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Abstract 

Background  The genetic correlation between purebred (PB) and crossbred (CB) performances ( rpc ) partially deter-
mines the response in CB when selection is on PB performance in the parental lines. An earlier study has derived 
expressions for an upper and lower bound of rpc , using the variance components of the parental purebred lines, 
including e.g. the additive genetic variance in the sire line for the trait expressed in one of the dam lines. How to 
estimate these variance components is not obvious, because animals from one parental line do not have phenotypes 
for the trait expressed in the other line. Thus, the aim of this study was to propose and compare three methods for 
approximating the required variance components. The first two methods are based on (co)variances of genomic 
estimated breeding values (GEBV) in the line of interest, either accounting for shrinkage (VCGEBV-S) or not (VCGEBV). The 
third method uses restricted maximum likelihood (REML) estimates directly from univariate and bivariate analyses 
(VCREML) by ignoring that the variance components should refer to the line of interest, rather than to the line in which 
the trait is expressed. We validated these methods by comparing the resulting predicted bounds of rpc with the rpc 
estimated from PB and CB data for five traits in a three-way cross in pigs.

Results  With both VCGEBV and VCREML, the estimated rpc (plus or minus one standard error) was between the upper 
and lower bounds in 14 out of 15 cases. However, the range between the bounds was much smaller with VCREML 
(0.15–0.22) than with VCGEBV (0.44–0.57). With VCGEBV-S, the estimated rpc was between the upper and lower bounds in 
only six out of 15 cases, with the bounds ranging from 0.21 to 0.44.

Conclusions  We conclude that using REML estimates of variance components within and between parental lines to 
predict the bounds of rpc resulted in better predictions than methods based on GEBV. Thus, we recommend that the 
studies that estimate rpc with genotype data also report estimated genetic variance components within and between 
the parental lines.
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Background
The genetic correlation between purebred (PB) and cross-
bred (CB) performances ( rpc ) is an important param-
eter in crossbreeding programs, because the rpc partially 
determines the response in CB performance when selec-
tion is based on PB performance in the parental lines [1, 
2]. Thus; low values of rpc may indicate that CB informa-
tion should be collected when the aim is to improve CB 
performance.

In livestock populations where crossbreeding is 
applied, rpc is typically lower than 1. For example, the 
average estimated rpc across traits was about 0.63 in pigs 
[3], and about 0.71 in poultry [4]. Two phenomena can 
lead to rpc values being lower than 1, namely genotype-
by-environment interactions (GxE) and genotype-by-
genotype interactions (GxG, i.e. non-additive genetic 
effects).
rpc is defined as the correlation between the additive 

genetic values of PB individuals, for PB and CB perfor-
mances [2]. CB performance can be seen as a trait that is 
not expressed in the PB breeding individuals themselves, 
but in their CB offspring. The rpc in a given breeding 
line (e.g. line 1) when mated to another breeding line is 
defined as:

where σ1 is the standard deviation of the additive genetic 
values for PB performance of individuals in line 1, σ1(C) 
is the standard deviation of the additive genetic values 
of individuals in line 1 for the trait expressed in CB, and 
σ1,1(C) is the covariance between the additive genetic 
values in line 1 for PB and CB performances [2, 5]. Sup-
pose the causal loci and their true average effects of allele 
substitution (hereafter called average effects) are known, 
the vector of additive genetic values of individuals in line 
1 for the trait expressed in CB animals ( u1(C) ) could be 
obtained as the product of the matrix of genotypes of 
individuals in line 1, and the vector of average effects 
expressed in CB animals. σ1(C) could then be computed as 
the standard deviation of u1(C) , and σ1,1(C) as the covari-
ance between u1(C) and the vector of additive genetic val-
ues of individuals in line 1 for the trait expressed in line 1 
(i.e. for PB performance, u1).
rpc can be estimated from phenotypes measured on 

both PB and CB animals when the pedigree relationships 
between these animals are known. However, in practice 
collecting CB phenotypes can be costly, and the pedigree 
of CB animals is often not recorded. The need for pedi-
gree records can be alleviated by genotyping the PB and 
CB animals that have phenotypes. The genotypes pro-
vide a link between PB and CB performances, enabling 
the estimation of rpc . Although this approach can lead to 

(1)rpc =
σ1,1(C)

σ1σ1(C)
,

accurate estimates of rpc [6–8], it requires large invest-
ments for phenotyping and genotyping CB animals, while 
it is uncertain that using such data yields more profit. 
Therefore it may be beneficial for breeders to use predic-
tions of rpc based only on information from the parental 
lines.

In a previous study, Duenk et al. [9] derived expressions 
for the approximate bounds of rpc based on true variance 
components computed from the effects of quantitative 
trait loci (QTL) and the genotypes in the parental lines. 
These expressions predict the lower and upper bounds of 
rpc when only GxG and no GxE interaction is present. For 
brevity, we will simply use the symbol rpc , but this symbol 
should be interpreted as the decrease of rpc due to GxG 
interactions, throughout the manuscript. The expressions 
for the bounds of rpc allow to predict rpc without the use 
of data from CB animals. For example, the approximate 
lower bound of rpc in line 1 can be predicted as:

In Eq.  (2), σ1 is the standard deviation of the additive 
genetic values for PB performance in line 1 that is typi-
cally estimated from data used in routine evaluations. 
However, the other two variance components in Eq.  (2) 
differ from the genetic parameters that are typically 
estimated. σ1(2) is the standard deviation of the additive 
genetic values of individuals in line 1 (i.e., the line for 
which rpc is predicted, called the focal line), for the trait 
expressed in line 2 (called the trait line). Suppose the 
causal loci and their true average effects are known, the 
vector of additive genetic values of individuals in line 1 
for the trait expressed in line 2 ( u1(2) ) could be obtained 
as the product of the matrix of genotypes of individu-
als in line 1, and the vector of average effects expressed 
in line 2. σ1(2) could then be computed as the standard 
deviation of u1(2) , and σ1,1(2) as the covariance between 
u1(2) and u1 . In other words, σ1(2) is a function of the allele 
frequencies in line 1 and of the average effects for PB per-
formance in line 2. For example, for a single locus, σ1(2) 
would be the square root of 2p1(1− p1)α

2
2
 , where p1 is 

the allele frequency in line 1, and α2 is the average effect 
in line 2. Similarly, σ1,1(2) is a function of the allele fre-
quencies in line 1 and of the average effects for PB per-
formance in line 1 and line 2. Although obtaining these 
two variance components is straightforward when QTL 
effects and genotypes in the parental lines are known [9], 
this is not the case when estimates need to be obtained 
from phenotypes and marker genotypes in the parental 
lines.

In this study, we propose and compare three methods 
for approximating the required variance components 
to predict the bounds of rpc . The first two methods are 

(2)rLpc =
σ1,1(2)

σ1σ1(2)
.
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based on the variances of and covariances between 
genomic estimated breeding values (GEBV), assuming 
that GEBV are useful proxies for true additive genetic 
values. The third method is based on REML estimates of 
the variances within and covariances between the paren-
tal lines, assuming that the variance of the genotypes (i.e. 
2p(1− p) ) across lines is similar. We assess the perfor-
mance of these three methods by comparing predicted 
bounds with the estimated value of rpc for five traits using 
data on a three-way cross in pigs.

Methods
Dataset
We used phenotypic and genotypic data from three 
PB lines and their three-way terminal CB, provided by 
Topigs Norsvin and Norsvin. Sires from a Landrace line 
(LR) were mated to dams from a Large White line (LW) 
to produce F1 sows, which were crossed with sires from 
a synthetic boar line (S) to produce the three-way CB 
(i.e. Sx(LRxLW)). In total, we used 17,100 animals from 
line S, 6611 animals from line LR, 8587 animals from line 
LW, and 4173 three-way CB. The synthetic boar line S is 
a combination of the LW and Piétrain breeds and was 
created around 1975 [10]. All purebreds were housed 
in a nucleus environment, and the crossbreds in a com-
mercial environment, possibly giving rise to GxE inter-
action between PB and CB performances. Phenotypes 
were pre-corrected for fixed effects and common litter 
effects using a larger dataset during the routine genetic 
evaluation of Topigs Norsvin. The traits included aver-
age daily gain during the test period between 30 and 
120 kg (TGR), lifetime daily gain (LGR, from birth until 
120  kg), daily feed intake during the test period (DFI), 
backfat (BFE) and loin depth (LDE). In the PB animals, 
BFE and LDE were measured at the end of the test period 
using an ultrasound device. In the CB animals, BFE and 
LDE were measured on the carcass after slaughter at the 
slaughterhouse.

About 80% of the animals were genotyped with the 
Illumina 50K single nucleotide polymorphism (SNP) chip 
and the remaining 20% were genotyped with a custom 
Illumina 25K SNP chip. All genotypes were imputed to 
50K within each purebred line using the FImpute v2.2 
software [11]. First, the genotypes were imputed within 
the purebred lines. Second, the imputed genotypes from 
all purebred lines were used as a reference population to 
impute the genotypes of crossbred animals. For quality 
control, we excluded SNPs with a GenCall rate lower than 
0.15 (Illumina Inc., 2005) or a call rate lower than 0.95, 
SNPs that showed a strong deviation from Hardy–Wein-
berg equilibrium (χ2 > 600), SNPs that were located on sex 
chromosomes, and unmapped SNPs. The positions of the 
SNPs were based on the Sscrofa11.1 assembly. Finally, 

SNPs with a minor allele frequency (MAF) lower than 
0.01 in any of the lines were excluded, yielding 35,595 
SNPs that were used in all the analyses. All genotyped 
animals had a frequency of missing genotypes lower than 
0.05 and were therefore retained for further analyses.

Derived expressions for the bounds of rpc
In a previous study, Duenk et  al. [9] derived expres-
sions that predict rpc from the genetic variance com-
ponents of the purebred parental lines. They focused 
on predicting the decrease of rpc due to non-additive 
effects in a two-way cross, considering two scenarios 
(genetic models). The first genetic model assumed that 
there were only additive and dominance genetic effects, 
and the second genetic model assumed that there were 
only additive and additive-by-additive (AxA) epistatic 
genetic effects. The first step was to express the average 
effects for CB performance ( αCB ) in the parental line of 
interest (i.e. the focal line) in terms of average effects 
for PB performance in the parental lines, because the 
difference between these average effects determines the 
value of rpc [2, 9]. The results showed that for the domi-
nance model, αCB in the focal line is equal to the average 
effect for PB performance in the mated line. As a result, 
the dominance model may represent a lower bound 
for rpc , because the maximum difference between the 
average effects for PB and CB performances is then 
bounded by the difference in allele frequencies between 
the parental lines. For the AxA epistatic model, αCB in 
the focal line is equal to the mean of the average effects 
for PB performance in both parental lines. As a result, 
the epistatic model may represent an upper bound of 
rpc , because the minimum difference between the aver-
age effects for PB and CB performances is bounded by 
the difference in allele frequencies between the paren-
tal line and the cross. Duenk et al. [9] showed that the 
derived expressions indeed indicate approximate lower 
and upper bounds of rpc , regardless of the actual genetic 
model.

Predicting bounds of rpc
The present study builds on the work of Duenk et  al. 
[9] and aims at validating the derived equations for the 
bounds of rpc in real data by evaluating whether the 
estimated rpc falls between the predicted bounds. We 
predicted the bounds of rpc for each parental line based 
on information from all parental lines, following the 
expressions for the lower and upper bounds of rpc in a 
three-way cross derived by Duenk et al. [9]. These equa-
tions were derived by expressing the additive genetic 
values of the different groups of animals as products of 
genotype matrices with vectors of average effects in the 
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parental lines, to allow re-writing the variance compo-
nents that appear in Eq.  (1) in terms of variance com-
ponents in the PB lines. Full derivations are presented 
in the appendix of Duenk et al. [9]. The predicted lower 
bound of rpc in sire line S for the three-way CB is:

where σS is the standard deviation of the additive genetic 
values of individuals in line S for the trait expressed 
in line S, σ 2

S(LW ) and σ 2
S(LR) are the variance of the addi-

tive genetic values of individuals in line S for the trait 
expressed in line LW or LR, respectively, and σS(LW ),S(LR) 
is the covariance between the additive genetic values of 
individuals in line S for the trait expressed in line LW and 
LR. For across-line variance components such as σ 2

S(LW ) , 
we use the term focal line to refer to the line for which rpc 
is predicted (S), and the term trait line to refer to the line 
where the trait is expressed (LW). The predicted upper 
bound of rpc in sire line S uses the same parameters and 
is:

where the parameters are the same as those in Eq. (3).The 
bounds of rpc in lines LW and LR were predicted in a simi-
lar way, but using expressions for dam lines of a three-way 
CB. The predicted lower bound of rpc in dam line LW is:

where σLW  is the standard deviation of the additive 
genetic values of individuals in line LW for the trait 
expressed in line LW, σ 2

LW (S) is the variance of the addi-
tive genetic values of individuals in line LW for the trait 
expressed in line S, and σLW (LW ),LW (S) is the covariance 
between the additive genetic values of individuals in line 
LW for the trait expressed in line LW and S. The pre-
dicted upper bound of rpc in dam line LW is:

where σ 2
LW (LR) is the variance of the additive genetic val-

ues of individuals in line LW for the trait expressed in 
line LR, σLW (S),LW (LR) is the covariance between the addi-
tive genetic values of individuals in line LW for the trait 

(3)
rLpc,S =

σS(S),S(LW ) + σS(S),S(LR)

σS

√(
σ 2
S(LW ) + σ 2

S(LR) + 2σS(LW ),S(LR)

) ,

(4)rUpc,S =
σ 2
S + 0.5σS(S),S(LW ) + 0.5σS(S),S(LR)

σS

√(
σ 2
S + 0.25σ 2

S(LW ) + 0.25σ 2
S(LR) + σS(S),S(LW ) + σS(S),S(LR) + 0.5σS(LW ),S(LR)

) ,

(5)rLpc,LW =
σLW (LW ),LW (S)

σLW σLW (S)
,

(6)rUpc,LW =
σLW (LW ),LW (S) + 0.5σ 2

LW + 0.5σLW (LW ),LW (LR)

σLW

√(
σ 2
LW (S) + 0.25σ 2

LW + 0.25σ 2
LW (LR) + σLW (LW ),LW (S) + σLW (S),LW (LR) + 0.5σLW (LW ),LW (LR)

) ,

expressed in line S and LR, σLW (LW ),LW (LR) is the covari-
ance between the additive genetic values of individuals in 
line LW for the trait expressed in line LW and LR, and 
the other parameters are the same as those in Eq. (5). The 
expression for the lower and upper bounds of rpc in dam 
line LR are obtained by replacing subscript LW with LR, 
and vice versa, in Eqs. (5) and (6).

Approximating variance components
Equations (3) to (6) show that we need the genetic vari-
ance components of the parental lines, which are not 
usually available, such as the additive genetic standard 
deviation in individuals of line S, for the trait expressed 
in line LW ( σS(LW ) ). These across-line variance compo-
nent cannot be estimated directly, because there are no 
phenotypes of the individuals from line S for the trait 
expressed in line LW. Therefore, here we compare three 
methods for approximating such variance components.

The first method (VCGEBV) relies on the assumption 
that the GEBV are estimates of true additive genetic 
values. Thus, the GEBV may be used as proxies for the 
additive genetic values in the focal line, and the required 

variance components can be approximated by computing 
the covariances between these GEBV and their variances. 
A disadvantage of VCGEBV is that the variance of GEBV 
is expected to be smaller than the variance of the addi-
tive genetic values ( σ 2

a  ) due to shrinkage (i.e. the vari-
ance of GEBV is equal to r2σ 2

a  , where r2 is the reliability 
of GEBV), resulting in biased estimates of variance com-
ponents. Thus, we included a second method (VCGEBV-S), 
where the GEBV were corrected for shrinkage by divid-
ing them by the square root of their reliabilities.

The third method for approximating variance com-
ponents was based on REML estimates (VCREML). It 
uses estimates of genetic variances resulting from a uni-
variate analysis of the trait line, and estimates of genetic 
covariances resulting from pairwise bivariate analyses 

between parental lines. On the one hand, this method 
ignores that the required across-line variance compo-
nents should correspond to individuals in the focal line, 
and instead uses the components estimated in the trait 
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line. The across-line variance in the focal line can differ 
from the variance in the trait line due to differences in 
genotype frequencies between lines. On the other hand, 
REML estimates are generally accurate, and commonly 
reported. Furthermore, this method may result in accu-
rate approximations when the genotype frequencies in 
the focal line are similar to those in the trait line.

Note that, for each of these methods, all variance com-
ponents in Eqs. (3) to (6) were approximated using the 
method described, including the within-line variance 
components such as σS.

Methods based on GEBV (VCGEBV and VCGEBV‑S)
With VCGEBV, the required variance components are 
approximated by using the GEBV as proxies for true addi-
tive genetic values. We first analysed phenotypes in each 
PB line separately using a univariate model, while including 
genotypes of all PB lines to obtain GEBV for all PB animals. 
For example, for the phenotypes in line S, the model was:

where yS is the vector of corrected phenotypes, µS is the 
mean, uS is the vector of additive genetic values with 
incidence matrix Z , and e is the vector of independ-
ent random residuals. The additive genetic values were 
distributed as uS ∼ N

(
0, σ 2

s G
)
 , where σ 2

s  is the addi-
tive genetic variance in line S, and G is the multi-breed 
genomic relationship matrix that includes all PB animals 
and is constructed following Wientjes et  al. [12]. Note 
that this approach is equivalent to estimating marker 
effects in line S, and then multiplying these estimates 
with marker genotypes of all PB animals [13, 14]. The 
model results in GEBV for all individuals from lines S, 
LW, and LR, for the trait expressed in line S ( ̂uAll(S) ). The 
same approach was used to estimate GEBV of all PB ani-
mals for the trait expressed in lines LW ( ̂uAll(LW ) ) and LR 
( ̂uAll(LR) ), using the phenotypes of those lines.

The variances that appear in Eqs. (3) to (6) were 
approximated as the standard deviations of GEBV of 
individuals in the corresponding focal line. For example, 
σLW (S) was approximated as 

√
var

(
ûLW (S)

)
 , where ûLW (S) 

is a subset of ûAll(S) . The covariances that appear in Eqs. 
(3) to (6) were approximated as the covariance between 
GEBV of individuals in the focal line. For example, 
σLW (S),LW (LR) was approximated as cov

(
ûLW (S), ûLW (LR)

)
 , 

where ûLW (S) and ûLW (LR) are the GEBV of individuals in 
line LW, for the trait expressed in line S and line LR, 
respectively. The advantage of VCGEBV is that the result-
ing variance components relate correctly to the individu-
als in the focal line.

Variances and covariances of GEBV can be poor 
approximations of genetic variance components, because 

(7)yS = µS + ZuS + eS ,

GEBV are subject to shrinkage. For example, the vari-
ance of GEBV is a factor r2 of the corresponding additive 
genetic variance, where r2 is the reliability of the GEBV 
[15]. Therefore, with the second method (VCGEBV-S), we 
used the same approach as VCGEBV, but we divided the 
GEBV by the square-root of their individual reliabilities 
to correct for shrinkage. The individual reliabilities were 
computed by the MTG2 program [16], using the pre-
diction error variance [17]. This procedure aims at scal-
ing the GEBV such that their variance is independent of 
their reliabilities. The variances of and the covariances 
between the scaled GEBV were used to approximate the 
parameters in Eqs. (3) to (6). Note that this approach is 
similar to the approach of Calo et al. [18] and Blanchard 
et al. [19], except that here we perform scaling at the level 
of the GEBV while allowing for different individual reli-
abilities, whereas in [18] and Blanchard et al. [19] scaling 
is performed at the level of the variances and covariances 
using the sum of the reliabilities across individuals.

Method based on REML estimates (VCREML)
With the third method (VCREML), we used genomic 
REML estimates of variance components within and 
between lines to approximate the required parameters. 
Approximated variances and standard deviations resulted 
from univariate genomic analyses in the trait lines. For 
example, σS(LW ) and σLR(LW ) were approximated as the 
REML estimate of the additive genetic standard deviation 
in line LW ( σLW  ). The model used for this analysis was:

where yLW  is the vector of corrected phenotypes in line 
LW, µLW  is the mean, uLW  is the vector of additive genetic 
values with incidence matrix Z , and eLW  is the vector of 
independent random residuals. The additive genetic val-
ues were distributed as uLW ∼ N

(
0, σ 2

LW
GLW

)
 , where 

σ 2
LW  is the additive genetic variance in line LW, GLW  is 

the genomic relationship matrix and is constructed fol-
lowing method 2 of VanRaden [20]. The REML estimate 
σ̂LW  is used as an approximation for the standard devia-
tion of the additive genetic values for the trait expressed 
in line LW (i.e. σLW  , σS(LW ) and σLR(LW ) ). The same 
approach was used to approximate variance components 
for the trait expressed in lines S ( σS , σLW (S) and σLR(S) ) 
and LR ( σLR, σS(LR) and σLW (LR) ), using data of those lines.

Approximate covariances resulted from pairwise 
bivariate genomic analyses for each combination of two 
parental lines. For example, the covariance σS(LW ),S(LR) 
was approximated as the REML estimate of the additive 
genetic covariance between lines LW and LR ( σLW ,LR ), 
resulting from the bivariate analysis of performance in 
lines LW and LR. The model can be written as [21, 22]:

(8)yLW = µLW + ZuLW + eLW ,
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where y is the vector of corrected phenotypes, µ is the 
mean, 1 is a column vector of 1s, u is the vector of addi-
tive genetic values with incidence matrix Z , and e is the 
vector of independent random residuals. Subscripts 
denote whether the terms relate to LW or LR animals. 
The distribution of the additive genetic values was:

where σ 2
LW  is the additive genetic variance in line LW, σ 2

LR 
is the additive genetic variance in line LR, and σLW ,LR is 
the additive genetic covariance between lines LW and 
LR. The genomic relationship matrix between all indi-
viduals ( G ) was calculated following Wientjes et al. [12]. 
The variance components were estimated using REML in 
the MTG2 software [16]. The same approach was used to 
estimate covariances for each combination of two paren-
tal lines.

In addition to REML estimates of genetic variances and 
covariances, the bivariate analyses resulted in estimates 
of genetic correlations between parental lines (computed 
as r̂g =

σ̂1,2
σ̂1σ̂2

 ). We report these genetic correlations in the 
Results section because they are related to (the predicted 
bounds of ) rpc . Both rg and rpc depend on the size of the 
non-additive genetic effects and the differences in allele 
frequencies between parental lines [9, 23].

Estimating rpc and validation of predicted bounds
We estimated rpc for each of the parental lines using a 
bivariate model that treats PB and CB performances as 
different, but genetically correlated traits. Note that we 
did not combine data from all PB lines in a single analy-
sis, but we estimated rpc for each parental line, separately, 
using three bivariate models. The statistical model was 
similar to the bivariate model that was used to estimate 
REML estimates of covariances between lines (Eq.  (9)), 
except that the data used were from PB and CB animals, 
instead of from lines LW and LR. The variance compo-
nents were estimated using REML in the MTG2 software 
[16], and rpc was estimated as r̂pc =

σ̂PB,CB
σ̂PBσ̂CB

.

We validated the predicted bounds by comparing them 
with the estimated rpc. Note that, in these comparisons, 
we consider the predicted bounds to be correct if the 
interval of the estimated rpc plus and minus one stand-
ard error of the estimate overlapped with the interval 
between the predicted bounds. Although the predicted 
bounds may capture the estimated rpc , the bounds may 

(9)
[
yLW
yLR

]
=

[
1LW 0
0 1LR

][
µLW

µLR

]
+

[
ZLW 0

0 ZLR

][
uLW
uLR

]
+

[
eLW
eLR

]
,

(10)
[
uLW
uLR

]
∼ N

([
0
0

]
,

[
σ 2
LW

σLW ,LR

σLW ,LR σ 2
LR

]
⊗G

)
,

not be very informative if they cover an extremely large 
range. For example, a predicted lower bound of − 1 and a 
predicted upper bound of 1 will always capture estimated 
rpc , but such a prediction is not useful at all. Thus, we 
computed the range of bounds as the difference between 
the predicted upper and lower bounds of rpc.

Results
First, we compare the predicted bounds of rpc with the 
estimated rpc . Second, we present the results on esti-
mated genetic parameters such as heritabilities, rpc, and 
genetic correlations between lines.

Predicted bounds of rpc
Of the 15 trait-line combinations, the estimated rpc (plus 
or minus one standard error) fell between the predicted 
lower and upper bounds in 14 cases with VCGEBV, 6 cases 
with VCGEBV-S, and 14 cases with VCREML (Fig. 1). With 
methods based on GEBV, the estimated rpc was usually 
closer to the upper bound than to the lower bound, while 
for VCREML, this varied across traits and lines.

On average across traits, VCGEBV resulted in the larg-
est range for all lines (0.44–0.57), followed by VCGEBV-S 
(0.21–0.40) and VCREML (0.15–0.22) (Table  1). With 
VCREML, the average range across traits was largest for 
line S (0.22), followed by the LR (0.19) and LW (0.15) 
lines.

Estimated genetic parameters
The estimated heritabilities for PB performance across 
traits ranged from 0.23 (TGR for line S) to 0.54 (BFE for 
line LW) (Table 2). Across traits, the average heritability 
was lowest in line S (0.36), followed by lines LR (0.39) and 
LW (0.44). Across lines, the average heritability was low-
est for TGR (0.32), and highest for BFE (0.48).

The estimated rpc across traits and lines ranged from 
0.52 (TGR in line LR) to 0.80 (LDE in line LW), with an 
average of 0.72 (Table  3). On average across traits, the 
estimated rpc was highest in line S (0.78), followed by 
lines LW (0.74) and LR (0.64). On average across lines, 
the estimated rpc was lowest for TGR (0.65) and highest 
for LDE (0.77). The standard errors across traits and lines 
ranged from 0.04 (DFI and BFE in line S) to 0.11 (LDE in 
line LR), with an average of 0.06. On average, estimated 
rpc in line S had the smallest standard errors (0.05), fol-
lowed by lines LW (0.06) and LR (0.08).
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The estimated genetic correlation between lines ( rg ) 
across traits and line combinations ranged from 0.39 
(TGR for LR-LW) to 0.75 (BFE for S-LW) (Table 4). On 
average across traits, the estimated rg was lowest between 
lines LR and LW (0.48), followed by S-LR (0.53) and 

S-LW (0.69). On average across lines, the estimated rg 
was lowest for DFI (0.49), and highest for BFE (0.70). The 
standard errors across traits and lines ranged from 0.03 
(BFE for S-LW) to 0.08 (LDE, LGR and TGR for LR-LW), 
with an average of 0.06.

VCGEBV VCGEBV−S VCREML

S
LR

LW

BFE DFI LDE LGR TGR BFE DFI LDE LGR TGR BFE DFI LDE LGR TGR

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

r p
c

Upper bound Lower bound Estimated

Fig. 1  Estimated rpc and predicted bounds of rpc (y-axis) for all traits (x-axis). Whiskers indicate the standard error reported by the MTG2 program. 
Column facets indicate the method that was used to approximate variance components, and row facets indicate the focal line. BFE backfat, DFI daily 
feed intake, LDE loin depth, LGR lifetime daily gain, TGR​ test growth rate, S synthetic boar line, LR Landrace line, LW Large-White line

Table 1  Mean and standard deviations (SD) of the difference 
between the predicted upper and lower bounds across traits, 
for three lines (presented in columns) and three methods of 
predicting bounds (presented in rows)

S synthetic boar line, LR Landrace line, LW Large White line

Method S LR LW

VCGEBV 0.57 (0.07) 0.47 (0.07) 0.44 (0.04)

VCGEBV-S 0.40 (0.06) 0.21 (0.05) 0.24 (0.03)

VCREML 0.22 (0.07) 0.19 (0.06) 0.15 (0.03)

Table 2  Estimated heritabilities ( h2 ) and their standard errors 
(between brackets) for all traits (presented in columns), and three 
PB parental lines and their CB (presented in rows)

BFE backfat thickness, DFI daily feed intake, LDE loin depth, LGR lifetime daily 
gain, TGR​ test growth, S synthetic boar line, LR Landrace line, LW Large White 
line, CB three-way crossbreds

Line BFE DFI LDE LGR TGR​

S 0.51 (0.01) 0.35 (0.01) 0.46 (0.01) 0.26 (0.01) 0.23 (0.01)

LR 0.41 (0.02) 0.49 (0.02) 0.32 (0.02) 0.39 (0.02) 0.36 (0.02)

LW 0.54 (0.01) 0.48 (0.02) 0.45 (0.02) 0.38 (0.02) 0.35 (0.02)

CB 0.31 (0.02) 0.26 (0.02) 0.10 (0.02) 0.22 (0.02) 0.24 (0.02)
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Discussion
The objective of this study was to empirically validate 
expressions that predict the bounds of rpc based on vari-
ance components of the parental lines, without requiring 
CB data. Our results showed that it is indeed possible 
to predict the bounds of rpc , and that REML estimates 
provide useful approximations for the required variance 
components.

Comparison of methods
Methods based on GEBV (VCGEBV and VCGEBV‑S)
The first method to predict the bounds of rpc was based 
on the variances of and covariances between GEBV of 
individuals in the focal line (VCGEBV). Compared to the 
other methods we proposed, the advantage of VCGEBV is 
that the resulting variance components correspond to the 
individuals in the focal line, and not to the mated lines. 
Our results showed that VCGEBV resulted in a high frac-
tion of cases where the predicted bounds captured the 
estimated rpc , but that the range between the lower and 
upper bounds was relatively large.

A disadvantage of VCGEBV is that the variance of GEBV 
is expected to be smaller than the variance of additive 
genetic values due to shrinkage, resulting in biased esti-
mates of variance components. Thus, we included a sec-
ond method (VCGEBV-S), where GEBV were corrected for 
shrinkage by dividing them by the square root of their 
reliabilities. Although VCGEBV-S generally resulted in 
a smaller range than VCGEBV, it also resulted in a high 

fraction of cases where the estimated rpc was higher than 
the predicted upper bound, especially in lines LR and LW.

Method based on REML (VCREML)
The third method for approximating variance com-
ponents was based on REML estimates (VCREML). 
Our results show that, across traits and lines, VCREML 
resulted in more accurate prediction of the bounds of 
rpc than VCGEBV and VCGEBV-S because it resulted in 
the highest fraction of cases (14 out of 15) where the 
predicted bounds captured the estimated rpc , and the 
smallest range between the lower and upper bounds. 
This result was somewhat surprising, because the 
across-line variance components from VCREML do not 
correspond to the individuals of the focal line, but to 
those of the trait line (i.e., the mated lines from which 
phenotypes were analysed). We therefore investigated 
whether the within-line variance of the trait line was 
comparable to the across-line variance of the focal 
line. The within-line variance in the trait line is pro-
portional to heterozygosity ( 

∑
2pi(1− pi) ) in that line 

[5]. In contrast, the variance in the focal line for the 
trait expressed in the other line is proportional to the 
heterozygosity in the focal line. In this study, the dif-
ference in heterozygosity between parental lines was 
small, although estimated additive genetic variances 
differed considerably (see Additional file  1: Table  S1). 
This similarity suggests that the across-line variances in 
the focal lines are similar to the corresponding within-
line variances in the trait lines, and that therefore 
VCREML results in relatively accurate approximations 
of across-line variance components. Thus, we conclude 
that, when the heterozygosities in the parental lines are 
comparable, the bounds of rpc can be relatively well pre-
dicted from REML estimates of the genetic variances 
within and the covariances between parental lines.

For other combinations of PB parental lines, the differ-
ence in heterozygosity between lines may be larger than in 
this study. Larger differences can occur when parental 
lines differ strongly in their history, for example due to dif-
ferences in selection or in effective population size, or due 
to population admixture or migration. In those cases, the 
VCREML method may be improved by scaling the REML 
estimates to the focal line. For example, σ 2

S(LW ) may be 
approximated by multiplying the REML estimate of 
within-line variance in LW ( σ 2

LW  ) with ∑
2pS(1− pS)

(∑
2pLW (1− pLW )

)−1 . Similarly, σS,S(LW ) 
may be approximated by multiplying the REML estimate 

of σS,LW  by 
√∑

2pS(1− pS)
(√∑

2pLW (1− pLW )

)−1

 . 
However, this scaling procedure may not necessarily affect 
the predicted bounds, because scaling occurs in both the 

Table 3  Estimated correlation between purebred and crossbred 
performances ( rpc ) and their standard errors (between brackets) 
for all traits (indicated in columns) and three PB parental lines 
(presented in rows)

BFE backfat thickness, DFI daily feed intake, LDE loin depth, LGR lifetime daily 
gain, TGR​ test growth, S synthetic boar line, LR Landrace line, LW Large White line

Line BFE DFI LDE LGR TGR​

S 0.78 (0.04) 0.77 (0.04) 0.78 (0.07) 0.78 (0.05) 0.78 (0.05)

LR 0.63 (0.06) 0.66 (0.07) 0.72 (0.11) 0.65 (0.08) 0.52 (0.08)

LW 0.76 (0.05) 0.74 (0.05) 0.80 (0.09) 0.74 (0.06) 0.64 (0.07)

Table 4  Estimated genetic correlations ( rg ) between PB parental 
lines (presented in rows) and their standard errors (between 
brackets) for all traits (presented in columns)

BFE backfat thickness, DFI daily feed intake, LDE loin depth, LGR lifetime daily 
gain, TGR​ test growth, S synthetic boar line, LR Landrace line, LW Large White line

BFE DFI LDE LGR TGR​

S-LR 0.72 (0.06) 0.41 (0.07) 0.43 (0.07) 0.55 (0.07) 0.54 (0.08)

LW-S 0.75 (0.03) 0.63 (0.04) 0.72 (0.04) 0.66 (0.05) 0.69 (0.05)

LW-LR 0.62 (0.06) 0.44 (0.07) 0.54 (0.08) 0.43 (0.08) 0.39 (0.08)
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numerators and denominators of the equations to predict 
rpc . To test this effect of scaling, we considered an extreme 
hypothetical example where the heterozygosity 
( 
∑

2pi(1− pi) ) in three parental lines (A, B, and C) dif-
fered greatly: the heterozygosity in line B was twice as large 
as in line A, and in line C it was four times as large as in 
line A. In this example, we used the REML estimates of the 
DFI trait presented in this study to predict the bounds of 
rpc in all parental lines, and compared the predicted 
bounds when the across-line variance components were 
either scaled to the focal line, or not. The results showed 
that scaling resulted in a difference between predicted 
bounds of at most 0.06 (results not shown). In fact, the 
predicted lower bound in the dam lines did not change at 
all, because the scaling is completely cancelled out in the 
prediction equation. These results suggest that using 
VCREML may yield useful predictions of the bounds of rpc , 
even when the parental lines differ strongly in 
heterozygosity.

Estimation of genetic parameters
The estimated rpc ranged from 0.52 to 0.80 across lines 
and traits, which matches with the range reported in 
Wientjes and Calus [3] and with estimates from recent 
studies [24–26]. For most traits, rpc estimates were 
higher in line S than in lines LW and LR. This result was 
expected, because 50% of the CB genome originates from 
sire line S, whereas only 25% of the CB genome originates 
from dam lines LW and LR. For all traits, the rpc was 
lowest in line LR, probably because line LR is distantly 
related to the other lines S and LW, whereas lines S and 
LW themselves are more closely related.

We estimated rpc using a bivariate model that consid-
ered PB and CB performances as different, but correlated 
traits. In this model, genomic relationships between PB 
and CB animals were computed using all the alleles in 
the CB animals, ignoring that part of the alleles origi-
nated from other PB lines and did not contribute to the 
relationship with the PB line of interest. Ideally, genomic 
relationships between PB and CB animals should be 
computed using only the alleles in CB animals that origi-
nated from the PB line of interest, by tracing the breed-
of-origin of alleles (BOA) [27]. However, in an empirical 
study of broiler chicken, estimates of rpc from models that 
ignored or considered the BOA were very similar [6]. The 
authors argued that, when ignoring the BOA, the alleles 
from the mated lines do not contribute to variation in 
relationships between the CB and the parental lines of 
interest [28, 29]. As a result, the estimation of variance 
components was dominated by the alleles in CB that 
originated from the parental line of interest. This result 
may suggest that considering the BOA in the current 
study would not have affected the estimates of rpc.

Across PB lines and traits, the heritability estimates 
ranged from 0.23 to 0.54, and were generally in line with 
estimates from recent studies [24–26, 30–32]. It should 
be noted that the estimated heritabilities reported in this 
study did not account for the fact that phenotypes were 
pre-corrected for random common litter effects. The her-
itability estimates reported here may therefore be some-
what inflated. For all traits, the heritability estimate for 
CB performance was lower than that for PB performance, 
which is in line with results from Zumbach et al. [33]. For 
most traits (DFI, LDE, LGR, and TGR), this difference 
was due to smaller estimated additive genetic variances 
for CB than for PB performance (see Additional file  1: 
Table S1), while for the other traits (BFE and LDE), this 
difference was due to greater estimated residual variances 
for CB than for PB performance (see Additional file  1: 
Table S2).

The estimated genetic correlations between lines ( rg ) 
ranged from 0.39 to 0.75 across traits. These estimates 
indicate that the genes and their effects underlying the 
studied traits are at least partially the same across paren-
tal lines. To our knowledge, genetic correlations between 
pig breeds have not been previously reported for produc-
tion traits. The highest genetic correlations were found 
between lines S and LW, which was expected, because 
the synthetic boar lines S historically originated from 
individuals of line LW.

Practical considerations
Although the prediction of rpc with the approach pro-
posed in this study does not require data on CB animals, 
it does require data on all the PB parental lines that are 
used to make the commercial cross. In practice, however, 
phenotypes of certain traits may not be collected rou-
tinely in all the parental lines. For example, phenotypes 
for reproduction traits may not be collected in the sire 
line. Therefore, for some traits, the methods proposed in 
this study may require that additional data are collected 
on the PB parental lines.

The present study shows that the bounds of rpc can be 
predicted based on parental line information, but that the 
exact value of rpc may remain unknown. However, these 
bounds may indicate whether it is worthwhile to collect 
data on CB animals to estimate rpc and to predict the 
breeding values for CB performance in the parental lines. 
For example, if the predicted upper bound of rpc is lower 
than 0.85, it is very likely that the true rpc is close to or 
below that value, in which case collection of CB data is 
expected to be beneficial [34]. In the case of Xiang et al. 
[35], the predicted upper bound of rpc for total number 
born based on reported variance components would be 
0.84, which suggests that the collection of CB data would 
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be beneficial. The estimated rpc in that study (0.67 ± 0.10) 
was indeed lower than this predicted upper bound.

Conclusions
In conclusion, using REML estimates of variance com-
ponents within and between parental lines to predict the 
bounds of rpc resulted in better predictions than methods 
based on GEBV. If confirmed with other datasets, this 
approach may help breeders to predict the benefit of col-
lecting CB data based only on parental line information. 
Thus, we recommend that studies that estimate rpc with 
genotype data also report estimated genetic variance com-
ponents within and between the parental lines, by estimat-
ing them as described in this paper.
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