DSX,SY −�DSX,DY]

+βDX[�SDX,SY +�SDX,DY −�DDX,SY −�DDX,DY]
}

+ βSX
{

βSY[�SSX,SSY −�SSX,DSY −�DSX,SSY +�DSX,DSY]

+βDY[�SSX,SDY −�SSX,DDY −�DSX,SDY +�DSX,DDY]
}

+ βDX
{

βSY[�SDX,SSY −�SDX,DSY −�DDX,SSY +�DDX,DSY]

+βDY[�SDX,SDY −�SDX,DDY −�DDX,SDY +�DDX,DDY]
}

.
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contains the relationships for the ancestors of X (in the 
rows) with the ancestors of Y (in the columns), which 
results in:

Using these elements in Eq. ( 52) results in:

By a similar reasoning, we obtain the following expres-
sions for the relationships between paternal and maternal 
half-sibs, respectively:

It can be inferred that twice the product of the β param-
eters of the two sibs from either the paternal or maternal 
(half-sibs), or for both (full-sibs), results in the value of 
identity disequilibrium. Also, please note that the mag-
nitude of a half-sib relationship can be greater than 0.25 
whenever X and Y possess β with the same sign, meaning 
that both half-sibs are more alike the same grandparent. 
Conversely, when X and Y differ in the signs of their β , the 
covariance between BV is smaller than 0.25. The resem-
blance is less clear for full-sibs because their β need to 
agree in sign simultaneously with respect to the paternal 
and maternal sources of resemblance.

Appendix 4

The AR and PAR models are not equivalent
Two causal models are “Markov equivalent” whenever 
their associated direct acyclic graph (DAG) captures the 
same dependence–independence structure and the same 

�FS = 0.5+ 2(βSXβSY + βDXβDY)

(53)�FS = 0.5+ 2(βSXβSY + βDXβDY)

�PHS = 0.25+ 2βSXβSY

(54)�MHS = 0.25+ 2βDXβDY

set of conditional independencies [47, 48]. As an exam-
ple, Appendix Fig. 1 displays the DAG of half-sibs in the 
absence of any inbreeding of the grandparents ( GS and 
GD ), the common parent ( P ) and both half-sibs, for the 
AR and the PAR models. Please note that there are extra 
treks in the AR model going from aX to aY through each 
grandparent without passing by the BV of the parent.

Reading out the DAG in Appendix Fig.  1, the covari-
ance between the BV of X and Y involves two parameters 
in both the AR ( βX and βY ) and PAR ( ρP,X and ρP,Y ) mod-
els. However, in the PAR model aX and aY are condition-
ally independent on the BV of their grandparents GS and 
GD given that of their common parent P , thus the edges 
are not represented in the DAG. As a result, aX is condi-
tionally independent of aY given aP , aGS and aGD under 
the AR model, while under the PAR model aX is condi-
tionally independent of aY given aP only.

Please note that, in Appendix Fig.  1, the regression 
coefficients βX , −βX , βY and −βY directly connect aGS and 
aGD to aX and aY . These path (or regression) coefficients 
that are worth plus or minus beta are called chords and 
the graph that contains them is named a chordal graph 
[46], whereas the graphs that do not contain chords are 
called chordless graphs. Consequently, AR is a chordal 
graph whereas PAR is a chordless graph. Theorem  2 in 
[48] says that two graphs are Markov equivalent models 
if and only if they do not contain any chordless collider 
structure in four nodes. A collider dependence structure 
(see page 10 in [4]) is that for “progeny in common”:

or for “grand-progeny in common”:

in the same DAG. Colliders can occur in chordal and 
chordless graphs, whereas non-collider structures such 
as the lineage (1 → 2 → 3 → 4) or the “common ancestor” 
(CA in 4 ← 2 ← CA → 1 → 3) can only occur in chordless 
graphs. Hence, for pedigrees with four or more animals, 
the chordless PAR has a different conditional depend-
ence structure than the chordal AR, and thus they are not 
Markov equivalent models.

Also, the AR and PAR models are not equivalent in 
the sense of Henderson [36], who defined two mod-
els as equivalent when they have the same covariance 
matrix. We will show this by a numerical example. Let βS 
= 0.1166 and βD = 0.1226, and the matrix in Eq. (17) be 
equal to:

aGP1 − 0.5 → aSire − 0.5 → X ← 0.5− aDam ← 0.5− aGP2

aGS − βX,→ X ← −βX − aGD

and aGS − βY,→ Y ← −βY − aGD,

Fig. 1  The AR and the PAR models for the breeding values of two 
half-sibs (X and Y), the common parent (P) and the parents of P (GS 
and GD)
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Use of Eq.  (30) results in the covariance between the 
sire and X under the AR model being equal to:

In turn, we can derive the covariance between the BV 
of the sire and X under the PAR model as follows:

Now, to calculate the numerical value of this covari-
ance, we need to know the values of the ρ coefficients. 
These are obtained by solving the system of Eq.  (23) or 
Eq. (24). In this example:

with solution ρS = 0.528 and ρD = 0.519. Then, the covari-
ance is equal to:

Since 0.5352 ≠ 0.5085, the AR and PAR models are not 
covariance equivalent in the sense of [36].
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0.5 0.5 0 0 1 0

0 0 0.5 0.5 0 1















�S,X = 0.5(1.0148+ 0)+ 0.1166(0.50− 0.5365)

+ 0.1226(0− 0.0443) = 0.5085

covρ(aS, aX) = covρ(aS, ρS, aS + ρDaD)

= covρ(aS, ρS, aS)+ covρ(aS, ρDaD)

= ρS
(

1+ FρS

)

+ ρD�ρDS

[

0.4917 −0.0088

−0.0088 0.4864

][

ρS
ρD

]

=
[

0.2547

0.2478

]

covPAR(aS, aX) = 0.5274(1.0148)+ 0.519(0) = 0.5352
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