
Garrick and Fernando ﻿
Genetics Selection Evolution           (2022) 54:72  
https://doi.org/10.1186/s12711-022-00759-x

RESEARCH ARTICLE

A method to obtain exact single‑step 
GBLUP for non‑genotyped descendants 
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Dorian J. Garrick1*†    and Rohan L. Fernando2† 

Abstract 

Background:  Single-step genomic best linear unbiased prediction (GBLUP) involves a joint analysis of individuals 
with genotype information, and their ancestors, descendants, or contemporaries, without recorded genotypes. Live-
stock applications typically represent populations with fewer individuals with genotypes relative to the number not 
genotyped. Most breeding programmes are structured, consisting of a nucleus tier in which selection drives genetic 
gains that are propagated through descendants that represent parents in multiplier and commercial tiers. In some 
cases, the genotypes in the nucleus tier are proprietary to a breeding company, and not publicly available for a whole 
industry analysis. Bayesian inference involves combining a defined description of prior information with new informa-
tion to generate a posterior distribution that contains all available information on parameters of interest. A natural 
extension of Bayesian analysis would be to use information from the posterior distribution to define the prior distribu-
tion in a subsequent analysis.

Methods:  We derive the mixed model equations for inference on breeding values for non genotyped individuals in 
that subset of the population that is of current interest, using only data on the performance of current individuals and 
their immediate pedigree, along with prior information defined from the posterior distribution of an external BLUP or 
single-step GBLUP analysis of the ancestors of the current population.

Discussion:  Identical estimates of breeding values and their prediction error covariances for current animals of inter-
est in the multiplier or commercial tier can be obtained without requiring neither the genomic relationship matrix 
nor genotypes of any of their ancestors in the nucleus tier, as can be obtained from a single analysis using pedigree, 
performance, and genomic information from all tiers. The Bayesian analysis of the current population does not require 
explicit information on unselected genotyped animals in the external population.
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Background
In the dairy industry, the rate of genetic gain depends on 
four pathways of selection. Breeding companies control 

three of these pathways by selecting bulls to breed bulls, 
cows to breed bulls, and the bulls to breed cows that are 
made available to the industry. In the genomic era, these 
selection decisions are typically based on single-step 
genomic evaluations, using breeding-value [1] single-step 
genomic best linear unbiased prediction (SS-GBLUP) 
or marker-effects models [2]. National evaluations that 
use pedigree-based BLUP (P-BLUP), which does not 
account for the genomic selection in the three pathways 
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controlled by the breeding companies, will be biased [3]. 
One solution is to combine all genomic and pedigree 
information in the national evaluation. However, breed-
ing companies may use proprietary genomic information 
that they may be reluctant to reveal or make available 
for the national evaluation, such as panels with different 
densities, or imputed variants that might include causal 
mutations.

Martinez and Rothschild [4] presented a recursive 
approach that is also known as the Kalman filter [5] for 
sire evaluation that efficiently updates the inverse of the 
coefficient matrix, estimates of fixed effects, and esti-
mates of breeding values from the most recent evalu-
ation, using only incidence matrices and phenotypes 
collected since that evaluation. Gianola and Sorensen 
[6] presented a similar result using a Bayesian updating 
approach to evaluate only the descendants while incorpo-
rating prior information on the merit of ancestors. That 
Bayesian approach extended results outlined by Gianola 
[7] and in teaching notes by Quaas [8] and has been used 
to combine information from external genetic evalua-
tions such as from evaluations in other countries that 
comprise some of the same ancestors, using the posterior 
means and covariances of breeding values from the exter-
nal evaluations [9, 10]. In most applications, however, the 
posterior covariance matrix is large, its off-diagonals are 
unknown, and only approximations of its diagonals are 
available. Furthermore, phenotypes used in the current 
evaluation may also have been used in the external evalu-
ation. Thus, various approximations are used to combine 
information from the external evaluations with that from 
the current data set [11, 12].

In this paper, we present a Bayesian updating approach 
that does not require the posterior means and covari-
ances for all animals in the external evaluation to obtain 
the same estimated breeding values for current animals 
as would be obtained using all data in a single analysis. 
Suppose the set e of animals in the external evaluation 
are related to the set c of current animals only through 
a subset a of animals in set e that are immediate ances-
tors of animals from set e . In addition, assume that phe-
notypes used in the current evaluation did not contribute 
to the external evaluation. Here, we show that estimation 
of breeding values of the current animals only requires 
the posterior means and covariances for the animals in 
subset a , and not for any of their ancestors or unselected 
relatives. Similarly, when genomic information is limited 
to the external evaluation, we show that our approach 
requires neither the genomic relationship matrix nor 
genotypes for any of the ancestors to obtain the same 
results as would be obtained using SS-GBLUP, where all 

genomic, phenotypic, and pedigree information are com-
bined in a single analysis.

We also show that this result can be derived by first set-
ting up Henderson’s mixed model equations (MME) for 
the complete pedigree, and then eliminating (i.e. absorb-
ing) the equations for the animals in set e that do not 
belong to subset a , and all other effects that are unnec-
essary to the current evaluation. Unlike in the Bayes-
ian approach, such a derivation does not require the 
assumptions of normality for the breeding values or the 
residuals.

Our approach readily extends to include fixed effects 
such as for inbreeding, heterosis or contemporary groups 
that need to be estimated using data in both the external 
and current evaluation.

Methods
Bayesian updating theory is presented here to efficiently 
combine SS-GBLUP results from an external evaluation 
with new or unused phenotypic and pedigree data that 
are available from the current data set. It is assumed that 
the raw phenotypic and genomic data from the exter-
nal evaluation are not available, but posterior means 
and covariances for breeding values of the parents of 
the animals in the current data set are available. We will 
first derive formulas to combine results from an external 
pedigree-based BLUP (P-BLUP) analysis with phenotypic 
and pedigree information available in the current data 
set. Then, that derivation will be repeated but extended 
to use results from an external SS-GBLUP evaluation 
rather than a P-BLUP evaluation.

Efficient Bayesian updating using results of a P‑BLUP 
evaluation
Bayesian derivation
Let ue denote the breeding values of the animals in the 
external data set and uc the breeding values of a set c of 
animals in the current dataset whose data have not con-
tributed to the external P-BLUP analysis. Suppose the 
conditional distribution of uc given ue is such that:

where ua , a subset of the elements in ue , is the vector of 
breeding values of a set a of animals that are the parents 
of current animals. In the absence of selection, the joint 
prior for ua and uc given pedigree information is:

In addition, we assume the current phenotypes can be 
modeled as:

f(uc|ue) = f(uc|ua),

(1)
[

ua
uc

]

∼ N

([

0
0

]

,

[

Aaa Aac

Aca Acc

]

σ2u

)

.
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where β is a vector of fixed effects that might include 
those that are unique to the current dataset and those 
that are common to the external and current data sets, Xc 
has full column rank, implying estimable β , and ec is nor-
mal with null mean and covariance matrix Iσ2e.

Then, defining the vector of phenotypes used in the 
external analysis as ye , under normality of breeding values 
and residuals, and a flat prior for β , the posterior distribu-
tion of (β,ua)|ye is normal with mean [β̃

′
, ũ′a]

′ and covari-
ance matrix C , which can be estimated from Markov chain 
Monte Carlo (MCMC) samples drawn from the posterior 
distribution of ua and β . Suppose that conditional on β and 
uc , yc is independent of ye . Then, with a flat prior for β , the 
posterior distribution of ua , β , and uc given all phenotypes, 
can be written as:

yc = Xcβ+ Zcuc + ec,

(2)f(β,uc,ua|ye, yc) ∝ f(β,uc,ua, ye, yc)

(3)= f(yc|β,ua,uc, ye)f(uc|β,ua, ye)f(β,ua|ye)

(4)= f(yc|β,uc)f(uc|ua)f(β,ua|ye)

where

where 
[

Cββ Cβa

Caβ Caa

]

 is the inverse of the matrix C of poste-

rior covariances for β and ua given the external data, and

By combining all terms that involve ua , β , and uc , the pos-
terior for ua , β , and uc can be written as:

where

which can be recognized as the exponential term of the 
normal distribution for β , ua , and uc , and their means, β̂ , 
ûa , and ûc , are the solution to:

(5)∝ exp

{

−
1

2
(Q1 +Q2 +Q3)

}

,

Q1 =
1

σ2e
(yc − Xcβ− Zcuc)

′(yc − Xcβ− Zcuc)

(6)Q2 =
1

σ2u
(uc − AcaA

−1
aa ua)

′A−1
c.a (uc − AcaA

−1
aa ua)

(7)

=
1

σ2u
[u′a,u

′
c]

[

A−1
aa AacA

−1
c.aAcaA

−1
aa −A−1

aa AacA
−1
c.a

−A−1
c.aAcaA

−1
aa A−1

c.a

][

ua

uc

]

,

Q3 =
[

(β− β̃)′, (ua − ũa)
′
]

[

Cββ Cβa

Caβ Caa

][

(β− β̃)
(ua − ũa)

]

,

Ac.a = Acc − AcaA
−1
aa Aac.

f(β,uc,ua|ye, yc) = exp

{

−
1

2
Q

}

,

(8)

Q =
�

(β− β̂)′, (ua − ûa)
′, (uc − ûc)

′
�









1
σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1
σ2u
A−1
aa AacA

−1
c.aAcaA

−1
aa − 1

σ2u
A−1
aa AacA

−1
c.a

1
σ2e
Z′
cXc − 1

σ2u
A−1
c.aAcaA

−1
aa

1
σ2e
Z′
cZc +

1
σ2u
A−1
c.a













(β− β̂)
(ua − ûa)
(uc − ûc)



,

(9)









1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1

σ2u
A−1
aa AacA

−1
c.aAcaA

−1
aa − 1

σ2u
A−1
aa AacA

−1
c.a

1

σ2e
Z′
cXc − 1

σ2u
A−1
c.aAcaA

−1
aa

1

σ2e
Z′
cZc +

1

σ2u
A−1
c.a













β̂
ûa
ûc





=







1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc






.
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It can be shown that A−1
c.a = Acc , where a matrix 

with superscripts represents a submatrix of the 
inverse of the full matrix (shown below), and that 
AcaA

−1
aa = −(Acc)−1Aca [2]. So, the system of equations 

that needs to be solved to obtain the posterior means, ûa 
and ûc , given all the information from the external and 
current data sets, becomes:

Note that these equations only require the posterior 
mean vectors β̃ and ũa and the inverse of their posterior 
covariance matrix C from the external evaluation, but the 
evaluations from Eq. (10) for animals in sets a and c are 
identical to those that would be obtained using all infor-
mation from the external and current data sets in a single 
analysis.

Setting up these equations in the form shown in Eq. (10) 
requires computing Aac and Acc , which are submatrices of 
the inverse of the additive relationship matrix given in Eq. 
(1):

which can be obtained from those of the inverse of

which is the additive genetic relationship matrix for the 
complete pedigree of animals in set c , with d being the 
set of ancestors of animals from the subset e of external 
animals that do not belong to the set a . The inverse of A 
is known to be very sparse, with non-zero off-diagonals 
only between mates and between parents and offspring 
[13]. Thus, let the inverse of this relationship matrix for 
the full pedigree A be denoted as F−1 , with partitions:

where for example, the submatrix in this inverse that cor-
responds to Aaa is denoted as Faa , which may differ from 
Aaa in Eq. (11); furthermore, in Eq. (13) we have recog-
nized that in the inverse of Eq. (12), the submatrix that 
corresponds to Adc , and its transpose, are null matrices 

(10)









1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1

σ2u
Aac(Acc)−1Aca 1

σ2u
Aac

1

σ2e
Z′
cXc

1

σ2u
Aca 1

σ2e
Z′
cZc +

1

σ2u
Acc















β̂

ûa

ûc







=









1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc









.

(11)
[

Aaa Aac

Aca Acc

]−1

=

[

Aaa Aac

Aca Acc

]

,

(12)A =





Add Ada Adc

Aad Aaa Aac

Acd Aca Acc



 ,

(13)F−1 =





Fdd Fda 0

Fad Faa Fac

0 Fca Fcc



 ,

because animals in d do not contain any parents or mates 
of those in c . In Appendix 1, we show that two of the sub-
matrices in the right-hand side of Eq. (11) are equal to the 
corresponding submatrices in the right-hand side of Eq. 
(13), namely

and

Thus, the MME in Eq. (10) can be written in a more con-
venient form as:

These MME involve a quadratic equation comprising the 
inverse of Fcc , but as shown in Appendix 2,

where Faa is the submatrix in Eq. (13) corresponding to 
Aaa from the inverse of A in Eq. (12), constructed for the 
complete pedigree of animals in set c , and submatrix Eaa 
in

is the submatrix corresponding to Aaa from the inverse of 
A constructed for the pedigree used in the external anal-
ysis of animals in set e . Given that both Faa and Eaa are 
sparse, it is preferable to write Eq. (16) as:

A numerical example is included in Additional file  1 
demonstrating that the solution to Eq. (19) for β̂ , ûa , and 
ûc are identical to those from a joint analysis of all data.

It should be noted that the matrix difference Faa − Eaa 
represents the pedigree-based contributions of animals in 

(14)Aac = Fac

(15)Acc = Fcc.

(16)









1

σ 2
e

X′
cXc + Cββ Cβa 1

σ 2
e

X′
cZe

Caβ Caa + 1

σ 2
u

Fac(Fcc)−1Fca 1

σ 2
u

Fac

1

σ 2
e

Z′
cXc

1

σ 2
u

Fca 1

σ 2
e

Z′
cZc +

1

σ 2
u

Fcc















β̂

ûa

ûc







=









1

σ 2
e

X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ 2
e

Z′
cyc









.

(17)Fac(Fcc)−1Fca = Faa − Eaa,

(18)
[

Add Ada

Aad Aaa

]−1

=

[

Edd Eda

Ead Eaa

]

,

(19)









1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZe

Caβ Caa + 1

σ2u
(Faa − Eaa) 1

σ2u
Fac

1

σ2e
Z′
cXc

1

σ2u
Fca 1

σ2e
Z′
cZc +

1

σ2u
Fcc













β̂
ûa
ûc





=







1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc






.
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c to their parents in a which has been shown in [14] can be 
constructed in a single pass through the pedigree.

Non‑Bayesian derivation
Here, we show that the mixed model equations (MME) 
given in Eq. (16), which were derived using Bayesian argu-
ments, can also be obtained by eliminating the equations 
for ancestral animals in the set d from the usual MME for 
the full analysis of the complete data in sets e and c . To sim-
plify this presentation, we will ignore all fixed effects in sets 
e and c and only present the equations for the breeding val-
ues. However, the derivation readily extends to situations 
where there are fixed effects common to the phenotypic 
data used in the external and current analyses, in addition 
to fixed effects that can only be estimated from the external 
data, and those that can only be estimated from the data 
contributing to the current analysis.

Consider the MME for joint evaluation of animals from 
the complete pedigree:

To eliminate ûd from these equations, we will use the 
notation P = 1

σ2e
Z′
dZd +

1
σ2u
Fdd to represent the leading 

diagonal block of the MME corresponding to the breed-
ing values of the ancestral animals in d . Then, the MME 
with ûd eliminated can be written as:

Next, we will show how Eq. (21) can be constructed by 
combining results from the external evaluation of set e 
with matrices relevant to the evaluation of animals in set 
c . The MME for the external evaluation is:

We show in Appendix 1 that Fac and Fcc in Eq. (13) are 
identical to Aac and Acc in Eq. (11). Similarly, it can be 
shown that Fdd and Fda in Eq. (13), which were used in 
(21), are identical to Edd and Eda in Eq. (18), which were 
used in Eq. (22). Thus, these MME can be written as:

(20)









1

σ2e
Z′
d
Zd +

1

σ2u
Fdd 1

σ2u
Fda 0

1

σ2u
Fad 1

σ2e
Z′
aZa +

1

σ2u
Faa 1

σ2u
Fac

0 1

σ2u
Fca 1

σ2e
Z′
cZc +

1

σ2u
Fcc















ûd

ûa

ûc







=









1

σ2e
Z′
d
yd

1

σ2e
Z′
aya

1

σ2e
Z′
cyc









.

(21)

[

1

σ2e
Z′
aZa +

1

σ2u
Faa − 1

σ2u
FadP−1 1

σ2u
Fda 1

σ2u
Fac

1

σ2u
Fca 1

σ2e
Z′
cZc +

1

σ2u
Fcc

][

ûa

ûc

]

=

[

1

σ2e
Z′
aya −

1

σ2u
FadP−1 1

σ2e
Z′
d
yd

1

σ2e
Z′
cyc

]

.

(22)

[

1
σ2e
Z′
dZd +

1
σ2u
Edd 1

σ2u
Eda

1
σ2u
Ead 1

σ2e
Z′
aZa +

1
σ2u
Eaa

]

[

ũd
ũa

]

=

[

1
σ2e
Z′
dyd

1
σ2e
Z′
aya

]

.

Now, eliminating the equations for ũd in Eq. (23) gives:

Note that Caa = ( 1
σ2e
Z′
aZa +

1
σ2u
Eaa − 1

σ2u
FadP−1 1

σ2u
Fda)−1 is 

the covariance matrix of prediction errors for ua from the 
external analysis. So, using ũa and Caa from the external 
analysis, Eq. (21) can be written as:

These MME are identical to those derived by the Bayes-
ian approach in Eq. (19), except for the components cor-
responding to the fixed effects, which were ignored in 
this derivation.

Extension to SS‑GBLUP
In SS-GBLUP, following [1], the joint prior for ua and uc 
given pedigree and marker information is taken to be:

Then, the MME for combining the external information 
for SS-GBLUP becomes:

where β̃ and ũa are the posterior means of β and ua from 
the external SS-GBLUP analysis and Cββ , Cβa , Caβ , and Caa 
are their posterior covariance matrices from the external 
SS-GBLUP analysis, which are algebraically equal to the 
relevant blocks of the inverse of the left-hand side matrix. 
Given that genomic information is limited to the external 
data set, the only dense part of H−1 will be the block cor-
responding to the animals in set a . So, Hac = Aac = Fac , 
and Hcc = Acc = Fcc , and the MME become:

(23)

[

1
σ2e
Z′
dZd +

1
σ2u
Fdd 1

σ2u
Fad

1
σ2u
Fda 1

σ2e
Z′
aZa +

1
σ2u
Eaa

]

[

ũd
ũa

]

=

[

1
σ2e
Z′
dyd

1
σ2e
Z′
aya

]

,

(24)

(

1

σ2e
Z′
aZa +

1

σ2u
Eaa −

1

σ2u
FadP−1 1

σ2u
Fda

)

ũa

=
1

σ2e
Z′
aya −

1

σ2u
FdaP−1 1

σ2e
Z′
dyd.

(25)

[

C−1
aa + 1

σ2u
Faa − 1

σ2u
Eaa 1

σ2u
Fac

1
σ2u
Fca 1

σ2e
Z′
cZc +

1
σ2u
Fcc

]

[

ûa
ûc

]

=

[

C−1
aa ũa

1
σ2e
Z′
cyc

]

.

[

ua
uc

]

∼ N

([

0
0

]

,

[

Haa Hac

Hca Hcc

]

σ2u

)

.

(26)



















1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1

σ2u
Hac(Hcc)−1Hca 1

σ2u
Hac

1

σ2e
Z′
cXc

1

σ2u
Hca 1

σ2e
Z′
cZc +

1

σ2u
Hcc

























β̂c

ûa

ûc







=









1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc









,
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The posterior mean vectors and covariance matrices in 
these MME can be estimated from MCMC samples for 
β and ua drawn from their posterior in the external analy-
sis. The identities given in Eqs. (14), (15) and (17) can be 
used to write the MME as:

Practical implementation and discussion
A full evaluation would use pedigree, phenotypic, and 
genomic data on all individuals in the population. The 
equalities derived in this paper show that a current evalu-
ation using only a subset of the pedigree and phenotypes, 
and without any individual genomic information, can 
provide identical predictions of random effects and cor-
responding reliabilities on current animals. The posterior 
means and variances for parents of the current animals 
must be available from an external evaluation to be used 
as priors in the evaluation. In circumstances where some 
fixed effects such as for inbreeding, heterosis, or con-
temporary effects, are relevant to phenotypes in both the 
external and current analyses, then the posterior infor-
mation from those effects would also need to be available 
from the external evaluation, as previously described by 
Henderson [15]. We omit some of the details for handling 
these fixed effects common to the two analyses in the 
description below, but include that case in the example 
we describe in Additional file 1.

Operationally, the following steps would be required to 
efficiently implement our approach.

(27)

















1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1

σ2u
Hac(Hcc)−1Hca 1

σ2u
Fac

1

σ2e
Z′
cXc

1

σ2u
Fca 1

σ2e
Z′
cZc +

1

σ2u
Fcc























β̂c

ûa

ûc







=









1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc









.

(28)

















1

σ2e
X′
cXc + Cββ Cβa 1

σ2e
X′
cZc

Caβ Caa + 1

σ2u
(Faa − Ecc) 1

σ2u
Fac

1

σ2e
Z′
cXc

1

σ2u
Fca 1

σ2e
Z′
cZc +

1

σ2u
Fcc























β̂c

ûa

ûc







=









1

σ2e
X′
cyc + Cβββ̃+ Cβaũa

Caββ̃+ Caaũa
1

σ2e
Z′
cyc









.

External analysis

1.	 Run a so-called external evaluation, for example 
using MCMC for P-BLUP or SS-GBLUP, so as to 
calculate a vector of EBV and their correspond-
ing matrix of prediction error variance-covariances 
(PEV) from an analysis that excludes the current ani-
mals.

2.	 Store the EBV = ũa and PEV = Caa from the external 
analysis for those animals that are immediate ances-
tors of the current animals. In the event that fixed 
effects such as heterosis are common to the external 
and current analyses, the fixed effects solutions β̃ and 
the corresponding blocks Cββ , Cβa , and Caβ , also need 
to be stored.

3.	 Extract just that partition of the inverse numerator 
relationship matrix from the external analysis ( Eaa ) 
that corresponds to the immediate ancestors of the 
current animals for which the PEV were stored.

Current analysis

1.	 Compute the inverse numerator relationship matrix 
for the full pedigree including all current and external 
animals, then obtain the submatrix partitions corre-
sponding to the ancestors from the external analysis 
and the current animals ( Faa,Fac,Fca, and Fcc ), but 
omitting the partitions corresponding to the distant 
ancestors ( Fdd,Fda, and Fad).

2.	 Form the least squares equations corresponding to 
the mixed model equations for the current analysis, 
including equations for random effects correspond-
ing to only the current and direct ancestors, but not 
the distant ancestors from the external analysis.

3.	 Augment the submatrix partitions of the ran-
dom effects with the corresponding partitions 
of the inverse numerator relationship matrices 
( Faa,Fac,Fca, and Fcc ) multiplied by the scalar 
inverse genetic variance.

4.	 If no fixed effects are common to the two analyses, 
invert the PEV for ancestors obtained from the exter-
nal analysis ( C−1

aa  ), otherwise invert the matrix C of 
posterior covariances for β and ua given the external 
data to obtain Cββ , Cβa , Caβ , and Caa.

5.	 Augment the left-hand side matrix by adding ( Caa ) 
and subtracting the corresponding submatrix par-
tition of the inverse of the numerator relationship 



Page 7 of 9Garrick and Fernando ﻿Genetics Selection Evolution           (2022) 54:72 	

matrix for the ancestors based on the pedigree used 
in the external analysis multiplied by the scalar 
inverse genetic variance. Recall that subtraction of 
the latter matrix can be avoided if Faa − Eaa is directly 
computed [14] and used in place of Faa in step 1 of 
the current analysis.

6.	 If fixed effects are common to the external and cur-
rent analyses, further augment the relevant left hand 
side matrix block of X′

cXc with Cββ and the offdiago-
nal blocks that relate fixed effects to breeding values 
with Caβ and Cβa.

7.	 Augment the right-hand side by adding the inverse 
PEV times the EBV ( Caaũa ) for the external animals 
that need to be included in the current analysis.

8.	 If fixed effects are common to the external and cur-
rent analyses, further augment the relevant subma-
trices on the right hand side with Caββ̃ , Cβaũa , and 
Cβββ̃.

9.	 Solve the resulting equations, for example by 
MCMC.

The order of the equations in the external analysis plus 
the order of the equations in the current analysis must at 
least slightly exceed the order of the equations in a full 
combined analysis, because equations for any parents of 
animals in the current analysis that are in the external 
analysis will be present in both analyses, as well as any 
fixed effects common to both analyses. Nevertheless, 
the overall computing effort can be reduced by separate 
external and current analyses, as the analyses can occur 
at different frequencies, and the memory requirements 
are reduced in separate analyses compared to a combined 
analysis.

The exact analysis described requires a PEV matrix 
from the external analysis. The use of MCMC sam-
plers to obtain PEV is becoming increasingly common 
in many applications, including those with millions of 
animals, such as in the multibreed national dairy cat-
tle evaluation in New Zealand (https://​www.​dairy​nz.​
co.​nz/​animal/​animal-​evalu​ation/), the Pan American 
Hereford beef cattle evaluation run by the American 
Hereford Association (https://​heref​ord.​org/​genet​ics/​
breed-​impro​vement/​epd-​trends/), and the interna-
tional multibreed beef cattle evaluation run by Interna-
tional Genetic Solutions (https://​www.​inter​natio​nalge​
netic​solut​ions.​com/​site/). Nevertheless, many organi-
sations still rely on preconditioned conjugate gradient 
(PCG) solvers and use approximations for the diagonal 
elements of the PEV matrix. The use of approxima-
tions will not enable the exact same predictions to be 
obtained as from a single analysis, as prediction error 
covariances are influenced by data structure, such 
as the distribution of progeny across contemporary 

groups, as well as by pedigree relationships. In circum-
stances where only a small number of animals in the 
external evaluation represent the parents in the current 
analysis, the PEV matrix could be reconstructed using 
PCG one row/column at a time by setting the right-
hand side matrix to null, except for a single element of 
unity corresponding to an animal in set a.

The structure of the data that allows the simplifica-
tions shown in this approach will not necessarily exist 
when arbitrarily partitioning a dataset into an external 
and a current analysis. In particular, the derivations took 
advantage of the inverse numerator relationship matrix 
having a null off-diagonal partition for the animals in 
the current analysis relative to distant ancestors in the 
external analysis, as in Eq. (13). Nevertheless, there are 
circumstances when such data structures already exist. 
One such circumstance is when the external evaluation 
includes the nucleus tier of a breeding population and the 
current analysis includes a commercial tier that sources 
one or both sexes of parents from the nucleus, but does 
not contribute any of these descendants to the nucleus. 
This represents a form of a closed nucleus breeding 
scheme with respect to the animals that are comprised in 
the current analysis.

Application of the approach may extend to situations 
where the genomic relationship matrix of ancestors is 
available, but the current analysis might use posterior 
information from the external analysis simply to reduce 
computational effort. The frequencies with which the 
external and the current analysis may be undertaken 
could be quite different. For example, in a pig breeding 
enterprise, the external analysis might include all pure-
bred individuals in the herds that comprise the nucleus 
tier and the current analysis might include all purebred 
and crossbred animals that were born in and comprise 
the multiplier tier, along with their immediate purebred 
ancestors that were sourced from the nucleus. In this 
case, the frequencies of either of the evaluations would 
be dictated by the frequencies with which meaningful 
new data become available in the corresponding tiers.

In dairy and other animal industries, there is often 
considerable variation in the quality of data collected on 
farm. Information nucleus herds, herds that include bull 
dams, dedicated progeny testing herds, or herds used for 
measuring novel traits might be included in an external 
analysis. Large-scale commercial herds that can be char-
acterised with poorer recording practices could define 
the animals used in the current analysis. An extreme 
example might comprise an external single-step analysis 
followed by a current analysis that includes only a single 
herd, as had been previously defined for P-BLUP [8, 16]. 
The current analysis could even be conducted on-farm, 
in real time, and would require only limited computing 

https://www.dairynz.co.nz/animal/animal-evaluation/
https://www.dairynz.co.nz/animal/animal-evaluation/
https://hereford.org/genetics/breed-improvement/epd-trends/
https://hereford.org/genetics/breed-improvement/epd-trends/
https://www.internationalgeneticsolutions.com/site/
https://www.internationalgeneticsolutions.com/site/
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effort. This might be useful for herds that use systems 
such as inline milk meters that by nature will have less 
reliable predictions of milk composition than those 
obtained by central laboratories using state of the art 
Fourier transform mid-infrared spectroscopy. Such herds 
would obtain evaluations that benefited from the accu-
rate information available from the external evaluation 
on the sires they used, yet these herds likely add little real 
information to improve the accuracy of ancestors that 
already have high reliability EBV.

In circumstances where genomic information or selec-
tion practices applied in the nucleus tiers may be propri-
etary, the managers of those herds may be reluctant to 
share genotypes or phenotypes. This might be because 
the generation of high quality phenotypic data and a 
suitably scaled genomic training population provides a 
barrier to entry for competitors, or it might be because 
proprietary loci such as causal mutations that are being 
retained as trade secrets represent a competitive advan-
tage that would be eroded by sharing. In these circum-
stances, the approach developed in this paper shows that 
only the posterior means and covariances of the immedi-
ate ancestors of the animals in the current analysis need 
to be publicly shared. Neither the details of the selection 
intensities applied to genomic screening of young sires, 
nor the identities, pedigrees or genotypes of those selec-
tion candidates that did not get selected for subsequent 
use, need to be shared. All the information that accounts 
for pre-selection bias is contained within the posterior 
information derived from the external analysis.

The method described can be applied to more complex 
models than those used in this paper. That is, the concept 
of using information from the posterior distribution from 
one analysis as prior information in a subsequent analy-
sis readily extends to marker effects models, multiple-
trait models, maternal effects models, random regression 
models, threshold models, etc.

The approach is, however, not easily extended to gen-
eral circumstances where the current dataset includes 
genotyped as well as non genotyped individuals. In that 
situation it is not sufficient to use the posterior distribu-
tion of marker effects from the external analysis as prior 
information in the current analysis. This is because in 
single-step analyses marker covariates for non-genotyped 
individuals are implicitly or explicitly imputed by regres-
sion of non genotyped animals on the genotypes of all 
pedigree relatives.

Conclusion
We have demonstrated using a Bayesian derivation 
assuming normality, and confirmed from a mixed 
model approach absorbing effects of no immediate use, 

that recursive updating is possible without the need 
for access to all data. We show that inferences identical 
to those made from a complete analysis of all pedigree, 
performance, and genomic information can be made by 
combining pedigree and performance information for 
current animals with prior information obtained from an 
external evaluation that need not extend beyond that of 
the parents in the current analysis. Information regard-
ing any genomic or other preselection that was charac-
terised in the external analysis is not directly required in 
the current analysis, as all that information is conveyed in 
the posterior information from the immediate ancestors 
that are represented in the current analysis. That poste-
rior information comprises the prior information in the 
current analysis. In spite of the current popularity of sin-
gle-step methods that reanalyze all information for every 
evaluation, we believe there is utility in analyses that 
carry relevant information from the posterior informa-
tion that is obtained from one analysis forward as prior 
information in a subsequent analysis, without recourse 
to all the pedigree, performance, or genomic information 
that was used in the previous analysis.

Appendix 1
Here, we show that Aac and Acc , which are submatrices 
of Eq. (11), are identical to Fac and Fcc from Eq. (13). To 
show this, consider the inverse of the positive-definite 
matrix, V , partitioned as:

Partitioned matrix results [17] can be used to show that:

and similarly

Then, it follows that:

So, by taking V11 = Fdd , V12 = [Fda, 0] , and

the inverse in Eq. (11) can be written as:

(29)
[

V11 V12

V21 V22

]−1

=

[

V11 V12

V21 V22

]

.

V22 = (V22 − V21V
−1
11 V12)

−1,

V22 = (V22 − V21(V11)−1V12)−1.

(30)V−1
22 = V22 − V21(V11)−1V12.

V22 =

[

Faa Fac

Fca Fcc

]

,

(31)
[

Aaa Aac

Aca Acc

]−1

=

[

Faa − Fad(Fdd)−1Fda Fac

Fca Fcc

]
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and Aac = Fac and Acc = Fcc , which are sparse and can 
be computed using Henderson’s efficient algorithm [13] 
with the complete pedigree for the animals in the sets e 
and c.

Appendix 2
Here we show that Faa − Eaa = Aac(Acc)−1Aca . Given the 
notation in Eq. (29), partitioned matrix results [17] can 
be used to show that:

and

Now, taking V11 = 
[

Fdd Fda

Fad Faa

]

 , V21 = [0,Fca] , and 

V22 = Fcc,
the inverse in Eq. (18) becomes:

which shows that Eaa = Faa − Fac(Fcc)−1Fca , and
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Additional file 1. Numerical example of Bayesian updating of a P-BLUP 
evaluation. This example shows that Bayesian updating of an external 
evaluation with the current data yields identical results to those from a 
joint analysis of the data from the external and the current evaluations. 
In this example, the posterior mean vectors and covariance matrices 
that are needed for the Bayesian updating analysis are obtained directly 
from the solutions and the inverse of the coefficient matrix for the MME 
of the external analysis, rather than from MCMC samples. The PDF file 
shows the Julia script and the results from running that script. The Jupy-
ter Notebook containing the Julia script will require a Jupyter Notebook 
application to run or modify the script.
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(32)=

[

Aaa Aac

Aca Acc

]

,

V11 = (V11 − V12(V22)−1V21)−1,

(33)V−1
11 = V11 − V12(V22)−1V21.

(34)
[

Add Ada

Aad Aaa

]−1

=

[

Fdd Fda

Fad Faa − Fac(Fcc)−1Fca

]

(35)=

[

Edd Eda

Ead Eaa

]

,

Faa − Eaa = Fac(Fcc)−1Fca.
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