
Valente et al. Genetics Selection Evolution           (2023) 55:57  
https://doi.org/10.1186/s12711-023-00830-1

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Using residual regressions to quantify 
and map signal leakage in genomic prediction
Bruno D. Valente1*, Gustavo de los Campos2,3,4, Alexander Grueneberg2, Ching‑Yi Chen1, 
Roger Ros‑Freixedes5,6 and William O. Herring1 

Abstract 

Background Most genomic prediction applications in animal breeding use genotypes with tens of thousands 
of single nucleotide polymorphisms (SNPs). However, modern sequencing technologies and imputation algorithms 
can generate ultra‑high‑density genotypes (including millions of SNPs) at an affordable cost. Empirical studies have 
not produced clear evidence that using ultra‑high‑density genotypes can significantly improve prediction accu‑
racy. However, (whole‑genome) prediction accuracy is not very informative about the ability of a model to capture 
the genetic signals from specific genomic regions. To address this problem, we propose a simple methodology 
that detects chromosome regions for which a specific model (e.g., single‑step genomic best linear unbiased predic‑
tion (ssGBLUP)) may fail to fully capture the genetic signal present in such segments—a phenomenon that we refer 
to as signal leakage. We propose to detect regions with evidence of signal leakage by testing the association of resid‑
uals from a pedigree or a genomic model with SNP genotypes. We discuss how this approach can be used to map 
regions with signals that are poorly captured by a model and to identify strategies to fix those problems (e.g., using 
a different prior or increasing marker density). Finally, we explored the proposed approach to scan for signal leakage 
of different models (pedigree‑based, ssGBLUP, and various Bayesian models) applied to growth‑related phenotypes 
(average daily gain and backfat thickness) in pigs.

Results We report widespread evidence of signal leakage for pedigree‑based models. Including a percentage of ani‑
mals with SNP data in ssGBLUP reduced the extent of signal leakage. However, local peaks of missed signals remained 
in some regions, even when all animals were genotyped. Using variable selection priors solves leakage points that are 
caused by excessive shrinkage of marker effects. Nevertheless, these models still miss signals in some regions due 
to low linkage disequilibrium between the SNPs on the array used and causal variants. Thus, we discuss how such 
problems could be addressed by adding sequence SNPs from those regions to the prediction model.

Conclusions Residual single‑marker regression analysis is a simple approach that can be used to detect regional 
genomic signals that are poorly captured by a model and to indicate ways to fix such problems.
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Background
Genome-enabled prediction has been adopted as the 
preferred method for the prediction of breeding values 
in many species. Prediction accuracy (defined as the 
correlation between predictions and breeding values) 
is typically used to evaluate the performance of mod-
els used to infer breeding values, as it directly impacts 
response to selection. Several factors affect the accu-
racy of genomic predictions, including sample size, 
the statistical model used, and marker density [1–5]. 
Increasingly, genomic research and industry applica-
tions use ultra-high-density single nucleotide polymor-
phism (SNP) genotypes derived from either sequencing 
or imputation to sequence-equivalent SNP density. 
However, empirical evidence suggests that prediction 
models that include hundreds of thousands (or even 
millions) of SNPs do not achieve a substantially higher 
prediction accuracy compared to considering only a 
few thousand SNPs [6].

Nevertheless, measures of genomic prediction accu-
racy can be highly insensitive to important differences 
between models. For instance, models with disparate 
assumptions about the distribution of effects can fre-
quently achieve similar breeding value predictions (and 
therefore accuracies) [7], although those models may ren-
der very different estimates of SNP effects. Furthermore, 
genome-wide measures of prediction accuracy may not 
be informative about a model’s ability to capture signals 
at specific genomic regions. For example, shrinkage mod-
els may perform better than variable selection procedures 
at capturing signals in regions of high collinearity [i.e., 
very high linkage disequilibrium (LD)] [8], but the latter 
may be better at capturing signals in regions with large-
effect variants [9]. Likewise, using a higher SNP density 
(e.g., sequence or imputed-to-sequence genotypes) may 
be more important in some regions than others.

We hypothesize that the added value of ultra-high-
density SNP genotypes varies substantially across 
genomic regions. Thus, some regions of high LD may be 
well covered by low- and intermediate-density arrays, 
while others may benefit from using a higher SNP den-
sity. However, we lack methods to identify such regions. 
Therefore, our first objective was to develop and evalu-
ate a simple approach to identify genome segments that 
generate genetic signals that are missed by a genetic 
model, a phenomenon which we refer to as signal leak-
age. To achieve this goal, we propose a simple approach 
that applies single-marker regression to the residuals of 
the genetic model. The intuition behind the approach is 
straightforward: strong associations between residuals 
from a genetic model and individual SNP genotypes indi-
cate genetic signals that are missed by the genetic model 
from which the residuals were derived.

Signal leakage may result from poor SNP coverage in a 
region or from model deficiencies (e.g., too much shrink-
age of effects induced by a prior distribution). Therefore, 
our second objective was to propose a set of analyses 
that can shed light on the reasons why a model may fail 
to fully capture signals of some genome segments. To 
address this, we propose applying single marker regres-
sions to residuals that are derived from different models 
(pedigree-based, single-step genomic best linear unbi-
ased prediction (GBLUP), and Bayesian regressions with 
different prior distributions). Those analyses can be used 
to determine whether the signal leakage identified in a 
specific region is attributable to poor SNP density or to 
model deficiencies (e.g., excessive shrinkage).

To illustrate the methods proposed in this study, we 
applied residual regressions to real breeding data with 
a set of analyses that involved a sequence of models 
(pedigree, single-step GBLUP, Bayesian ridge regression, 
and models with variable selection priors) and different 
inputs for fitting the prediction model or scanning for 
leakage (pedigree, medium-density, and ultra-high-den-
sity SNP panels).

Methods
Data were obtained from 39,819 pigs that belonged to a 
single breeding line for which average daily gain (ADG, 
g), ultrasound-measured backfat thickness (BF, mm), 
and SNP panel genotypes were available. All males were 
genotyped prior to phenotyping for the aforementioned 
traits, and all dams were genotyped prior to inclusion 
into the breeding herd.

Phenotype adjustments
Before fitting genomic models, we used a larger dataset 
(n = 76,736, including the 39,819 animals with phenotype 
and genotype data, plus contemporary animals that had 
phenotype data only) to adjust phenotypes for the fixed 
effect of contemporary group (farm, sex, birth year, and 
week) and the random effect of common litter. The model 
used for precorrection included the aforementioned 
effects plus an animal genetic effect based on pedigree 
information from 1,187,225 animals. Backfat thickness 
was also corrected for off-test weight as a linear covari-
ate. The pre-corrected data were then used to test for evi-
dence of signal leakage of pedigree and genomic models.

Genetic information
We had pedigree data for the 39,819 animals included 
in the study as well as medium-density (MD) and ultra-
high density (UHD) SNP genotypes coded as 0,1 and 2. 
Missing genotypes in the latter were imputed using the 
AlphaImpute software [10]. For quality control, SNPs 
with a MAF < 0.01 and a call rate < 0.8 were removed. 



Page 3 of 9Valente et al. Genetics Selection Evolution           (2023) 55:57  

As a result, 41,205 SNPs remained for the MD panel. 
The UHD panel was based on sequence-level SNP call-
ing. A subset of the population was directly sequenced 
for different depth levels, and reads were imputed using 
the software AlphaPeel [11]. The called variants were 
then imputed for the remaining population that was 
genotyped with the MD panel. Details of this approach 
are described by Ros-Freixedes et  al. [12]. SNPs with a 
MAF < 0.001 were removed, after which ~ 18 ×  106 SNPs 
remained for further analyses.

Training and testing sets
The study of signal leakage can be performed on train-
ing (i.e., regressing residuals on genotypes using the same 
sample that was used to derive those residuals) or testing 
data. Evaluating and comparing the leakage landscape in 
the training versus the testing data may be informative, 
for instance, in cases where the goodness-of-fit to the 
training data is good and prediction accuracy in the test-
ing data is poor. In addition, comparing the leakage pat-
terns in the testing set obtained with alternative models 
could provide information about the nature of the differ-
ences in predictive performance. Therefore, we divided 
the 39,819 animals into a training set (n = 28,156) consist-
ing of pigs born between January 1st, 2012, and Decem-
ber 31st, 2016, and a testing set (n = 11,663) consisting 
of pigs born between January 1st, 2017, and April 30th, 
2018). The Results section focuses on the analysis of the 
training set, but some features observed when studying 
the testing set are presented in the Discussion section.

Models
We fitted five types of models to the training data 
(n = 28,156): pedigree BLUP (PBLUP), single-step (ss)
GBLUP [13–15], Bayesian ridge regression (BRR), 
BayesC (i.e., a variable selection model with a point of 
mass at zero and a Gaussian slab) [16], and BayesB (simi-
lar to BayesC, but with a t-distribution slab) [17]. Non-
genetic effects were not considered here as the data were 
pre-corrected for these. The sequence of models pro-
gressed from traditional pedigree models to genomic 
models, and from lower to higher prior density for larger 
SNP effects. The transition from PBLUP to ssGBLUP 
was smoothed by considering scenarios with incremen-
tal proportions of genomic information included in the 
training set (20, 50, 80, and 100% of the animals), repre-
sented as ssGBLUP_20, ssGBLUP_50, ssGBLUP_80, and 
ssGBLUP_100, respectively. Selection of animals with 
genotypes included in these scenarios was at random. In 
all scenarios, the genotypes used to fit these models were 
those from the MD SNP panel.

The PBLUP and ssGBLUP models were fitted using the 
BLUPF90 software family [18]. The remaining models 

were fitted with the BGLR R package using its default 
hyperparameters [19]. Briefly, for variance parame-
ters, BGLR uses scaled inverse chi-square priors with 5 
degrees of freedom and a scale parameter such that the 
prior expected value of the variances corresponds to a 
proportion of variance explained by the model equal to 
0.5. For the prior proportion of non-zero marker effects, 
BGLR assigns a beta distribution with shape parameters 
equal to 5. This results in a relatively un-informative 
prior distribution with a prior expected value of non-zero 
effects equal to 0.5.

Residual genome‑wide association analysis
We used the fitted models to derive residuals (i.e., phe-
notypes minus predictions) for both traits. Subsequently, 
we tested the association between residuals and the SNP 
genotypes of both panels by regressing the former on the 
latter using single marker regression (i.e., one SNP at a 
time). We determined significance based on a false dis-
covery rate (FDR) < 0.01. The association tests were con-
ducted using the BGData R package [20] and results were 
displayed using Manhattan- and QQ-plots produced 
using the ggman [21] and ggplot2 [22] R-packages. These 
two displays offer different insights: Manhattan plots 
provide information about the distribution of significant 
associations across the chromosomes, while QQ-plots 
are more informative about the strength of the associa-
tions and the presence of p-value inflation [23].

Results
Signal leakage is pervasive in pedigree models
The Manhattan plots showed strong widespread sig-
nal leakage for PBLUP for both traits (Figs.  1, 2), with 
some regions showing stronger evidence of signal leak-
age than others. The Manhattan plot for the UHD 
variants reached maxima -log10(p) of 140.23 for BF 
(~ 1:161,541  kb) and 148.94 for ADG (~ 17:15,716  kb). 
The top associated MD variants were located in equiv-
alent regions ~ 1:161,758  kb (−  log10(p) = 135.80) 
and ~ 17:15,827 kb (− log10(p) = 130.36) for BF and ADG, 
respectively. Very few regions had no variants showing an 
FDR < 0.01, especially for the UHD panel. The landscapes 
of the associations with the MD and UHD variants were 
generally similar. These results indicate a large amount 
of local genetic signals that are missed by not including 
genomic information in the prediction model, and also 
suggest a substantial magnitude of overall missed signals. 
These patterns of associations likely reflect the difference 
in model fit (with potential consequences in predictive 
performance) between pedigree and genome-based mod-
els. Pedigree models are known to typically miss signals 
that are relevant for prediction compared to genomic 
models. However, we are not aware of previous attempts 
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Fig. 1 Residual association p‑values (− log10 scale) for backfat thickness by model and by SNP panel. PBLUP = pedigree BLUP; ssGBLUP_* = 
single step GBLUP with *% of genotyped animals; BRR, BayesB, and BayesC are Bayesian models with all animals genotyped. SNP panel: MD = 
medium‑density; UHD = ultra‑high‑ density. SNPs with an FDR < 0.01 are highlighted in red
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Fig. 2 Residual association p‑values (− log10 scale) for average daily gain by model and by SNP panel. PBLUP = pedigree BLUP; ssGBLUP_* = single 
step GBLUP with *% of genotyped animals; BRR, BayesB, and BayesC are Bayesian models with all animals genotyped. SNP panel: 
MD = medium‑density; UHD = ultra‑high density. SNPs with an FDR < 0.01 are highlighted in red
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to characterize pedigree models in terms of (1) how the 
missed signals are distributed across the genome, (2) how 
the strength and distribution across the genome of the 
signals leaked by a pedigree model compare to those of 
genomic models, and (3) how the landscape of missed 
signals varies for different traits.

The inclusion of SNP genotypes in the prediction model 
reduces signal leakage
Adding partial genotype information using ssGBLUP 
(e.g., 20% of the animals genotyped, ssGBLUP_20) 
reduced the extent of signal leakage; however, the signifi-
cant associations between residuals and SNPs were still 
widespread. This suggests that the inclusion of genotypes 
for a relatively small proportion of individuals in ssGB-
LUP may not be sufficient to fully address the genome-
wide signal leakage observed with pedigree models. 
Increasing the proportion of genotyped pigs gradually 
reduced the strength and extent of the residual associa-
tions and made the association peaks more local in the 
genome. Using 80% of the genotyped animals (ssGB-
LUP_80) reduced the signal leakage problem to a few 
regions only, for both traits and both SNP panels. Some 
of the regions that showed strong signal leakage with 
PBLUP (e.g. on Chr 1 for both BF and ADG, and Chr 
6 for BF) no longer showed significant associations 
between SNPs and residuals with ssGBLUP_100. This 
was observed regardless of which SNP panel was used 
to evaluate the associations. However, a few significant 
associations remained even when 100% of the animals 
were genotyped. Some of these peaks were detected only 
with the UHD genotypes (Chr 2 for both BF and ADG), 
which suggests that imperfect LD between variants in the 
MD SNP panel and the causal variants may be a source of 
signal leakage for these regions. The strongest remaining 
leakage signal for ADG was on Chr 17. The magnitude of 
this peak was stronger when the UHD panel was used; 
however, the peak was still detected when the MD SNP 
panel was used, which was the same panel used to fit the 
ssGBLUP model; we conclude that excessive shrinkage 
may be the source of leakage in those cases (more infor-
mation below). The patterns of the associations result-
ing from the residuals of BRR were very similar to those 
of ssGBLUP_100, and showed the same peaks for both 
traits, except that they were slightly stronger for the latter 
scenario. This resemblance was expected because both 
models are based on Gaussian assumptions.

Shrinkage of estimates can contribute to signal leakage
Next, we explored whether using variable selection pri-
ors, which may reduce the extent of shrinkage of regions 
harboring sizable-effect variants, can resolve some of 
the leakage of signals that remained even when 100% 

of the animals were genotyped. We observed that using 
either the BayesB or the BayesC prior fully eliminated the 
strongest signal leakage peak from ssGBLUP_100 and 
BRR on Chr 17 for ADG. This suggests that variants of 
large effects, which are not fully captured when using a 
Gaussian prior, may be involved in this region. However, 
no association peaks for BF were eliminated when using a 
variable selection prior.

Insufficient SNP density contributes to signal leakage 
in some regions
Models with variable selection prior distributions 
showed no leakage that could be detected when the MD 
panels were used to build the predictors. However, scans 
with the UHD panels indicated a leakage spot that was 
missed by the MD panel. This spot was observed at the 
same location for both traits (Chr 2). For ADG, this peak 
was hardly perceptible for the models preceding ssGB-
LUP_50. Thus, adding genotype data and using variable 
selection prior distributions were not only insufficient 
to solve the signal leakage, but the strength of the asso-
ciation was hardly affected, indicating that this peak had 
a different nature from that on Chr 17 for ADG. This is 
the behavior expected for leakage due to insufficient LD 
between SNPs in the MD panel and a genomic region 
that shows strong associations with the phenotypic trait.

Q‑Q plots
The difference in spread and strength of signals that are 
missed by different models can also be examined based 
on QQ-plots, as shown in Fig. 3 for scans based on the 
MD panel. For both traits in the training set, the PBLUP 
model showed inflation relative to the expected values of 
-log10(p) starting from lower values on the x-axis, indi-
cating genome-wide inflation. The inclusion of genotype 
data gradually corrected this inflation, which was still 
observed up to an 80% inclusion level.

Discussion
In genomic prediction research, models are typically 
compared based on prediction accuracy. However, pre-
diction accuracy can be very insensitive to important dif-
ferences in the way models capture signals. Furthermore, 
global measures of prediction accuracy do not shed light 
on how a model performs for capturing local signals and 
how a model may be improved (e.g., by using a higher 
marker density in a region, or by using a different prior 
distribution).

To address this problem, we propose to use residual 
genome-wide association studies (GWAS) to identify 
genomic regions where genetic signals are poorly cap-
tured by a model. The results of the residual GWAS can 
potentially guide improvements for the genomic model 
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from which residuals were derived (e.g., increasing the 
proportion of animals genotyped, increasing marker den-
sity in some regions, or using variable selection priors 
instead of shrinkage methods). GWAS on residuals have 
been used in the past (e.g. [24]), but with different objec-
tives. The purpose of such previous residual GWAS was 
to map large-effect quantitative trait loci (QTL) while 
correcting for population structure and family effects. 
The method proposed here is not tailored for QTL scans, 
but for the evaluation and comparison of genomic pre-
diction models by characterizing the genomic signals that 
these are missing.

We provided an example with a study design that 
allows the relative contribution of several factors to the 
problem of signal leakage to be disentangled. Our results 
suggest that, for many of the regions where leakage was 
detected, the use of incomplete genotype information 
(i.e., the use of a sizable percentage of ungenotyped 

animals) was a major factor contributing to signal leak-
age. Shrinkage of the estimates of SNP effects, which is 
inherent to GBLUP-type methods, and low SNP density 
in specific regions also appeared to be factors that con-
tribute to signal leakage.

Several studies have considered the addition of 
sequence variants to commercial SNP panels to improve 
genomic prediction models (e.g. [25, 26]). Selection of the 
sequence SNPs to be used to supplement the commercial 
panel is typically based on direct statistical information 
(e.g. GWAS applied to the original trait, rather than to 
residuals as done here), biological information (e.g. genes 
that are differentially expressed or that are assigned to 
relevant biological pathways), or a combination of both. 
However, these approaches do not consider how much 
signal is captured/leaked by the commercial SNP panel 
that was used in the first place. For example, there is lim-
ited potential in adding variants that belong to a few rel-
evant regions if leakage is spread genome-wide with little 
regional concentration. Alternatively, even if leakage is 
more local, using standard GWAS or biological informa-
tion may direct us to add variants for regions from which 
signals are already well captured by the current panel. 
The residual GWAS approach presented in this study can 
provide an effective alternative criterion to decide how 
to supplement commercial SNP panels by identifying 
regions with strong evidence of signal leakage.

All results presented so far are based on data used as 
training sets for the prediction models. We also evalu-
ated the leakage patterns in a testing set (n = 11,663). Pre-
dictions for the testing set were computed based on the 
models fitted in the training set, and then residuals were 
obtained as the difference between pre-corrected phe-
notypes and those predictions. The results are presented 
in Additional file 1 Fig. S1, Additional file 2 Fig. S2, and 
Additional file 3 Fig. S3. The pattern of leakage obtained 
with the PBLUP model in the testing set resembled the 
results for the same model in the training set for both 
traits. However, that did not apply to the other models. 
Similar to what we observed with the training data, using 
SNP genotypes also reduced the leakage in the testing 
data. However, as expected, for all models we had many 
more significant genome-wide associations in the test-
ing dataset than in the training dataset. Such a difference 
likely reflects sampling variability in phenotype-genotype 
associations. Thus, for many regions, the models were 
able to fully capture the SNP-phenotype associations pre-
sent in the training dataset, but such associations were 
slightly different in the testing dataset, thus leading to 
more evidence of widespread poorly captured signals. In 
contrast to the PBLUP model, the strongest local leakage 
regions that were observed in the training dataset were at 
least not sufficiently strong in the testing set to become 

Fig. 3 Q‑Q plot of residual association p‑values (− log10 scale) based 
on the medium‑density panel for all traits (ADG =  average daily gain, 
and BF =  backfat thickness) and models (PBLUP =  pedigree BLUP; 
ssGBLUP_* =  single step GBLUP with *% of the animals genotyped; 
BRR, BayesB, and BayesC are Bayesian models with all animals 
genotyped)
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noticeable above the strong widespread leakage. As a 
whole, these results might reflect (a) the typical lower 
predictive correlations in testing data in comparison with 
training data prediction correlations, and (b) the superi-
ority of testing set accuracies from genomic prediction 
models relative to PBLUP. The latter is also reflected in 
the QQ-plots in Additional file 1 Fig. S3.

The residual GWAS used the standard approach which 
assumes that the error terms are independent and iden-
tically distributed (IID). However, Nobre and Singer [27] 
pointed out that estimates of residuals from linear mod-
els are not IID, even if the original error terms were IID. 
Nevertheless, least squares methods are known to be 
robust to miss-specification of assumptions about het-
erogeneous variances and also (co)variances of the error 
terms. Furthermore, most of the significant associa-
tions found in the residual GWAS disappeared when the 
apparent causes (e.g., high % of ungenotyped animals, 
use of insufficient marker density, or the use of shrinkage 
prior) were addressed. Nonetheless, further investigation 
is needed to assess whether heterogeneous variances or 
correlations between estimates of residuals from a model, 
which is used to derive them, may represent a problem.

We proposed using residual GWAS to assess the impact 
of the source of genetic information (pedigree vs SNPs), 
marker density, and prior assumptions on signal leakage. 
However, the same approach could be used to investi-
gate other factors that may affect the ability of a model 
to capture genetic signals. For example, one could com-
pare the leakage that results from using different impu-
tation methods or SNP panels for genomic prediction. It 
may also be relevant to explore how sample size and the 
structure of the training dataset (family size, population 
structure), as well as the source of the UHD genotypes 
affect signal leakage. In this regard, it is worth noting 
that a very small sample size could lead to not detect-
ing significant leakage simply because the data used lack 
the power to detect small signals that were leaked by a 
model. Nevertheless, this is not expected to be the case 
for our analysis which used larger sample sizes than what 
is typical for GWAS in pigs. Also, in our study, UHD gen-
otypes were derived by combining direct whole-genome 
sequencing genotypes for some animals with the MD 
genotypes for the others. Although the imputation accu-
racy is reported to be very high [12], one could speculate 
that whole-genome sequencing of all animals may lead 
to detecting some additional peaks that may have been 
missed because of noise in the imputation.

Finally, this study focused entirely on mapping genetic 
signals leaked by a model; however, the same approach 
could be used to assess whether other omics can contrib-
ute to improving phenotypic prediction. For example, one 
could ask whether gene expression or methylation data 

can improve phenotypic prediction above and beyond 
what can be predicted using DNA information alone. 
This question could be tackled by regressing residuals 
from a genetic model on such omics data. Significant 
residual associations would indicate that some patterns 
that link phenotypes and these omic data are not fully 
captured by the genomic regression used to derive resid-
uals. Likewise, one could use residuals from a regression 
of a phenotype on gene expression to investigate whether 
associations between gene expression and a phenotype 
are entirely mediated by methylation.

Conclusions
Residual single-marker regression analysis can be used to 
detect genetic signals that a model fails to capture. The 
leakage of genetic signals is pervasive in pedigree mod-
els and ssGBLUP with a low percentage of genotyped 
animals. Signal leakage can also occur in genomic regres-
sions (with all animals genotyped) due to low regional 
marker density or excessive shrinkage of effects. The 
comparison of the signals leaked by different models can 
shed light on the factors that lead to signal leakage and 
on ways to fix it.
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Additional file 1: Figure S1. Residual association p‑values (‑log10 scale) 
for backfat thickness in the testing set by model (PBLUP = pedigree BLUP; 
ssGBLUP_* = single step GBLUP with *% of genotyped animals; BRR, 
BayesB, and BayesC are Bayesian models with all animals genotyped) and 
SNP panel (MD = medium‑density, UHD = ultra‑high‑density). SNPs with 
an FDR < 0.01 are highlighted in red.

Additional file 2: Figure S2. Residual association p‑values (− log10 
scale) for average daily gain in the testing set by model (PBLUP = pedigree 
BLUP; ssGBLUP_* = single step GBLUP with *% of genotyped animals; BRR, 
BayesB, and BayesC are Bayesian models with all animals genotyped) and 
SNP panel (MD = medium‑density, UHD = ultra‑high‑density). SNPs with 
an FDR < 0.01 are highlighted in red.

Additional file 3: Figure S3. Q‑Q plot of residual association p‑values 
(‑log10 scale) in the testing set based on the medium‑density panel for all 
traits (ADG = average daily gain, and BF = backfat thickness) and models 
(PBLUP = pedigree BLUP; ssGBLUP_* = single step GBLUP with *% of 
genotyped animals; BRR, BayesB, and BayesC are Bayesian models with all 
animals genotyped).
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