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Abstract 

Background Rumen microbes break down complex dietary carbohydrates into energy sources for the host and are 
increasingly shown to be a key aspect of animal performance. Host genotypes can be combined with microbial DNA 
sequencing to predict performance traits or traits related to environmental impact, such as enteric methane emis-
sions. Metagenome profiles were generated from 3139 rumen samples, collected from 1200 dual purpose ewes, 
using restriction enzyme-reduced representation sequencing (RE-RRS). Phenotypes were available for methane (CH4) 
and carbon dioxide (CO2) emissions, the ratio of CH4 to CH4 plus CO2 (CH4Ratio), feed efficiency (residual feed intake: 
RFI), liveweight at the time of methane collection (LW), liveweight at 8 months (LW8), fleece weight at 12 months 
(FW12) and parasite resistance measured by faecal egg count (FEC1). We estimated the proportion of phenotypic vari-
ance explained by host genetics and the rumen microbiome, as well as prediction accuracies for each of these traits.

Results Incorporating metagenome profiles increased the variance explained and prediction accuracy compared 
to fitting only genomics for all traits except for CO2 emissions when animals were on a grass diet. Combining 
the metagenome profile with host genotype from lambs explained more than 70% of the variation in methane emis-
sions and residual feed intake. Predictions were generally more accurate when incorporating metagenome profiles 
compared to genetics alone, even when considering profiles collected at different ages (lamb vs adult), or on different 
feeds (grass vs lucerne pellet). A reference-free approach to metagenome profiling performed better than metagen-
ome profiles that were restricted to capturing genera from a reference database. We hypothesise that our reference-
free approach is likely to outperform other reference-based approaches such as 16S rRNA gene sequencing for use 
in prediction of individual animal performance.

Conclusions This paper shows the potential of using RE-RRS as a low-cost, high-throughput approach for generat-
ing metagenome profiles on thousands of animals for improved prediction of economically and environmentally 
important traits. A reference-free approach using a microbial relationship matrix from  log10 proportions of each tag 
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normalized within cohort (i.e., the group of animals sampled at the same time) is recommended for future predictions 
using RE-RRS metagenome profiles.

Background
Animal protein is an important element of human nutri-
tion [1]. However, the sustainability of animal agricul-
ture depends on our ability to produce sufficient levels of 
energy-rich animal protein to meet the demands of popu-
lation growth, while mitigating its environmental impact 
(e.g., greenhouse gas emissions). The impact of livestock 
production on greenhouse gas emissions is particularly 
evident in countries, such as New Zealand that have a 
large pastoral sector, where 35% of national greenhouse 
gas emissions can be attributed to enteric fermentation 
in livestock [2]. To mitigate this impact, livestock pro-
duction on the global stage is shifting from a production-
oriented model to a sustainability model, which aims at 
considering not only the efficiency of the animal for pro-
duction but also its impact on the environment.

Animal breeding programs have shown promise in our 
ability to select for animals that have reduced greenhouse 
gas emissions, and therefore a lower environmental 
impact [3, 4]. However, sustainable livestock production 
must also account for and minimise feed intake per unit 
of product (feed efficiency). Given that methane emis-
sions are a result of digestion of feed, the two are inextri-
cably linked. Therefore, the genetic relationship between 
feed efficiency and greenhouse gas emissions is an 
important consideration when developing tools to select 
for animals that have a lower impact on the environment 
and have fewer associated costs to the producer [5].

While genetic selection for reduced greenhouse gas 
emissions using direct measures is promising, there are 
other biological mechanisms that may more accurately 
identify individuals with a propensity to emit lower lev-
els of greenhouse gases. One such tool is metagenom-
ics. The rumen microbiome is composed of microbes 
that partially ferment the feed ingested by the animal. 
These microbes are crucial for making the nutrients of 
those feedstuffs available to the animal, but the methane 
formed as a by-product is emitted into the atmosphere 
as a greenhouse gas. It has been shown that specific 
microbes, as well as the entire microbial profile, can be 
associated with both greenhouse gas emissions and feed 
efficiency [6–10], with a significant proportion of phe-
notypic variation explained by relationships between 
individual rumen microbiomes, often referred to as 
microbiability [11]. Furthermore, these microbes and 
profiles have been shown to be heritable [12–15], sug-
gesting that sustained progress can be achieved through 
selection practices. However, previous studies have 

typically been on a small scale and used technologies that 
either do not scale well when considering implementa-
tion in industry (e.g., whole-genome sequencing) or do 
not capture the breadth of diversity in the rumen (i.e., 
prokaryotic 16S rRNA gene sequencing) [16]. Recently, 
Hess et al. [17] developed a restriction enzyme-reduced 
representation sequencing (RE-RRS) approach that over-
comes the shortcomings of other technologies to har-
ness metagenomic information that can be used at the 
production level, due to its low cost and potential for 
high-throughput.

The value of metagenomics to the industry is not 
only in the ability to produce information-rich data at 
low cost, but also the ability for the tool to be predic-
tive in different environments. Metagenome profiles are 
influenced by environment [14] and so an assessment 
needs to be made about whether decisions based on the 
metagenome profile of an animal in one environment will 
be stable across other environments. Furthermore, while 
greenhouse gas emissions and feed efficiency are obvious 
choices for the involvement of the metagenome, the value 
of harnessing metagenomic information can be extended 
if there is an association with other, perhaps less obvious, 
production traits.

The aim of this study was to investigate the impact of 
rumen metagenome profiles on greenhouse gas, feed 
efficiency, production, and health traits in sheep. This 
involved evaluating: (1) different methods for generating 
a microbial relationship matrix, (2) performance when 
using metagenome profiles collected at the same time as 
the phenotype was collected, and (3) performance when 
using metagenome profiles collected at a different time 
than the phenotype, representing differences in age and 
diet. Performance was evaluated by estimating the micro-
biability (the proportion of the phenotypic variance that 
was explained by the metagenome profiles), and predic-
tion accuracy (the correlation between the phenotype 
adjusted for fixed effects and the prediction from genom-
ics, metagenome profile or the combination of the two). 
This work is essential when considering the value of cap-
turing metagenomic information in a practical agricul-
tural setting.

Methods
The animal experiments conducted adhered to the guide-
lines of the 1999 New Zealand Animal Welfare Act and 
AgResearch Code of Ethical Conduct. The trials of the 
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current study were approved by the AgResearch Inver-
may (Mosgiel, NZ) Animal Ethics committee with the 
approval numbers: 13081, 13419, 13563, 13742, 13892, 
14055, 14066, and 14221.

Animals
The dual-purpose composite ewes used in this study were 
involved in a variety of feed intake [5] and methane [18] 
trials at the Invermay (Mosgiel) campus, and Woodlands 
farm, of AgResearch in New Zealand. Animals were born 
between 2014 and 2016 from three New Zealand flocks: 
one AgResearch flock (Flock 2638), one selection line 
flock containing sheep selected for high or low methane 
yield [19] (Flock 3633), and one Central Progeny Test 
flock (Flock 4640). Metagenome profiles were gener-
ated from rumen samples that were collected from the 
sheep at various time points throughout their life [14]. 
The metagenome profiles included in this study (Table 1) 
included samples taken when the sheep were fed two dif-
ferent diets: lucerne pellets (lucerne) and New Zealand 
ryegrass-based pasture (grass); and were classified as two 
age groups: Lambs (less than 15 months old) and adults 
(greater than 15  months old). The combination of feed 
and age resulted in three groups that were evaluated sep-
arately in this study: grass lamb, grass adult and lucerne 

lamb, corresponding to the GLS, GAS and LLS groups 
in Hess et  al. [14]. All rumen samples were taken from 
animals when they were fed ad libitum and had been off 
feed for 2 to 4 h (i.e. “Short” time off feed in [14]). Across 
the 1200 sheep, 118 sires were represented, with each sire 
having 10 ± 5 offspring. In total, 939 dams were repre-
sented, with each dam having 1.3 ± 0.6 offspring.

Genotypes
Animals were sequenced on a variety of Illumina bead-
chips, as shown in Table 2, and imputation was used to 
get high-density single nucleotide polymorphism (SNP) 
genotypes on all animals. We capitalized on the strong 
links between these flocks and the New Zealand sheep 
population [3, 20], and included genotypes on other 
New Zealand sheep to improve imputation accuracy. For 
each genotype panel, SNPs were filtered to retain mark-
ers where: both SNP probes uniquely mapped to the 
Ovis aries (OAR)v3.1 genome reference, one SNP probe 
mapped with zero mismatches, no indels were found, 
and both SNP probes were in the same orientation and 
position with exactly one mismatch (the target SNP). 
Subsequently, each genotype panel was imputed using 
the Beagle v5.1 software [21] from the SNPs that were 
overlapping with the high-density (HD) panel to retain 

Table 1 Number of animals with phenotypes recorded for each trait by rumen sample group

a Liveweight taken at the same time as the portable accumulation chamber measurement and rumen sample collection

epg eggs per gram

Trait Grass lamb Grass adult Lucerne lamb

Methane-related Methane (CH4, g/day) 1051 1010 958

Methane ratio (CH4Ratio, mM/Mol) 1051 1010 958

Carbon dioxide (CO2, g/day) 1051 1010 958

Liveweight (LW, kg)a 1051 1010 958

Feed intake Residual feed intake (RFI, MJ/day) 0 0 984

Production and health 8-month liveweight (LW8, kg) 1074 1080 985

12-month fleece weight (FW12, kg) 1029 1076 980

Faecal egg count (FEC1, epg) 967 961 866

Total rumen samples 1074 1080 985

Table 2 Number of animals and SNPs genotyped on each SNP panel and used for imputation

Imputation accuracy is reported as the average SNP-based  R2 from BEAGLE for the full dataset

Illumina SNP panel Number of SNPs Number of animals 
genotyped

Number of SNPs for 
imputation

Number of animals 
in this study

Imputation accuracy

AgR Custom 5k LD 5283 17,631 3885 123 0.86 ± 0.20

AgR Custom 6k LD 6015 8798 4206 9 0.85 ± 0.20

ISGC 15K 15,000 25,831 11,799 612 0.92 ± 0.20

AgR Custom 18k LD v2A1 16,399 24,912 12,266 24 0.92 ± 0.20

AgR Custom 18k LD v2C1 16,227 4695 12,478 3 0.88 ± 0.20

ISGC Ovine HD 606,006 22,802 568,142 429 NA
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568,142 HD SNPs. Beagle’s default settings were used 
except for effective population size (ne) which was set 
to 500 to account for the diversity across sheep breeds. 
The phased and imputed sets were then subset to only 
include the individuals in this study, which were used to 
construct a genomic relationship matrix (GRM), using 
method 1 of VanRaden [22].

Rumen sample collection and metagenome profiling
This study used 3139 (Table 1) of the 4479 rumen metage-
nome profiles that were generated by Hess et  al. [14]. 
These samples are described in Additional file  1: Tables 
S1a, S1b and S1c, and were from the GLS (grass lamb: 
samples from lambs taken 2–4 h after removal from pas-
ture), GAS (grass adult: samples from adults taken 2–4 h 
after removal from pasture) and LLS (lucerne lamb: sam-
ples from lambs taken 2–4 h after eating lucerne pellets 
ad  libitum) groups reported by Hess et  al. [14]. Briefly, 
30  mL rumen contents were sampled via stomach intu-
bation and stored at − 20 °C until freeze drying. The set 
of animals that were from the same flock and birth year 
and were measured over the same ~ 2-day period were 
considered to be the same cohort for rumen sampling. 
Samples were freeze-dried for one week in a CHRIST 
Gamma 1-16 LSCplus freeze dryer then ground to a 
powder using a Magic Bullet kitchen blender (NutriBullet 
New Zealand, Auckland, New Zealand) with a custom-
made cup. Cups were cleaned in a laboratory dishwasher 
between samples to avoid cross-contamination. DNA 
was extracted using a combined beat-beating, phenol 
and column purification protocol using the QIAquick 
96 PCR purification kit (Qiagen, Hilden, Germany), 
then sequenced using RE-RRS with the PstI restriction 
enzyme, as described by Hess et al. [17]. Sequencing was 
performed with 384 samples per lane of sequencing on 
an Illumina HiSeq2500 machine, generating 101 bp single 
end reads using version 4 chemistry.

Sequence processing
Demultiplexing and trimming were carried out using the 
GBSX [23] and Cutadapt [24] packages. GBSX was run 
using default parameters except that no mismatches were 
allowed in the barcode or cut site. Cutadapt was run with 
a Phred quality score threshold of 20 and a minimum 
length of 40 bp. Samples with fewer than 100,000 reads 
after quality control were considered failed samples. 
Sequences were run through both the reference-based 
(RB) and the reference-free (RF) pipelines, as  briefly 
described below, with further details reported by Hess 
et al. [17]. Both pipelines produce a table of counts with 

one row per sample and one column per microbial genus 
(RB) or tag (RF).

Reference‑based (RB)
The RB pipeline used nucleotide BLAST (task = blastn, 
word size = 16, e-value = 0.01) in BLAST v2.2.28 + [25] 
to compare sequences against microbial genome 
assemblies from the Hungate 1000 Collection [26], with 
the addition of four Quinella genome assemblies [27]. 
Taxonomy of sequences was assigned using an R imple-
mentation of the algorithm from MEGAN [28] with 
default parameters. The microbiome profile for each 
sample was the number of sequences assigned at the 
genus level for each of the 60 genera represented in the 
Hungate1000 Collection, plus Quinella.

Reference free (RF)
The RF pipeline generates a set of “tags”: non-redun-
dant 65-bp long sequences that start at the initial cut 
site and are observed in at least 25% of samples. The 
metagenome profile contains the number of times 
each tag is observed in each sample. The tags used in 
our study were generated separately within each group 
(grass lamb, grass adult and lucerne lamb).

Metagenome relationship matrices
Metagenome relationship matrices (MRM) were first 
developed by Ross et  al. [29] and have become the 
standard method for integrating metagenome profiles 
into prediction equations in livestock [16]. In our study, 
MRM were generated separately for each group. Counts 
for each of the metagenome profiles were transformed 
to the  log10 proportion of assigned reads by adding one 
to each count and dividing by the row sum (i.e., total 
number of reads accounted for in the profile for that 
sample plus the number of columns) then taking the log 
(base 10). These logged proportions were then normal-
ized in two ways:

(1) L10: each column was normalized, such that each 
column had a mean of 0 and a standard deviation 
of 1, i.e., in matrix notation from the proportion 
matrix P , individual i for genus/tag j:

(2) CA: each column was normalized within rumen 
sample cohort, such that each cohort had a mean of 
0 and standard deviation of 1 for each genus or tag, 

(1)xij =
log10

(
pij

)
− µlog10(p.j)

σlog10(p.j)
.
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i.e., in matrix notation from the proportion matrix 
P , individual i in cohort c for genus/tag j:

The subsequent matrices (with dimension number of 
samples by number of genera/tags) were used to generate 
a metagenome relationship matrix (MRM) by taking the 
correlation of the transpose of the matrix ( XT ) and using 
the cor function in R to generate an n × n matrix where n 
is the number of samples. This approach generated four 
MRM for each group: RBL10, RBCA, RFL10, and RFCA, 
representing the RB and RF profiles for L10 and CA nor-
malization methods.

Phenotypes
Methane‑related traits
Measures of methane, carbon dioxide and oxygen were 
made using a system with 10 portable accumulation 
chambers (PAC) as described by Jonker et al. [18]. Phe-
notypes for the lamb groups were collected when indi-
viduals were 6 to 13  months old, and phenotypes for 
the adult groups were collected when individuals were 
15–18  months old. In brief, animals were allocated to a 
time period and chamber using a randomized incom-
plete block design with allocation to a measurement “lot” 
of 10 or 12 animals randomly within sire. Allocation to 
a chamber was random within the lot. Four lots were 
removed from feed at a given time, with all animals off 
feed for a minimum of one hour before they were placed 
in the individual chambers. Liveweights and time off feed 
were recorded. Methane  (CH4), carbon dioxide  (CO2) 
and oxygen  (O2) in grams per day were estimated from 
a one-hour measure in the chambers. Methane ratio was 
calculated as  CH4/(CO2 +  CH4), expressed as mM/Mol, 
and is commonly used as a substitute for methane yield 
when feed intake data is not available. Gas measures were 
scaled within lot to account for time off feed by dividing 
an individual’s measurement by the mean of the lot and 
multiplying it by the overall population mean [18]. The 
methane-related traits evaluated in our study were scaled 
 CH4 (CH4), scaled  CO2 (CO2), scaled methane ratio 
(CH4Ratio) and liveweight at the time of rumen sam-
ple collection (LW). Trait units are in Table 1. Although 
Jonker et  al. [18] describe two gas measurement ses-
sions ~ 14 days apart, only the measurement taken on the 
same day that the rumen sample was collected were con-
sidered for this study.

Residual feed intake
Residual feed intake was measured at AgResearch’s 
Invermay campus, as described by Johnson et al. [5]. In 

(2)xicj =
log10

(
picj

)
− µlog10(p.c j)

σlog10(p.c j)
.

brief, over three years, five cohorts of approximately 200 
lambs had individual feed intakes measured through 
a feed intake facility. The animals were sourced from 
Flocks 2638, 3633 and 4640 and were approximately nine 
to 12 months old at the time of measurement. The ani-
mals were transitioned to a lucerne pellet diet sourced 
from J.T. Johnson & Sons (Kapunda, South Australia, 
Australia, www. jtj. com) over a period of two weeks. Fol-
lowing the introduction period, daily intake data was 
collected for approximately 42 consecutive days. The 
weight of the animals was measured twice weekly and 
was used to estimate the growth rate of the animals over 
the 42 days. The resulting feed intake, weight and growth 
rate data were used to estimate the residual feed intake 
(RFI) trait, which is the residual of a model where intake 
is fitted as the dependent variable with metabolic weight, 
growth rate, cohort, flock and pen fitted as explanatory 
variables as described in Johnson et al. [5] based on Koch 
et  al. [30]. Methane traits (CH4, CO2, CH4Ratio and 
LW) were collected on these individuals during these tri-
als, using the approach described in the “Methods” sec-
tion entitled ‘Methane-related traits’.

Health and production traits
Three industry-recorded traits (Sheep Improvement 
Ltd, SIL; www. sil. co. nz) were selected to evaluate the 
impact of including rumen metagenome profiles for 
prediction of economically important health and pro-
duction traits. These juvenile traits were liveweight 
at 8  months (LW8, kg), summer strongyle faecal egg 
count (FEC1, epg) and fleece weight at 12 months of age 
(FW12, kg). Data were transformed or scaled accord-
ing to standard SIL protocols on the full dataset [31], 
which was then reduced to the set of 1200 animals that 
had rumen metagenome profiles (Table 1). Samples for 
FEC1 were collected according to the WormFEC proto-
col [32] developed by AgResearch Ltd., whereby lambs 
were treated with an anthelmintic at weaning, and then 
individually sampled once the mob (set of sheep grazed 
together in the period prior to data collection) faecal 
egg count reaches 800 eggs per gram (epg). Faecal egg 
counts had 50 added to them then the log (base e) was 
taken to get FEC1.

Parameter estimation and prediction accuracy
Parameter estimation
Models used in our study were run in ASReml 4.1 [33] 
and reflected those used in previous analyses of these 
traits in expanded datasets, with any variables that did 
not have variation within this dataset removed (e.g. sex 
because all individuals in this study were female):

http://www.jtj.com
http://www.sil.co.nz
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where µ is the overall mean, brr is the fixed class of birth 
and rearing rank (combination of birth rank i.e. born as 
a single, twin or triplet; and rearing rank i.e. reared as a 
single, twin or triplet), aod is the fixed class of age of dam 
when the individual was born (3 levels), bdev is the fixed 
covariate of the birth date deviation from the mean for 
that flock within that year. Contemporary groups ( cg ) 

(3)
CH4 =µ+ brr + aod + bdev + cg4 + animal

+metagenome + e,

(4)

CH4Ratio =µ+ brr + aod + bdev

+ cg4 + animal +metagenome + e,

(5)
CO2 =µ+ brr + aod + bdev + cg4 + animal

+metagenome + e,

(6)
LW =µ+ brr + aod + bdev + cg4

+ animal +metagenome + e,

(7)
RFI =µ+ brr + aod + bdev + cg4

+ animal +metagenome + e,

(8)
LW8 =µ+ brr + aod + bdev + flock .cgLW8

+ animal +metagenome + e,

(9)
FEC1 =µ+ bdev + flock .cgFEC

+ animal +metagenome + e,

(10)

FW12 =µ+ brr + aod + bdev + flock .cgFW12

+ animal +metagenome + e,

were fitted as fixed class effects: cg4 is the combination 
of flock and birth year, cgLW8 is the combination of birth 
year, LW8 mob and weaning weight mob; cgFEC is the 
combination of birth year and FEC1 grazing mob; and 
cgFW12 is the combination of birth year, FW12 mob, 
LW8 mob and WWT mob. The random animal genetic 
effect was assumed to have a mean of 0 and a variance 
of Gσ 2

g  where G is the GRM and σ 2
g  is the genetic vari-

ance. The random metagenome effect was assumed to 
have a mean of zero and a variance of Mσ 2

m where M is 
the MRM and σ 2

m is the metagenomic variance. The ani-
mal genetic and metagenome effects were assumed to 
be independent. The residual ( e ) was assumed to have a 
mean of 0 and variance of Iσ 2

e  where I is an n × n identity 
matrix and σ 2

e  is the residual variance. The phenotypic 
variance was calculated as the sum of the animal genetic, 
metagenomic and residual variances. Heritability was 
estimated as the proportion of the phenotypic variance 
that was attributed to the random animal genetic effect. 
Likewise, microbiability was estimated as the proportion 
of phenotypic variance that was attributed to the metage-
nome effect. The estimated animal genetic effect for an 
individual ( ̂G ) is the breeding value (BV), and the esti-
mated metagenome effect for a sample ( M̂ ) is the metage-
nome value (MV). The proportion of the phenotypic 
variance explained by both G and M was also estimated 
by dividing the sum of σ 2

g  and σ 2
m by the phenotypic vari-

ance. The models described are referred to as the G + M 
model; they were additionally run fitting only the animal 
genetic effect (G; i.e., removing the metagenome effect) 
and only the metagenome effect (M; i.e., removing the 
animal genetic effect).

Methane-related traits were initially analysed using the 
metagenome profile taken at the same time they were 
recorded (Table 3). In addition, the grass lamb methane-
related traits were also analysed using the grass adult 

Table 3 Phenotypes and metagenome profiles analysed in this study

Traits analysed Trait group Metagenome profile Tables with corresponding results

Methane-related Grass lamb Grass lamb Table 4 and Additional file 2: Table S2

Grass adult Grass adult Table 4 and Additional file 2: Table S2

Lucerne lamb Lucerne lamb Table 4 and Additional file 2: Table S2

Methane-related Grass lamb Grass adult Table 5

Grass adult Grass lamb Table 5

Residual feed intake Lucerne lamb Lucerne lamb Table 6

Lucerne lamb Grass lamb Table 6

Lucerne lamb Grass adult Table 6

Health and production Other Grass lamb Table 7 and Additional file 3: Table S3

Other Grass adult Table 7 and Additional file 3: Table S3

Other Lucerne lamb Table 7 and Additional file 3: Table S3
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metagenome profiles, and vice versa, to evaluate the abil-
ity of a metagenome profile taken at a different age to 
explain methane-related traits. RFI was collected only 
in the lucerne lamb group and was analysed using the 
lucerne lamb metagenome profiles as well as the grass 
adult and grass lamb metagenome profiles. Health and 
production traits were not collected at the same time as 
any of the rumen samples and were analysed using each 
of the metagenome profiles separately.

Prediction accuracy
The estimation of prediction accuracy and bias used 
the same models as described in the “Methods” subsec-
tion entitled ‘Parameter estimation’, and used cross-fold 
validation, whereby each rumen sample cohort was a 
different fold. Prediction accuracy was estimated as the 
correlation between the MV or BV from the fold where 
the corresponding phenotype was omitted, and the phe-
notype adjusted for fixed effects. Prediction accuracy for 
the BV was not divided by the square root of heritability 
because we wanted to evaluate the accuracy of predict-
ing the phenotype rather than the BV, so we could com-
pare the prediction accuracy of the BV and MV given 
that MV may capture more than just the genetics of the 
individual. The regression coefficient of the adjusted phe-
notype on the MV or BV was an indicator of bias, with 
unbiased prediction being equal to 1. Given that each 
cohort had a slightly different size, the mean and stand-
ard error of accuracy and bias were represented by the 
weighted mean and weighted standard deviation across 
the cohorts, with weights equal to the size of the cohort. 
Weighted paired t-tests were performed with α = 0.05 to 
test the hypotheses that: (1) prediction accuracy of MV 
was greater than that of BV; (2) the regression coefficient 
of the adjusted phenotype on the MV was not equal to 
the regression coefficient of the adjusted phenotype on 
the BV; and (3) the absolute bias of the MV was smaller 
than that of the BV.

Results
Methane‑related traits and metagenome profiles
Methods for generating MRM
The method used to generate an MRM could have a large 
impact on the microbiability and the ability of the MRM 
to accurately predict individual performance for a trait. 
We explored two methods of metagenome profiling: RB 
and RF; and two methods of normalization: with and 
without a cohort-specific adjustment. We evaluated the 
performance of each of these methods using a model that 
captures the metagenomic relationship between samples, 
ignoring the genomic relationship between samples.

Microbiability estimates ranged from 0.00 (CO2: grass 
adult and grass lamb) to 0.14 (CH4: lucerne lamb) when 

using the RB MRM and from 0.00 (CO2: grass lamb) 
to 0.99 (LW8: lucerne lamb) when using the RF MRM 
(Fig.  1) and (see Additional file  2: Table  S2). All traits 
had microbiability estimates significantly different from 
0 (p < 0.05) for at least one of the MRM, except for CO2 
in the two groups on grass, and LW in the grass adult 
(see Additional file 2: Table S2). Microbiability estimates 
using the RF MRM were much larger than those using 
the RB MRM (Fig. 1) and (see Additional file 2: Table S2), 
while the difference in microbiability estimates when 
using the L10 and CA MRM was very small. Some mod-
els using the RFL10 MRM had convergence or singularity 
issues, indicating that using the RFCA MRM may result 
in more robust models (see Additional file  2: Table  S2). 
Prediction accuracy (the correlation between the MV 
and adjusted phenotype when using cross-fold valida-
tion) was also higher when using the RF MRM compared 
to the RB MRM, and there was little difference in predic-
tion accuracy between the L10 and CA MRM, consistent 
with findings from evaluating the microbiability (Fig.  1) 
and (see Additional file 2: Table S2).

These results highlight the importance of the additional 
information captured by the RF approach compared to 
the RB approach. The RFCA approach is the most prom-
ising and reliable approach for trait predictions using 
MRM among those we evaluated (Fig. 1) and (see Addi-
tional file  2: Table  S2), and the remainder of the paper 
will focus on this method for generating the MRM.

Genomes vs. rumen metagenomes
Table  4 gives the heritability, microbiability and predic-
tion accuracy estimates for the methane-related traits 
when using the RFCA MRM when fitting only G, only 
M, or G + M models. The results for methane emissions 
(CH4) and methane ratio (CH4Ratio) showed a simi-
lar pattern, whereby the microbiability estimates were 
much higher than the heritability estimates within each 
group; and this was true whether fitting models with 
only G or only M, as well as the G + M models. Consist-
ent with these results, prediction accuracy was higher 
when fitting a model that considered metagenomic (M) 
rather than genomic (G) relationships. Both heritability 
and microbiability estimates were  reduced in the G + M 
models  (GG+M and  MG+M) compared to the models fit-
ting only G  (GG) or only M  (MM), indicating that some 
of the variance can be captured by both G and M and is 
being partitioned to one or the other in the G + M model. 
The best prediction accuracy estimates were obtained 
from the G + M model. These prediction accuracies were 
not always higher than the models fitting only M  (MM) 
but were consistently higher than those fitting only G 
 (GG). The BV accuracy did not increase in the G + M 
model  (GG+M) compared to the G model  (GG), which 
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indicates that incorporating metagenome profiles does 
not improve our ability to predict BV.

CO2 showed a different pattern to that of CH4 and 
CH4Ratio; whereby microbiability estimates were larger 
than heritability estimates for the lucerne lamb group 
but smaller for the two grass groups, with a microbiabil-
ity estimate of zero for the grass lamb group (Table  4). 
There was little change in estimates of heritability and 

microbiability when fitting the G + M model compared 
to only G or only M, indicating that the genomic and 
metagenomic drivers of CO2 are largely independent. 
However, the microbiability estimate for the grass adult 
group was reduced when fitting the G + M model. Pre-
diction accuracy was highest for the G + M component 
of the G + M model (G +  MG+M) for the lucerne lamb 
group, but the G + M model did not result in prediction 

Fig. 1 Variance components (A and B) and prediction accuracies (C and D) for methane emissions (A and C) and methane ratio (B and D) 
using different MRM. Variance components and prediction accuracies were estimated using models capturing the metagenomic relationship 
between samples calculated in four different ways: using Reference Based (RB) or Reference Free (RF) profiles that were each adjusted by taking 
the log (base 10) of proportions followed by normalization (L10) or by taking the log (base 10) of proportions followed by normalization 
within cohort (CA). The traits methane emissions (CH4) or methane ratio (CH4Ratio) were analyzed in three datasets: lambs fed lucerne pellets 
(lucerne lamb), lambs grazing pasture (grass lamb) and adults grazing pasture (grass adult). Prediction accuracy was estimated using cross-fold 
validation with each cohort a different fold
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accuracy estimates higher than the model fitting only G 
 (GG) for either of the grass groups. The prediction accu-
racy of the metagenome was not significantly different 
from 0 in any model for either of the grass groups. Given 
that the metagenome profiles did not explain a significant 
amount of the variation in CO2 in sheep on pasture, CO2 
was not further evaluated for its ability to be predicted by 
metagenome profiles from a different group.

Microbiability estimates for liveweight at the  time of 
rumen sampling (LW) were higher than the heritability 
estimates for the two grass groups, but smaller for the 
lucerne lamb group (Table  4). Prediction accuracy was 
at least as good for MV  (MM and  MG+M) as BV  (GG and 
 GG+M) and the highest accuracy estimate was the G + M 
component of the G + M model (G +  MG+M). This esti-
mate (G +  MG+M) was double the accuracy of the BV 
estimate from the model fitting only G  (GG) for the grass 
lamb group.

Using profiles collected at a different age
When using the metagenome profile from a different 
age than that from when the phenotype was collected 
(e.g., phenotype as a lamb and metagenome profile as an 
adult), microbiability estimates (Table  5) were smaller 
than when the metagenome profile was collected at the 
same time as the phenotype (Table 4) for all traits except 
LW in lambs (predicted from adult metagenome pro-
files). However, the microbiability estimates were typi-
cally at least as large as the corresponding heritability 
estimate (Table 5). In spite of some of the microbiability 
estimates being greater than the corresponding heritabil-
ity estimate, the prediction accuracies tended to be very 
similar for predictions with G or M both when fitting G 
and M independently (i.e.,  GG and  MM) and when fitting 
them simultaneously (i.e.,  GG+M and  MG+M).

The combined proportion of the total variance 
explained by  BVG+M +  MVG+M from the G + M models 

Table 4 Variance components and prediction accuracies for methane-related traits

CH4 = scaled methane emissions; CH4Ratio = scaled methane ratio  (CH4/(CH4 +  CO2)); CO2 = scaled carbon dioxide emissions; LW = liveweight at time of rumen 
sampling
a Model fitting the random effects of animal genetics (G), metagenome profile (M) or both (G + M)
b Large letter(s) represent the component (genomics = G; metagenome = M; or sum of the two = G + M), and the subscript represents the model used
c PropVar = Proportion of the phenotypic variance (adjusted for fixed effects) explained by the component
d Accuracy = Correlation between phenotype adjusted for fixed effects and the component when using cross-fold validation with each Cohort a different fold
e Run in ASReml 4.2 because ASReml 4.1 had major convergence issues
f At least one of the models contributing to this value had convergence or singularity issues

Phenotype Modela Componentb Lucerne lamb Grass lamb Grass adult

PropVarc Accuracyd PropVarc Accuracyd PropVarc Accuracyd

CH4 G GG 0.35 ± 0.08 0.11 ± 0.05 0.25 ± 0.07 0.13 ± 0.10 0.33 ± 0.07 0.18 ± 0.08

M MM 0.86 ± 0.10 0.38 ± 0.03 0.78 ± 0.15 0.32 ± 0.10 0.95 ± 0.20 0.31 ± 0.14

G + M GG+M 0.22 ± 0.06 0.08 ± 0.06 0.18 ± 0.06 0.13 ± 0.14f 0.25 ± 0.11f 0.17 ± 0.08f

MG+M 0.78 ± 0.06 0.38 ± 0.03 0.71 ± 0.15 0.32 ± 0.10f 0.75 ± 0.11f 0.31 ± 0.14f

G +  MG+M 1.00 ± 0.00 0.38 ± 0.03 0.89 ± 0.15 0.34 ± 0.09f 1.00 ± 0.00f 0.35 ± 0.12f

CH4Ratio G GG 0.35 ± 0.07 0.18 ± 0.04 0.24 ± 0.07 0.10 ± 0.06 0.33 ± 0.07 0.17 ± 0.18

M MM 0.60 ± 0.10 0.36 ± 0.10 0.76 ± 0.16 0.30 ± 0.06 0.83 ± 0.22 0.23 ± 0.10

G + M GG+M 0.25 ± 0.07 0.15 ± 0.03 0.21 ± 0.06 0.09 ± 0.05f 0.28 ± 0.07 0.17 ± 0.17

MG+M 0.53 ± 0.10 0.36 ± 0.10 0.67 ± 0.15 0.30 ± 0.07f 0.59 ± 0.21 0.22 ± 0.10

G +  MG+M 0.78 ± 0.11 0.37 ± 0.07 0.88 ± 0.16 0.30 ± 0.05f 0.86 ± 0.20 0.24 ± 0.14

CO2 G GG 0.27 ± 0.07 0.14 ± 0.08 0.19 ± 0.06 0.18 ± 0.13 0.38 ± 0.07 0.24 ± 0.12

M MM 0.46 ± 0.12 0.24 ± 0.11 0.00 ± 0.00 − 0.05 ± 0.09 0.14 ± 0.13 0.05 ± 0.09

G + M GG+M 0.27 ± 0.08 0.13 ± 0.08 0.19 ± 0.06 0.18 ± 0.13 0.37 ± 0.07 0.24 ± 0.12

MG+M 0.42 ± 0.11 0.24 ± 0.11 0.00 ± 0.00 − 0.05 ± 0.10 0.05 ± 0.08 0.04 ± 0.10

G +  MG+M 0.69 ± 0.13 0.27 ± 0.09 0.19 ± 0.06 0.15 ± 0.10 0.42 ± 0.11 0.24 ± 0.13

LW G GG 0.45 ± 0.08 0.19 ± 0.06 0.33 ± 0.07 0.14 ± 0.06 0.44 ± 0.07 0.22 ± 0.09

M MM 0.33 ± 0.09 0.26 ± 0.04 0.45 ± 0.14 0.22 ± 0.10 0.88 ± 0.21 0.26 ± 0.11

G + M GG+M 0.42 ± 0.08 0.19 ± 0.06 0.33 ± 0.07 0.16 ± 0.06 0.41 ± 0.11e,f 0.23 ± 0.09f

MG+M 0.26 ± 0.08 0.25 ± 0.05 0.42 ± 0.13 0.22 ± 0.10 0.59 ± 0.11e,f 0.25 ± 0.11f

G +  MG+M 0.68 ± 0.10 0.28 ± 0.06 0.76 ± 0.13 0.28 ± 0.07 1.00 ± 0.00e,f 0.32 ± 0.06f
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was always lower than for  BVG +  MVM, indicating that 
there was some variation in each trait that was cap-
tured by both animal genetics and metagenome profile 
(Table  5). This leads to the heritability and microbiabil-
ity estimates for G + M being slightly lower than from 
the models fitting only G or only M. However, despite 
explaining slightly less of the phenotypic variation, the 
prediction accuracies of  BVG+M and  MVG+M were very 
similar to those of  BVG and  MVM, respectively.

Incorporation of metagenome profiles from samples 
collected at a different age into the normal prediction 
equations for these phenotypes (i.e., G + M model) 
increased prediction accuracy between 9% (using adult 
metagenome profiles to predict lamb CH4Ratio) and 
38% (using adult metagenome profiles to predict lamb 
CH4) compared to just fitting the animal genetic ran-
dom effect (Table  5). This improvement in prediction 
accuracy was significant (p = 0.03, paired t-test) when 

Table 5 Variance components and prediction accuracies for methane-related traits from metagenome profiles at different ages

CH4 = scaled methane emissions; CH4Ratio = scaled methane ratio  (CH4/(CH4 +  CO2)); CO2 = scaled carbon dioxide emissions; LW = liveweight at time of rumen 
sampling
a Model fitting the random effects of animal genetics (G), metagenome profile (M) or both (G + M)
b Large letter(s) represent the component (genomics = G; metagenome = M; or sum of the two = G + M), and the subscript represents the model used
c Proportion of the phenotypic variance (adjusted for fixed effects) explained by the component
d Correlation between phenotype adjusted for fixed effects and the component when using cross-fold validation
e Regression coefficient of phenotype adjusted for fixed effects on either breeding value (G), metagenome value (M) or the sum of both (G + M) when using cross-fold 
validation with each Cohort a different fold

Phenotype Metagenome profile Modela Componentb Proportion of 
 variancec

Accuracyd Regression 
 coefficiente

Grass adult CH4 Grass lamb G GG 0.32 ± 0.07 0.16 ± 0.12 0.76 ± 0.57

M MM 0.52 ± 0.17 0.22 ± 0.09 1.00 ± 0.37

G + M GG+M 0.31 ± 0.07 0.16 ± 0.11 0.75 ± 0.56

MG+M 0.47 ± 0.16 0.22 ± 0.08 1.09 ± 0.37

G +  MG+M 0.78 ± 0.17 0.28 ± 0.12 1.01 ± 0.41

Grass lamb CH4 Grass adult G GG 0.30 ± 0.08 0.13 ± 0.10 0.78 ± 0.61

M MM 0.52 ± 0.21 0.16 ± 0.10 1.03 ± 0.69

G + M GG+M 0.27 ± 0.08 0.12 ± 0.12 0.78 ± 0.80

MG+M 0.45 ± 0.20 0.15 ± 0.09 1.14 ± 0.72

G +  MG+M 0.71 ± 0.21 0.18 ± 0.09 0.86 ± 0.28

Grass adult CH4Ratio Grass lamb G GG 0.35 ± 0.08 0.16 ± 0.17 0.82 ± 0.82

M MM 0.31 ± 0.15 0.14 ± 0.10 0.91 ± 0.62

G + M GG+M 0.34 ± 0.08 0.17 ± 0.16 0.90 ± 0.84

MG+M 0.21 ± 0.12 0.14 ± 0.09 1.21 ± 0.78

G +  MG+M 0.55 ± 0.14 0.20 ± 0.13 0.86 ± 0.50

Grass lamb CH4Ratio Grass adult G GG 0.28 ± 0.07 0.14 ± 0.07 0.92 ± 0.58

M MM 0.37 ± 0.18 0.13 ± 0.11 1.30 ± 1.48

G + M GG+M 0.26 ± 0.07 0.13 ± 0.07 0.92 ± 0.59

MG+M 0.18 ± 0.15 0.11 ± 0.11 2.89 ± 3.98

G +  MG+M 0.43 ± 0.16 0.15 ± 0.09 0.97 ± 0.72

Grass adult LW Grass lamb G GG 0.41 ± 0.08 0.20 ± 0.08 0.84 ± 0.42

M MM 0.34 ± 0.15 0.17 ± 0.11 1.32 ± 1.00

G + M GG+M 0.39 ± 0.08 0.20 ± 0.09 0.84 ± 0.45

MG+M 0.28 ± 0.14 0.16 ± 0.09 1.35 ± 0.95

G +  MG+M 0.67 ± 0.15 0.25 ± 0.07 0.91 ± 0.36

Grass lamb LW Grass adult G GG 0.37 ± 0.08 0.17 ± 0.07 0.71 ± 0.36

M MM 0.79 ± 0.24 0.20 ± 0.06 1.21 ± 0.67

G + M GG+M 0.34 ± 0.07 0.16 ± 0.08 0.71 ± 0.38

MG+M 0.56 ± 0.22 0.19 ± 0.06 1.49 ± 0.79

G +  MG+M 0.90 ± 0.21 0.23 ± 0.07 0.85 ± 0.36
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using adult metagenome profiles to predict lamb LW. 
These results indicate that metagenome profiles were 
predictive across time, can add more information than 
the animal genetic effect alone, and the improvement 
in prediction accuracy was not only observed when 
metagenome profiles were collected at the time of phe-
notype collection.

Residual feed intake and metagenome profiles
Profiles from the same time point
The rumen samples for the lucerne lamb metagenome 
profiles were collected at the same time as feed intake 
was measured (Table  6). Microbiability estimates when 
using the lucerne lamb MRM were significantly greater 
than heritability estimates, and the combined propor-
tion of phenotypic variance explained by  GG+M +  MG+M 
was almost 1. Prediction accuracy was also significantly 
greater when fitting metagenome profiles  (MM or  MG+M) 
compared to fitting animal genetics  (GG; p < 0.04, paired 
t-test). Prediction accuracy was highest when consid-
ering both the animal genetic and metagenome profile 
effects, but this prediction accuracy was only slightly 
higher than the MV alone  (MVM or  MVG+M). Prediction 
bias was not significantly different between the models, 

and the regression coefficient was not significantly differ-
ent to 1 (p > 0.05).

Profiles from different time points
Metagenome profiles from when the animals were on 
pasture (grass) as lambs and adults were also used to 
evaluate microbiability and prediction accuracy for RFI 
(Table  6). Microbiability estimates tended to be higher 
than the corresponding heritability estimates for grass 
lamb and grass adult metagenome profiles, with esti-
mates for lambs being slightly larger than for adults. 
Microbiability estimates and MV accuracies using grass 
lamb or grass adult metagenome profiles were signifi-
cantly different from zero (p < 0.05), and prediction accu-
racies were largest when using both animal genetics and 
metagenome profiles (G + M) to predict RFI, indicating 
that metagenome profiles from rumen samples taken 
when an animal is fed on pasture are predictive of RFI on 
a lucerne pellet diet.

Health and production traits and metagenome profiles
Three health and production traits were evaluated for 
their microbiability and prediction accuracy when using 

Table 6 Variance components and prediction accuracies for residual feed intake on lucerne pellets using genotypes and 
metagenomes

a Model fitting the random effects of animal genetics (G), metagenome profile (M) or both (G + M)
b Large letter(s) represent the component (genomics = G; metagenome = M; or sum of the two = G + M), and the subscript represents the model used
c Proportion of the phenotypic variance (adjusted for fixed effects) explained by animal genetics (G, heritability), the metagenome profile (M, microbiability) or both 
(G + M)
d Correlation between phenotype adjusted for fixed effects and either breeding value (G), metagenome value (M) or the sum of both (G + M) when using cross-fold 
validation
e Regression coefficient of phenotype adjusted for fixed effects on either breeding value (G), metagenome value (M) or the sum of both (G + M) when using cross-fold 
validation with each Cohort a different fold
f At least one of the models contributing to this value had convergence or singularity issues

Metagenome profile Modela Componentb Proportion of 
 variancec

Accuracyd Regression 
 coefficiente

Lucerne lamb G GG 0.39 ± 0.07 0.29 ± 0.08 1.06 ± 0.22

M MM 0.77 ± 0.07 0.47 ± 0.06 1.15 ± 0.52

G + M GG+M 0.30 ± 0.07 0.19 ± 0.13f 1.15 ± 0.63f

MG+M 0.67 ± 0.07 0.46 ± 0.07f 1.20 ± 0.61f

G +  MG+M 0.98 ± 0.08 0.49 ± 0.06f 1.14 ± 0.52f

Grass lamb G GG 0.43 ± 0.08 0.29 ± 0.09 1.25 ± 0.48

M MM 0.74 ± 0.21 0.19 ± 0.05f 0.90 ± 0.44f

G + M GG+M 0.40 ± 0.08 0.28 ± 0.08f 1.28 ± 0.45f

MG+M 0.57 ± 0.19 0.18 ± 0.06f 1.04 ± 0.56f

G +  MG+M 0.97 ± 0.19 0.31 ± 0.07f 1.05 ± 0.35f

Grass adult G GG 0.39 ± 0.07 0.28 ± 0.10 1.20 ± 0.50

M MM 0.69 ± 0.20 0.21 ± 0.16 1.08 ± 0.93

G + M GG+M 0.37 ± 0.07 0.27 ± 0.09f 1.27 ± 0.54f

MG+M 0.48 ± 0.18 0.19 ± 0.16f 1.32 ± 1.14f

G +  MG+M 0.85 ± 0.19 0.31 ± 0.12f 1.16 ± 0.62f
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metagenome profiles collected from the grass lamb, 
grass adult and lucerne lamb groups. These traits were 
liveweight at 8  months (LW8), summer strongyle faecal 
egg count (FEC1), and fleece weight at 12 months of age 
(FW12). Rumen samples were not collected at the same 
time as phenotype collection.

LW8 had similar heritability and microbiability esti-
mates for G and M for both grass groups, as well as the 
same prediction accuracy estimates (Table  7). Fitting 
metagenome profiles for grass lambs or grass adults 
in addition to the animal genetic effect improved pre-
diction accuracy, however, this improvement was 
not significant (p = 0.10, paired t-test). The propor-
tion of phenotypic variation explained by G or M in 
the lucerne lamb group were higher than for the grass 
groups. The prediction accuracies for the G + M model 
(G +  MG+M) using the lucerne lamb group were higher 
than for the grass groups, however, they also had larger 
standard errors and were therefore less reliable.

FEC1 had microbiability estimates of 0 and poor 
prediction accuracies with very high regression coef-
ficients for metagenome profiles from both grass 
lamb and lucerne lamb groups (see Additional file  3: 

Table S3). The microbiability estimates for FEC1 when 
using metagenome profiles from the grass adult group 
were higher than the heritability estimates, and predic-
tion accuracy was higher for MV than for BV, although 
not significantly. The highest prediction accuracy was 
obtained from the G + M model (G +  MG+M), however, 
this prediction accuracy was very similar to the predic-
tion accuracy when just M  (MM) was fitted.

FW12 had similar results using each of the metage-
nome profiles (see Additional file  3: Table  S3). The 
microbiability and prediction accuracy of M  (MM and 
 MG+M) were slightly lower than for G. Consistent with 
findings for the other traits that we investigated, the 
prediction accuracy of G +  MG+M provided the highest 
prediction accuracy; however, the accuracy was only 
slightly higher than that from the model fitting only G. 
The highest prediction accuracy was from metagenome 
profiles from grass adults, followed by grass gambs and 
finally lucerne lambs.

These three traits show different examples of the poten-
tial for incorporating metagenome profiles to improve 
prediction of traits that are of importance to the New 
Zealand sheep industry.

Table 7 Variance components and prediction accuracies for liveweight at eight months using genotypes and metagenomes

a Model fitting the random effects of animal genetics (G), metagenome profile (M) or both (G + M)
b Large letter(s) represent the component (genomics = G; metagenome = M; or sum of the two = G + M), and the subscript represents the model used
c Proportion of the phenotypic variance (adjusted for fixed effects) explained by animal genetics (G, heritability), the metagenome profile (M, microbiability) or both 
(G + M)
d Correlation between phenotype adjusted for fixed effects and either breeding value (G), metagenome value (M) or the sum of both (G + M) when using cross-fold 
validation
e Regression coefficient of phenotype adjusted for fixed effects on either breeding value (G), metagenome value (M) or the sum of both (G + M) when using cross-fold 
validation with each Cohort a different fold

Metagenome profile Modela Componentb Proportion of 
 variancec

Accuracyd Regression 
 coefficiente

Grass lamb G GG 0.35 ± 0.07 0.16 ± 0.11 0.67 ± 0.48

M MM 0.31 ± 0.13 0.16 ± 0.11 1.09 ± 0.76

G + M GG+M 0.35 ± 0.07 0.16 ± 0.11 0.68 ± 0.47

MG+M 0.28 ± 0.12 0.16 ± 0.11 1.12 ± 0.80

G +  MG+M 0.63 ± 0.13 0.22 ± 0.11 0.81 ± 0.45

Grass adult G GG 0.36 ± 0.07 0.16 ± 0.13 0.66 ± 0.49

M MM 0.39 ± 0.18 0.16 ± 0.07 1.32 ± 0.76

G + M GG+M 0.34 ± 0.07 0.16 ± 0.12 0.67 ± 0.49

MG+M 0.24 ± 0.15 0.15 ± 0.07 1.83 ± 1.10

G +  MG+M 0.58 ± 0.15 0.20 ± 0.11 0.78 ± 0.45

Lucerne lamb G GG 0.42 ± 0.08 0.18 ± 0.10 0.66 ± 0.36

M MM 0.43 ± 0.16 0.12 ± 0.02 0.78 ± 0.18

G + M GG+M 0.42 ± 0.08 0.36 ± 0.31 1.08 ± 0.57

MG+M 0.45 ± 0.16 0.29 ± 0.37 1.17 ± 0.69

G +  MG+M 0.86 ± 0.17 0.41 ± 0.33 0.95 ± 0.23
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Discussion
Animal genetic models
Genomic heritability estimates were significantly different 
from 0 for all traits investigated in this study and ranged 
from 0.19 (CO2 in lambs grazing on pasture) to 0.58 (FW12 
in lambs and adults grazing on pasture; see Fig. 1, Tables 4, 
5, 6 and 7 and see Additional file 2: Table S2 and Additional 
file 3: Table S3). Small fluctuations in heritability estimates 
for the same trait, e.g., FEC1 (see Additional file 3: Table S3), 
were due to slightly different individuals being included 
in each analysis, based on whether that individual had a 
metagenome profile for the group that was being evaluated. 
Heritability estimates were consistent with previously pub-
lished estimates in the New Zealand sheep population for 
all traits. Jonker et  al. [18] presented heritability estimates 
for methane emissions in New Zealand sheep from a larger 
dataset, of which the phenotypes from the grass diet in our 
study are a subset. Our heritability estimates are generally 
slightly higher than in Jonker et al. [18] (Table 4), but not sig-
nificantly different. Apart from the difference in size in the 
datasets, other explanations for the slightly higher heritabil-
ity estimates in our study are: (1) the heritability estimates 
reported by Jonker et al. [18] were obtained using pedigree-
based relationships, rather than genomic relationships from 
high-density SNPs; and (2) Jonker et al. [18] had methane-
related traits measured at multiple time points so they were 
able to fit a permanent environmental effect in their model, 
while in our study some of the permanent environmental 
effect of methane-related traits may have been captured by 
the animal genetic effect, inflating the heritability estimate. 
Johnson et  al. [5] recently published the pedigree-based 
heritability estimate on the full set of sheep that have gone 
through the Feed Intake facility at AgResearch’s Invermay 
campus, and their estimate of 0.42 ± 0.09 is consistent with 
our genomic-based estimates of 0.39 to 0.43 (Table 6). Pick-
ering et al. [31] estimated heritabilities for a number of traits 
of interest to New Zealand sheep breeders, including LW8 
(> 1 M records), FEC1 (> 130k records) and FW12 (> 750k 
records). Our heritability estimates were reasonably con-
sistent, although our estimate of heritability for FW12 was 
0.58 (see Additional file 3: Table S3), compared to their esti-
mate of 0.37. Our heritability estimates for all production 
and health traits were larger than those published in the 
studies mentioned, likely because our dataset was smaller, 
with ~ 1000 sheep and these sheep graze on research farms 
so management and level and species of parasite challenge 
is more consistent.

Incorporating metagenome profiles: methane‑related 
traits
We investigated four traits related to measuring the meth-
ane emission phenotype in this study: CH4, CH4Ratio, 

CO2 and LW. Three of these traits, CH4, CH4Ratio and 
LW, had microbiability estimates that were consistently 
significantly higher than 0 (Fig.  1) and (see Additional 
file 2: Table S2). These three traits all had RF microbiability 
estimates that were higher than the corresponding herit-
ability estimate, which resulted in higher prediction accu-
racies of RF MV than BV for the same set of individuals. 
The two direct methane traits, CH4 and CH4Ratio, had 
RB microbiabilities that were lower than the correspond-
ing heritability estimate, but higher prediction accuracies; 
while LW had RB microbiabilities that were lower than the 
corresponding heritability estimate and lower accuracy 
estimates. These results are consistent with the key role 
that the rumen microbiome plays in digestion of feed, of 
which methane is a by-product, and liveweight is a result 
of the energy made available to the animal by the rumen 
fermentation process.

The final methane-related trait, CO2, had microbiabil-
ity estimates significantly higher than 0 only for pheno-
types and rumen samples collected on lambs fed lucerne 
pellets (see Additional file  2: Table  S2). While methane 
emissions are a by-product of ruminal bacterial digestion 
of food that the individual eats, carbon dioxide emissions 
are largely related to the basal metabolism of the animal, 
with a small portion produced by the rumen microbes 
during fermentation. Therefore, in a typical grazing sit-
uation (lambs and adults grazing on pasture), carbon 
dioxide emissions are likely to be largely driven by host 
genetics, as observed by the moderate heritability esti-
mates. In the lucerne lamb group, the individuals were 
part of a feed intake trial with a more controlled envi-
ronment (feeding regime and diet) than sheep grazing 
on pasture, therefore the variation in rumen microbial 
function explained a greater proportion of the pheno-
typic variation and the microbiability estimate was sig-
nificantly higher than 0 for all methane-related traits.

Incorporating metagenome profiles: residual feed intake
Residual feed intake is a complex trait, combining eating 
behaviour, rumination, and how the individual allocates 
the energy provided to it to different biological func-
tions. RFI was measured on lambs fed an ad lib lucerne 
pellet diet, with a rumen sample taken during the trial. 
When using lucerne lamb metagenome profiles, microbi-
ability estimates were significantly different from 0 when 
fitting M alone or when fitting G + M (Table  6). Predic-
tion accuracy was higher for the MV (~ 0.47) than for 
the BV (0.29), and highest when using  BVG+M +  MVG+M 
(0.49), although only slightly higher than when using MV. 
The microbiability estimates and prediction accuracies 
for RFI from samples taken at the same time as RFI was 
collected were consistent with studies of RFI [34] and 
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feed conversion ratio [35] in pigs, showing that this is 
observed across diverse species.

Microbiability of RFI using metagenome profiles from 
grass lambs or grass adults was also significantly differ-
ent from 0, but their estimates and prediction accuracy 
were lower than for lucerne lambs (Table 6). When pre-
dicting RFI from a grass metagenome profile in addition 
to the BV, there was only a small increase in accuracy 
compared to using only the BV, suggesting minimal ben-
efit from using rumen metagenome profiles on grass 
to improve predictions of RFI on a lucerne diet. This is 
likely due to the major role that the diet plays in rumen 
metagenome profiles [14, 36] as well as the differences in 
digestion of a grass diet vs. a lucerne pellet diet. Jonker 
et al. [18] showed that animals ranked similarly for meth-
ane emissions on a pellet vs. a pasture diet; however this 
may not be the case for RFI and this aspect needs further 
research.

Incorporating metagenome profiles: prediction 
of methane‑related traits and residual feed intake 
across age
For use as a practical predictive tool for selection of supe-
rior animals, it is critical that metagenome profiles are 
not only predictive of traits measured at the same time 
as the rumen sample is taken, but also across the life-
time of the animal. Ideally, a rumen sample taken early 
in life would be predictive of a range of environmentally 
and economically important traits across the individual’s 
life, including different environments they may experi-
ence e.g., different diets. Our dataset, with samples taken 
on the same individuals at different times in their life, is 
a great resource to begin exploring this relationship. We 
estimated microbiabilities and prediction accuracies for 
methane-related traits from lambs on grass using grass 
adult metagenome profiles, and microbiabilities and pre-
diction accuracies from adults on grass using grass lamb 
metagenome profiles. These results showed that metage-
nome profiles can improve prediction accuracy beyond 
the models that just fit genetics, but as expected due to 
changes in the metagenome profile [14], the improve-
ment was not quite as large as when samples were taken 
at the same time point as the phenotypes (Tables  5, 6). 
The prediction accuracy tended to be higher when using 
lamb metagenomes to predict adult phenotypes than 
vice versa – a favourable direction for being able to pre-
dict later life traits from an earlier rumen sample. Mod-
els predicting across age that fitted both animal genetic 
and metagenome effects simultaneously achieved similar 
prediction accuracies to the models that fitted only the 
metagenome effect when predicting using the metage-
nome profile from the same time point (Tables  5, 6). 

Therefore, we have shown that there is value in collecting 
metagenome samples early in life to predict performance 
of the individual later in life, particularly when an indi-
vidual is expected to remain on a similar diet throughout 
its lifetime (e.g., ryegrass-based pasture).

Incorporating metagenome profiles: health 
and production traits
The potential to improve prediction accuracy of health 
and production traits by incorporating metagenome 
profiles is attractive due to the direct economic impact 
that could be achieved. Previous studies have found 
mixed results for production traits such as sheep milk 
composition, with Martinez Boggio et  al. [15] finding 
poor links between 16S rRNA sequencing operational 
taxonomic unit (OTU) and milk protein and fatty acid 
composition, while Bilton et  al. [37] found significant 
microbiability estimates for milk fatty acid composition 
using RE-RRS. The three traits in this study, LW8, FEC1 
and FW12, were selected to represent both production 
(LW8 and FW12) and health (FEC1) traits. Our results 
for LW8 (Table  7) and FW12 (see Additional file  2: 
Table  S2) showed a slight increase in prediction accu-
racy from incorporating metagenome profiles collected 
at any diet/age evaluated when fitting a G + M model 
compared to just fitting G; however, the MV accura-
cies were lower than the BV accuracies. Conversely, 
results for FEC1 showed no improvement in prediction 
accuracy from fitting a model with metagenome pro-
files from grass lambs and microbiability estimates for 
lucerne lambs were equal to 0.

Incorporation of grass adult metagenome profiles 
did improve prediction accuracy of FEC1 compared to 
just fitting G (see Additional file 3: Table S3). Some of 
the tags included in the RF metagenome profiles were 
assigned to nematodes [14], and could potentially be 
indicative of current (or persistent) larval challenge, 
although the majority of economically important gas-
trointestinal nematode species in New Zealand sheep 
[38] are not represented in the databases used in that 
study. A more likely explanation for the improvement 
in prediction accuracy of FEC1 using metagenome 
profiles from grass adults is that adult rumen metage-
nome profiles may have been impacted by worm bur-
dens that the individual experienced as a lamb, through 
the potential impact of treatment for nematode infec-
tion (e.g., anthelmintics) on the rumen microbiome 
[39], or changes in growth or metabolism as a result of 
nematode infection. Further work is required to explore 
these interactions; however, predicting FEC1 from 
grass adult metagenome profiles has no practical use, 
given that FEC1 is measured as a lamb.



Page 15 of 19Hess et al. Genetics Selection Evolution           (2023) 55:53  

Metagenome modelling
Our study explored a variety of different approaches 
to generate an MRM for incorporation into a linear 
mixed model. We focused on two methods of generat-
ing metagenome profiles: (1) a reference-based approach 
which compared sequences to a set of high-quality bac-
terial and archaeal genomes from the Hungate1000 Col-
lection [26]; and (2) a reference-free approach which 
counted the abundance of a set of common 65-bp 
sequences that were present in at least 25% of rumen 
samples from animals that were fed the same diet and 
were the same age. We also focused on two methods for 
normalizing the metagenome profiles, (1) L10: normaliz-
ing each genus (RB) or tag (RF) across all samples within 
the group; and (2) CA: normalizing each genus (RB) or 
tag (RF) within cohort.

Reference based vs. reference free
The RB microbiability estimates and accuracies all tended 
to be lower than the RF microbiability estimates, which 
is consistent with the increased proportion of reads that 
is captured using the RF approach compared to the RB 
approach. Hess et al. [14] reported that the RB approach 
captures ~ 20% of reads, while the RF approach cap-
tures ~ 30% when considering tags generated across 
all ~ 4500 samples (this percentage will be higher when 
considering tags present at least 25% within a group, as 
was done here). These results also support the findings of 
Hess et al. [17] on a smaller dataset, which showed much 
higher methane yield microbiability estimates for the RF 
than RB MRM. The RB approach captures a similar level 
of information on the metagenome profile as 16S rRNA 
gene sequencing as evidenced by similar estimates of 
 CH4 microbiability of Holstein dairy cows found by Dif-
ford et al. [11] and Zhang et al. [40], which ranged from 
0.07 to 0.15, depending on the modelling approach used, 
compared to our RB estimates for CH4 of 0.04 to 0.14. 
Hess et  al. [17] showed that the MRM generated using 
the RB approach gave a greater microbiability estimate 
than the MRM generated from 16S rRNA gene sequenc-
ing data on the same samples. Our results suggest that 
the RF approach using RE-RRS may capture more of 
the phenotypic variation due to the rumen metagen-
ome than 16S rRNA gene sequencing. The RF approach 
to metagenome profiling performs well using RE-RRS 
using the PstI enzyme but may not perform as well for 
other sequencing approaches such as whole metagen-
ome sequencing unless this is done at a (costly) very great 
depth. This was outlined by Hess et al. [17], and shown by 
RE-RRS with ApeKI, which captures a greater proportion 
of each genome (i.e., more tags) at less depth than PstI, 
and gave a lower microbiability estimate than PstI.

The reference database used for the RB approach will 
have a large impact on the relative performance of the 
RB and RF approaches. In our study, our reference data-
base was based on the Hungate1000 Collection [26], aug-
mented with four Quinella genomes [27]. This database 
contained very high-quality genome assemblies, with 
very high confidence in their taxonomic assignments. 
There are multiple ways that this database could be fur-
ther expanded, including with genomes from a rumen 
MAG database (e.g., Stewart et al., [41] or Anderson and 
Fernando [42]), genomes from a more comprehensive 
database (e.g., GenBank [43]), or information from refer-
ence free tags [14]. Any additions to the reference data-
base need to be carefully considered as they will increase 
computation time and have the potential to reduce accu-
racy if the genome assembly or taxonomic classification 
of the genome is incorrect; for example, GenBank tax-
onomies have been shown to have relatively high levels of 
incorrect taxonomic classification [44]. Reference data-
base design and the performance of the RB and RF profil-
ing approaches across a range of diets, ages and countries 
are discussed in more detail in Hess et al. [14].

The RF profiles contain information beyond the RB 
profiles, as they are able to capture a much broader taxo-
nomic range, as shown in Hess et  al. [14] and in Addi-
tional file  4: Table  S4, which shows that RF tags can 
be assigned to bacteria, archaea, fungi, host and feed 
genomes, among others. However, many of the tags can-
not be assigned, even with new and comprehensive data-
bases. Additional file  4: Table  S4 shows a relatively low 
proportion of reads assigned to the host (Ovis aries) 
genome, with only 0.29–0.48% of the RF profile attrib-
uted to the host, and even less, 0.15–0.17% attributed 
to plants. The majority of reads in the RF profiles can be 
attributed to bacteria, at 40–44% of assigned reads. The 
broader taxonomic range captured by the RF profiles has 
evidently resulted in an increase in prediction accuracy 
within and across age, flock, diet, and year. This indicates 
that the RF profiles are capturing valuable information 
that can be used for robust predictions. However, if the 
intention of an analysis with the RF approach is to focus 
on predictions using, e.g., only microbial data, the RF tags 
will need to have their taxonomy assigned and appropri-
ate filtering applied. If the RF profiles are filtered in this 
way, they are limited by the accuracy and completeness 
of the reference databases used to perform the taxonomic 
assignment, similar to the RB approach as described 
above. This would also entail the removal of a large pro-
portion of the RF profiles (using the GenBank database, 
54–57% of the RF profile was still unassigned), and, most 
likely, a decrease in prediction accuracy. Given that graz-
ing preference and host genetics are both heritable and 
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repeatable, host genetics and feed composition captured 
by the RF profiles are valuable for prediction purposes, as 
outlined in this study.

Log‑normalized vs. cohort‑adjusted
The L10 and CA matrices gave very similar results for 
using both the RB and RF metagenome profiles, but the 
RFL10 model ran into convergence or singularity issues in 
several cases. This typically happened when the residual 
variance was zero, when the metagenome effect (or in the 
case of the G + M model, the animal genetic effect plus 
the metagenome effect) explained all the phenotypic var-
iance. The RFCA model was selected for further analyses 
over the RFL10 model because there were fewer conver-
gence or singularity issues observed. If there were fewer 
convergence or singularity issues, the RFL10 MRM may 
be more appealing than the RFCA MRM given the reduc-
tion in computation effort from normalizing each tag 
(L10) compared to normalizing each tag within cohort 
(CA). Care would need to be taken, however, when using 
a RFL10 MRM to predict across environments, e.g., dif-
ferent diets or even different flocks, because cohort was 
found to be a major driver of the observed relationships 
between samples by Hess et al. [14].

Convergence issues
The models fitting RF MRM, had convergence issues in 
some cases, most commonly when estimating prediction 
accuracy rather than heritability and repeatability (i.e., in 
the smaller cross-fold validation datasets rather than the 
full datasets). This generally happened when fitting both 
the GRM and MRM, and when these explained almost all 
the variation in the trait. In these cases, the model usu-
ally converged but the parameters did not, and continu-
ing or rerunning ASReml did not achieve convergence. 
Given that the rumen microbiome/metagenome has 
been shown to be heritable [12–15], both matrices are 
able to capture genomic relationships between individu-
als, and therefore some of the variation in the trait could 
be assigned to either the GRM or MRM. As datasets get 
larger, models that capture the interaction between the 
GRM and MRM may be possible, however, these models 
were not possible with the dataset in our study. Although 
the model did not converge in all cases, the results (e.g., 
prediction accuracies) were still consistent with the mod-
els that considered only the GRM or only the MRM for 
that same trait, suggesting that the results were still rea-
sonable, although the criteria for convergence were not 
reached. The increased frequency of convergence issues 
during cross-fold variation rather than with models using 
the full dataset highlights the importance of large data-
sets when performing analyses that integrate the metage-
nome and host genome.

Potential overfitting
Some of the models for CH4 had all or almost all of their 
variance explained by the combination of G and M when 
using the RF MRM. We expect that the comprehensive 
RF approach is likely to explain a very large portion of 
the variation in methane emissions because methane is 
produced only as a byproduct of bacterial fermentation 
of the feed in the rumen, i.e., there is no other source 
beyond random noise, either within the individual or its 
environment, that would contribute to the CH4 pheno-
type collected. This is particularly true when using the 
rumen sample collected at the same time as the pheno-
type was collected, and, supporting this, we see a drop 
in the variance explained by the combination of G and 
M when we use a metagenome profile collected at a dif-
ferent age. Considering CH4Ratio, compared to CH4, 
a decrease in the variation explained by the combina-
tion of G and M is observed, which is expected, given 
that CH4Ratio is influenced by both  CH4 (driven by the 
rumen microbiome) and  CO2, which is largely driven by 
other biological processes. RFI is another trait that tends 
to have a very high proportion of the variance explained 
by the combination of G and M. The rumen microbiome 
is known to have an impact on RFI, as the composition of 
microbes will impact how the feed is broken down into 
fatty acids to fuel the animal. Therefore, it makes sense 
that a large proportion of the variation in RFI can be 
attributed to the rumen metagenome. RFI is also under 
host genetic control, which captures the animal’s ability 
to use the available fatty acids, resulting in a very large 
proportion of the variation in RFI being explained by the 
combination of G and M. Although we expect the com-
bination of the genome and the rumen metagenome to 
explain a large proportion of the variation in these traits, 
it was unexpected that we explained almost all the vari-
ation, so it is likely that we have an overfitting problem.

The RF models are very information-rich, with hun-
dreds of thousands of tags represented, and the first prin-
cipal components of these metagenome profiles explain 
only a small proportion of the variance of the matrices 
(e.g., less than 6.5% for PstI; Hess et al. [17]). The differ-
ence in microbiability estimates between the RB and RF 
MRM is much larger than might be expected when con-
sidering the difference in prediction accuracies, which 
are still higher from the models using an RF MRM than 
those using an RB MRM. Some of the tags in the RF 
metagenome profile may be contributing to overfitting 
due to the increased dimensionality and generally lower 
average counts per column than the RB MRM. This is 
an example of the p >> n problem, where there are many 
more tags than individuals in the RF approach, compared 
to fewer genera than individuals in the RB approach. We 
ameliorated this issue by using an MRM to account for 
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similarities in metagenome profiles between individuals 
rather than regressing on the individual tag abundance. 
The increase in prediction accuracy using the RF rather 
than the RB approach, indicates that the RF approach is 
picking up more meaningful associations than the RB 
approach, even if it is overfitting. This is likely driven by 
the broader taxonomic range that the RF metagenome 
profiles capture compared to the RB microbial profiles 
[14]. Future studies using the RF RE-RRS approach for 
metagenome profiling may benefit from further filtering 
or clustering of the tags to increase confidence in rela-
tive abundances and reduce the subsequent overfitting 
without reducing prediction accuracy. Hess et  al. [14] 
explored the assignment of taxonomy to tags by com-
parison with a much more comprehensive database than 
would be possible with the RB approach and clustering 
tags based on these assigned taxonomies is one option 
that could be explored.

Another potential explanation for moderate accura-
cies in spite of some very high model fits is an inter-
action between the metagenome and the environment. 
This could be considered similar to G × E interactions 
between genomics and the environment, however, in 
the case of the metagenome, there could be very dif-
ferent abundances between different cohorts [36], and 
different interactions between the taxa in terms of 
abundances (i.e., different taxa playing the same role 
in feed degradation) [45], as well as different effects 
of those taxa in different environments (i.e., similar 
to what we consider to be G ×  E interactions). These 
interactions will become clearer as datasets grow big-
ger and we have more power to delve into the biologi-
cal signals behind the predictions.

Metagenome profiles for selection purposes
When modelling metagenome profiles for the purposes 
of selection, it is important to consider the proportion of 
the phenotypic variance that is captured by the animal 
genetic effect (G) compared to the metagenome effect 
(M). There is extensive evidence that the abundance of 
certain rumen microbes, and therefore the microbiome/
metagenome profile, is impacted by host genetics [12, 
14, 40], indicating that selecting individuals with favour-
able metagenome profiles as parents for the next genera-
tion will result in offspring with favourable metagenome 
profiles and better performance. In our study, the mod-
els that we have run focused on phenotypic prediction, 
i.e., prediction of an individual’s performance, rather 
than that of their offspring. Further research is needed 
to confirm that the increase in prediction accuracy from 
fitting a model that incorporates rumen metagenome 
information will result in greater accuracy for predicting 

offspring performance. The impact of fitting both ani-
mal genetic and metagenome effects in the same model 
generally resulted in a decrease in both heritability 
 (GG+M) and microbiability  (MG+M) estimates compared 
to models fitting each independently  (GG and  MM). This 
is because some of the phenotypic variation is being 
attributed to both the animal genetic and the metagen-
ome effects when they are each fitted in separate mod-
els and is likely representative of the heritable variation 
in the microbiome that is influencing the trait of inter-
est. Appropriate modelling of this variation is crucial to 
the development of models that will optimise our abil-
ity to identify individuals that have favourable genetics 
and microbiomes and will pass both to their offspring, 
e.g., identifying the heritable and non-heritable variation 
attributed to the metagenome [46–48].

Conclusions
Metagenome profiles from rumen samples improved the 
accuracy of most animal traits evaluated in our study com-
pared to models that considered only animal genomic rela-
tionships. The traits that we studied span environmentally 
important traits (methane emissions, methane ratio), effi-
ciency traits (residual feed intake), production traits (live-
weight at 8  months old, fleece weight at 12  months old) 
and health traits (summer strongyle faecal egg count). We 
recommend using a reference-free approach to metage-
nome profiling, rather than relying on a limited database 
of microbial genomes. The use of a cohort-adjusted refer-
ence-free microbial relationship matrix not only improved 
prediction accuracy of phenotypes recorded at the same 
time that the rumen sample was collected, but was also 
able to improve predictions at different ages and on differ-
ent diets. Our study demonstrates the potential of using 
RE-RRS as a low-cost, high-throughput approach for gen-
erating metagenome profiles on thousands of animals for 
improved prediction of economically and environmentally 
important traits measured throughout an animal’s life.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12711- 023- 00822-1.

Additional file 1: Table S1a. Rumen sample information including 
SRA_number, sample ID, animal ID, flock, year of birth, sample date, diet, 
age, group, and cohort. Table S1b. Summary of Additional file 1 Table S1a, 
showing the number of samples per animal, overall and split into grass 
lamb, grass adult and lucerne lamb samples. Table S1c. Summary of 
Additional file 1: Table S1a, showing the number of animals in each cohort 
and which group the cohort belongs to

Additional file 2: Table S2. Variance components and prediction accura-
cies for methane-related traits including variance component, accuracy 
and regression coefficient estimates for the traits related to methane emis-
sions (CH4), methane ratio (CH4Ratio), carbon dioxide emissions (CO2) 
and liveweight at the time of methane phenotype collection (LW).

https://doi.org/10.1186/s12711-023-00822-1
https://doi.org/10.1186/s12711-023-00822-1


Page 18 of 19Hess et al. Genetics Selection Evolution           (2023) 55:53 

Additional file 3: Table S3. Variance components and prediction 
accuracies for selected health and production traits including variance 
component, accuracy and regression coefficient estimates for the traits of 
liveweight at 8 months of age (LW8), summer strongyle faecal egg count 
(FEC1) and fleece weight at 12 months of age (FW12).

Additional file 4: Table S4: Proportion of RF profiles (reads) and number 
of tags attributed to various taxonomies of interest separated by group.

Acknowledgements
This project was made possible by funding and/or animals provided by 
Beef + Lamb New Zealand Genetics, the Ministry for Business, Innovation 
and Employment, Beef + Lamb New Zealand, the Pastoral Greenhouse Gas 
Research Consortium, Sustainable Land Management and Climate Change, 
the New Zealand Agricultural Greenhouse Gas Research Centre, the Global 
Partnerships in Livestock Emissions Research, and the many farm and support 
staff. The authors acknowledge the financial support through the partners 
of the 2018 Joint Call of the Cofund ERA-Nets FACCE ERA-GAS (Grant No. 
696356), ICT-AGRI 2 (Grant No. 618123) and SusAn (Grant No. 696231).

Author contributions
MH was involved in sample processing, software development, methodology, 
statistical analysis, interpretation and drafted the manuscript. LZ was involved 
in sample processing methodology and sample processing. AH was involved 
in methodology and interpretation. JB was involved in sample processing. 
KD was involved in statistical methodology development. HH was involved in 
sample processing methodology and sequencing. RB was involved in bioinfor-
matics methodology. AM was involved in software development. SH was 
involved in data processing and model development. SE, JW, and KM were 
involved in phenotyping and sample acquisition. DH and HB were involved in 
genotyping and data processing. PLJ was involved in design, modelling, and 
acquiring funding for the residual feed intake trials. BB and KK were involved in 
trial design and phenotype and sample acquisition on farm. AJ was involved 
in design, methane phenotyping, and sample acquisition. PHJ was involved 
in design and methodology. JM and SR were involved in conception, design, 
methodology, sample acquisition and funding acquisition. All authors read 
and approved the final manuscript.

Funding
MH postdoctoral project ‘Microbes to Predict Methane’ was funded by the 
New Zealand Government in support of the activities of the Global Research 
Alliance on Agricultural Livestock Emissions Research (SOW-AGR-GPLER-SP5; 
SR) Financial support was also provided by an AgResearch Curiosity fund (JM), 
the Ministry for Business, Innovation and Employment (MBIE) funded Genom-
ics for Production and Security in a Biological Economy (C10X1306) (JM) and 
Mapping the New Zealand Ruminotype Landscape (C10X1807) programmes. 
The flocks involved in this study were funded by the Pastoral Greenhouse Gas 
Research Consortium (PGgRc.co.nz; SR, JM, PHJ, AJ), New Zealand Agricul-
tural Greenhouse Gas Research Centre (NZAGRC.org.nz; SR, JM, PHJ, AJ) and 
Beef + Lamb New Zealand Genetics (PLJ). The funders had no role in study 
design, data collection and analysis, decision to publish or preparation of the 
manuscript; however, they approved release of the publication.

Availability of data and materials
The sequencing data analysed during the current study was generated as part 
of a study reported by Hess et al. [14] and is available in the NCBI Short Read 
Archive (SRA) database under BioProject ID PRJNA859547. The methane-
related and residual feed intake data analysed during the current study are 
available from Suzanne Rowe on reasonable request. The health and produc-
tion data analysed during this study are available from Sheep Improvement 
Limited or AgResearch, but restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not publicly 
available.

Declarations

Ethics approval and consent to participate
The animal experiments conducted adhered to the guidelines of the 1999 
New Zealand Animal Welfare Act and AgResearch Code of Ethical Conduct. 

The trials of the current study were approved by the AgResearch Invermay 
(Mosgiel, NZ) Animal Ethics committee with the approval numbers: 13081, 
13419, 13563, 13742, 13892, 14055, 14066, and 14221.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 University Invermay Agricultural Centre, AgResearch Ltd., Private Bag 50034, 
Mosgiel 9053, New Zealand. 2 University of Nebraska-Lincoln, Institute of Agri-
culture and Natural Resources, 300 Agricultural Hall, University of Nebraska-
Lincoln, Lincoln, NE 68583, USA. 3 Wageningen University & Research, P.O. 
Box 338, 6700 AH Wageningen, The Netherlands. 4 University of Nevada, Reno, 
Agriculture, Veterinary & Rangeland Sciences, 1664 N. Virginia St., Mail Stop 
202, Reno, NV 89557, USA. 5 Graduate Program in Animal Science, Univer-
sidade Federal do Pará (UFPa), Castanhal, Brazil. 6 Ruakura Research Centre, 
AgResearch Ltd., Private Bag 3115, Hamilton 3240, New Zealand. 7 Deer 
Industry New Zealand, PO Box 10702, Wellington 6140, New Zealand. 8 Pāmu, 
Landcorp Farming Ltd, PO Box 5349, Wellington 6011, New Zealand. 9 Wood-
lands Research Farm, AgResearch Ltd., 204 Woodlands-Morton Mains Road, 
Woodlands 9871, New Zealand. 10 Grasslands Research Centre, AgResearch 
Ltd., Private Bag 11008, Palmerston North 4410, New Zealand. 

Received: 21 November 2022   Accepted: 3 July 2023

References
 1. FAO, IFAD, UNICEF, WFP and WHO. The state of food security and nutrition 

in the world 2020. 2020. https:// www. unicef. org/ repor ts/ state- of- food- 
secur ity- and- nutri tion- 2020/ Accessed 21 Jun 2023.

 2. Ministry for the Environment. New Zealand’s greenhouse gas inventory 
1990–2019. https:// envir onment. govt. nz/ assets/ Publi catio ns/ New- Zeala 
nds- Green house- Gas- Inven tory- 1990- 2019- Volume- 1- Chapt ers-1- 15. pdf/ 
Accessed 21 Jun 2023.

 3. Rowe SJ, Hickey SM, Jonker A, Hess MK, Janssen PH, Johnson T, et al. 
Selection for divergent methane yield in New Zealand sheep—
a ten-year perspective. Proc Assoc Advmt Anim Breed Genet. 
2019;23:306–9.

 4. Rowe S, Hickey S, Johnson P, Bilton T, Jonker A, Bain W, et al. The contribu-
tion animal breeding can make to industry carbon neutrality goals. Proc 
Assoc Advmt Anim Breed Genet. 2021;24:15–8.

 5. Johnson PL, Hickey S, Knowler K, Wing J, Bryson B, Hall M, et al. Genetic 
parameters for residual feed intake, methane emissions, and body com-
position in New Zealand maternal sheep. Front Genet. 2022;13: 911639.

 6. Kittelmann S, Pinares-Patiño CS, Seedorf H, Kirk MR, Ganesh S, McEwan 
JC, et al. Two different bacterial community types are linked with the low-
methane emission trait in sheep. PLoS One. 2014;9: e103171.

 7. McLoughlin S, Spillane C, Claffey N, Smith PE, O’Rourke T, Diskin MG, et al. 
Rumen microbiome composition is altered in sheep divergent in feed 
efficiency. Front Microbiol. 2020;11:1981.

 8. Bowen JM, Cormican P, Lister SJ, McCabe MS, Duthie C-A, Roehe R, et al. 
Links between the rumen microbiota, methane emissions and feed 
efficiency of finishing steers offered dietary lipid and nitrate supplemen-
tation. PLoS One. 2020;15: e0231759.

 9. Ramayo-Caldas Y, Zingaretti L, Popova M, Estellé J, Bernard A, Pons N, 
et al. Identification of rumen microbial biomarkers linked to methane 
emission in Holstein dairy cows. J Anim Breed Genet. 2020;137:49–59.

 10. Kamke J, Kittelmann S, Soni P, Li Y, Tavendale M, Ganesh S, et al. Rumen 
metagenome and metatranscriptome analyses of low methane yield 
sheep reveals a Sharpea-enriched microbiome characterised by lactic 
acid formation and utilisation. Microbiome. 2016;4:56.

 11. Difford GF, Plichta DR, Løvendahl P, Lassen J, Noel SJ, Højberg O, et al. 
Host genetics and the rumen microbiome jointly associate with methane 
emissions in dairy cows. PLoS Genet. 2018;14: e1007580.

https://www.unicef.org/reports/state-of-food-security-and-nutrition-2020/
https://www.unicef.org/reports/state-of-food-security-and-nutrition-2020/
https://environment.govt.nz/assets/Publications/New-Zealands-Greenhouse-Gas-Inventory-1990-2019-Volume-1-Chapters-1-15.pdf/
https://environment.govt.nz/assets/Publications/New-Zealands-Greenhouse-Gas-Inventory-1990-2019-Volume-1-Chapters-1-15.pdf/


Page 19 of 19Hess et al. Genetics Selection Evolution           (2023) 55:53  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 12. Wallace RJ, Sasson G, Garnsworthy PC, Tapio I, Gregson E, Bani P, et al. 
A heritable subset of the core rumen microbiome dictates dairy cow 
productivity and emissions. Sci Adv. 2019;5: eaav8391.

 13. Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, et al. Host genetics influence the 
rumen microbiota and heritable rumen microbial features associate with 
feed efficiency in cattle. Microbiome. 2019;7:92.

 14. Hess M, Hodgkinson H, Hess A, Zetouni L, Budel J, Henry H, et al. Large-
scale analysis of sheep rumen metagenome profiles captured by reduced 
representation sequencing reveals individual profiles are influenced by 
factors associated with the environment and genetics of the host. 2022; 
https:// www. resea rchsq uare. com/ artic le/ rs- 21569 04/ v1.

 15. Martinez Boggio G, Meynadier A, Buitenhuis AJ, Marie-Etancelin C. Host 
genetic control on rumen microbiota and its impact on dairy traits in 
sheep. Genet Sel Evol. 2022;54:77.

 16. Ross EM, Hayes BJ. Metagenomic predictions: a review 10 years on. Front 
Genet. 2022;13: 865765.

 17. Hess MK, Rowe SJ, Van Stijn TC, Henry HM, Hickey SM, Brauning R, et al. 
A restriction enzyme reduced representation sequencing approach for 
low-cost, high-throughput metagenome profiling. PLoS One. 2020;15: 
e0219882.

 18. Jonker A, Hickey SM, Rowe SJ, Janssen PH, Shackell GH, Elmes S, et al. 
Genetic parameters of methane emissions determined using portable 
accumulation chambers in lambs and ewes grazing pasture and genetic 
correlations with emissions determined in respiration chambers. J Anim 
Sci. 2018;96:3031–42.

 19. Pinares-Patiño C, Hickey S, Young E, Dodds K, MacLean S, Molano G, 
et al. Heritability estimates of methane emissions from sheep. Animal. 
2013;7:316–21.

 20. McLean NJ, Jopson NB, Campbell AW, Knowler K, Behrent M, Cruickshank 
G, et al., editors. An evaluation of sheep meat genetics in New Zealand: 
the central progeny test (CPT). Proc N Z Soc Anim Prod. 2006;66:368–72.

 21. Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from 
next-generation reference panels. Am J Hum Genet. 2018;103:338–48.

 22. VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

 23. Herten K, Hestand MS, Vermeesch JR, Van Houdt JK. GBSX: a toolkit for 
experimental design and demultiplexing genotyping by sequencing 
experiments. BMC Bioinformatics. 2015;16:73.

 24. Martin M. Cutadapt removes adapter sequences from high-throughput 
sequencing reads. EMBnet J. 2011;17:10–2.

 25. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.

 26. Seshadri R, Leahy SC, Attwood GT, Teh KH, Lambie SC, Cookson AL, et al. 
Cultivation and sequencing of rumen microbiome members from the 
Hungate1000 Collection. Nat Biotechnol. 2018;36:359–67.

 27. Kumar S. Physiology of rumen bacteria associated with low methane 
emitting sheep. PhD thesis, Massey University; 2017.

 28. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic 
data. Genome Res. 2007;17:377–86.

 29. Ross EM, Moate PJ, Marett LC, Cocks BG, Hayes BJ. Metagenomic predic-
tions: from microbiome to complex health and environmental pheno-
types in humans and cattle. PLoS One. 2013;8: e73056.

 30. Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in 
beef cattle. J Anim Sci. 1963;22:486–94.

 31. Pickering NK, Dodds KG, Blair HT, Hickson RE, Johnson PL, McEwan JC. 
Genetic parameters for production traits in New Zealand dual-purpose 
sheep, with an emphasis on dagginess. J Anim Sci. 2012;90:1411–20.

 32. McEwan JC. WormFEC breeders’ manual. Mosgiel: AgResearch Invermay 
Agricultural Centre; 1994.

 33. Gilmour A, Gogel B, Cullis B, Welham S, Thompson R. ASReml user guide 
release 4.1 structural specification. Hemel hempstead: VSN international 
ltd. 2015.

 34. Weishaar R, Wellmann R, Camarinha-Silva A, Rodehutscord M, Bennewitz 
J. Selecting the hologenome to breed for an improved feed efficiency in 
pigs—a novel selection index. J Anim Breed Genet. 2020;137:14–22.

 35. Camarinha-Silva A, Maushammer M, Wellmann R, Vital M, Preuss S, Benne-
witz J. Host genome influence on gut microbial composition and micro-
bial prediction of complex traits in pigs. Genetics. 2017;206:1637–44.

 36. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census 
Collaborators, et al. Rumen microbial community composition varies with 

diet and host, but a core microbiome is found across a wide geographi-
cal range. Sci Rep. 2015;5:14567.

 37. Bilton TP, Hickey SM, Jonker AJ, Bain W, Waller E, Hess M, et al. Differences 
in milk composition associated with enteric methane emissions. ICAR 
Techn Ser. 2021;25:85–8.

 38. Vlassoff A, McKenna P. Nematode parasites of economic importance in 
sheep in New Zealand. N Z J Zool. 1994;21:1–8.

 39. Moon CD, Carvalho L, Kirk MR, McCulloch AF, Kittelmann S, Young W, 
et al. Effects of long-acting, broad spectra anthelmintic treatments on 
the rumen microbial community compositions of grazing sheep. Sci Rep. 
2021;11:3836.

 40. Zhang Q, Difford G, Sahana G, Løvendahl P, Lassen J, Lund MS, et al. 
Bayesian modeling reveals host genetics associated with rumen 
microbiota jointly influence methane emission in dairy cows. ISME J. 
2020;14:2019–33.

 41. Stewart RD, Auffret MD, Warr A, Walker AW, Roehe R, Watson M. 
Compendium of 4,941 rumen metagenome-assembled genomes for 
rumen microbiome biology and enzyme discovery. Nat Biotechnol. 
2019;37:953–61.

 42. Anderson CL, Fernando SC. Insights into rumen microbial biosynthetic 
gene cluster diversity through genome-resolved metagenomics. Com-
mun Biol. 2021;4:818.

 43. Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. 
GenBank. Nucleic Acids Res. 2019;47:D94–9.

 44. Steinegger M, Salzberg SL. Terminating contamination: large-scale 
search identifies more than 2,000,000 contaminated entries in GenBank. 
Genome Biol. 2020;21:115.

 45. Taxis TM, Wolff S, Gregg SJ, Minton NO, Zhang C, Dai J, et al. The players 
may change but the game remains: network analyses of ruminal micro-
biomes suggest taxonomic differences mask functional similarity. Nucleic 
Acids Res. 2015;43:9600–12.

 46. Zhao T, Zeng J, Cheng H. Extend mixed models to multi-layer neural 
networks for genomic prediction including intermediate omics data. 
Genetics. 2022;221:iyac034.

 47. Christensen OF, Börner V, Varona L, Legarra A. Genetic evaluation includ-
ing intermediate omics features. Genetics. 2021;219:iyab130.

 48. Hayes B, Panozzo J, Walker C, Choy A, Kant S, Wong D, et al. Accelerating 
wheat breeding for end-use quality with multi-trait genomic predictions 
incorporating near infrared and nuclear magnetic resonance-derived 
phenotypes. Theor Appl Genet. 2017;130:2505–19.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.researchsquare.com/article/rs-2156904/v1

	Combining host and rumen metagenome profiling for selection in sheep: prediction of methane, feed efficiency, production, and health traits
	Abstract 
	Background 
	Results 
	Conclusions 

	Background
	Methods
	Animals
	Genotypes
	Rumen sample collection and metagenome profiling
	Sequence processing
	Reference-based (RB)
	Reference free (RF)
	Metagenome relationship matrices

	Phenotypes
	Methane-related traits
	Residual feed intake
	Health and production traits

	Parameter estimation and prediction accuracy
	Parameter estimation
	Prediction accuracy


	Results
	Methane-related traits and metagenome profiles
	Methods for generating MRM
	Genomes vs. rumen metagenomes
	Using profiles collected at a different age

	Residual feed intake and metagenome profiles
	Profiles from the same time point
	Profiles from different time points

	Health and production traits and metagenome profiles

	Discussion
	Animal genetic models
	Incorporating metagenome profiles: methane-related traits
	Incorporating metagenome profiles: residual feed intake
	Incorporating metagenome profiles: prediction of methane-related traits and residual feed intake across age
	Incorporating metagenome profiles: health and production traits
	Metagenome modelling
	Reference based vs. reference free
	Log-normalized vs. cohort-adjusted
	Convergence issues
	Potential overfitting
	Metagenome profiles for selection purposes


	Conclusions
	Anchor 44
	Acknowledgements
	References


