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Abstract 

Background Heterosis is routinely exploited to improve animal performance. However, heterosis and its underlying 
molecular mechanism for feed intake and efficiency have been rarely explored in chickens. Feed efficiency continues 
to be an important breeding goal trait since feed accounts for 60 to 70% of the total production costs in poultry. 
Here, we profiled the mRNA-lncRNA landscape of 96 samples of the hypothalamus, liver and duodenum mucosa 
from White Leghorn (WL), Beijing-You chicken (YY), and their reciprocal crosses (WY and YW) to elucidate the regula-
tory mechanisms of heterosis.

Results We observed negative heterosis for both feed intake and residual feed intake (RFI) in YW during the laying 
period from 43 to 46 weeks of age. Analysis of the global expression pattern showed that non-additivity was a major 
component of the inheritance of gene expression in the three tissues for YW but not for WY. The YW-specific non-
additively expressed genes (YWG) and lncRNA (YWL) dominated the total number of non-additively expressed genes 
and lncRNA in the hypothalamus and duodenum mucosa. Enrichment analysis of YWG showed that mitochondria 
components and oxidation phosphorylation (OXPHOS) pathways were shared among the three tissues. The OXPHOS 
pathway was enriched by target genes for YWL with non-additive inheritance of expression in the liver and duode-
num mucosa. Weighted gene co-expression network analysis revealed divergent co-expression modules associated 
with feed intake and RFI in the three tissues from WL, YW, and YY. Among the negatively related modules, the OXPHOS 
pathway was enriched by hub genes in the three tissues, which supports the critical role of oxidative phosphorylation. 
Furthermore, protein quantification of ATP5I was highly consistent with ATP5I expression in the liver, which suggests 
that, in crossbred YW, non-additive gene expression is down-regulated and decreases ATP production through oxida-
tive phosphorylation, resulting in negative heterosis for feed intake and efficiency.

Conclusions Our results demonstrate that non-additively expressed genes and lncRNA involved in oxidative phos-
phorylation in the hypothalamus, liver, and duodenum mucosa are key regulators of the negative heterosis for feed 
intake and RFI in layer chickens. These findings should facilitate the rational choice of suitable parents for producing 
crossbred chickens.
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Background
Feed consumption accounts for 60 to 70% of the total 
production costs in poultry production. Improving feed 
efficiency is vital to reduce production costs and achieve 
sustainability for the poultry industry. Residual feed 
intake (RFI), which is defined as the difference between 
observed feed intake and feed intake predicted from 
metabolic body weight, body weight gain, and egg mass 
in laying hens, is a desirable measurement to character-
ize feed efficiency in livestock. Phenotypically, individu-
als with a lower RFI have a reduced feed intake and an 
improved feed efficiency with no effect on performance. 
Previous studies have indicated that feed intake and RFI 
are moderately to highly heritable [1] and are highly 
polygenic complex traits in laying hens [2]. It has been 
suggested that variation in RFI may be due to the dif-
ference in physiological processes of an animal, includ-
ing feeding behavior, energy homeostasis, and nutrients 
absorption and metabolism processes that occur mainly 
in the central nervous system, metabolic organs, and 
digestive and absorption systems [3]. Many studies have 
been carried out separately on different feed efficiency-
related tissues, such as the hypothalamus, liver, adipose 
tissue, muscle, and duodenum mucosa to elucidate the 
molecular mechanisms that regulate feed efficiency in 
chickens [4]. In growing pigs, the immune response, 
defense against pathogens, and oxidative stress mecha-
nisms that are shared among the liver, muscle, and adi-
pose tissues were found to regulate differences in feed 
efficiency between individuals [5]. Sun et  al. [6] charac-
terized 19 common and tissue-specific gene markers that 
were associated with feed efficiency using multi-tissue 
transcriptome analysis. These findings suggested that 
gene expression that regulates common and unique func-
tions across multi-tissues drives phenotypic variation in 
feed efficiency. However, how the shared and interactive 
pathways among tissues regulate feed intake and effi-
ciency is largely unknown in laying chickens. Analysis of 
co-expression networks across tissues may be a promis-
ing approach to unravel the biological pathways and pro-
cesses that underlie feed intake and efficiency [7].

A cross between genetically-distant parents often 
produces hybrids with superior growth rate, produc-
tion, etc. compared to its parents. Thus, crossbreeding 
is widely promoted as an efficient strategy to increase 
farmers’ income through improvement of productiv-
ity of livestock [8]. Improvement via crossbreeding 
is based on the use of heterosis, which significantly 
increases the productivity of animals, by 15 to 50% [9]. 
Although heterosis is widely exploited, the underlying 
molecular mechanisms are poorly understood. Clas-
sically, genetic models that include dominance, over-
dominance, heterozygosity, epistasis, and nonallelic 

interactions have been used to explain the phenom-
enon of heterosis, but the debate on models to explain 
heterosis is still ongoing [10]. High-throughput omics 
technologies provide opportunities to study genome-
wide changes in gene expression and to uncover regula-
tory network changes related to heterosis phenotypes, 
which could provide important insights into unraveling 
the molecular mechanism of heterosis [11–14].

Hypothalamus, liver, and duodenum are key organs 
that are involved in feeding behavior, energy metabo-
lism, digestion, and total metabolism in layer chick-
ens. Therefore, transcriptomic analysis of these organs 
may reveal regulatory factors and elucidate molecular 
mechanisms that are crucial for heterosis in feed intake 
and efficiency. In this study, we constructed a recipro-
cal crossbred chicken population and measured feed 
intake and efficiency during the laying period. The 
global mRNA and lncRNA expression patterns across 
the three tissues from purebred and crossbred hens 
were assessed using lncRNA-Seq based transcriptome 
analysis and linked to phenotype traits and their het-
erosis. The aim of our work was to provide new insights 
into the molecular basis of heterosis for feed intake and 
efficiency in chickens.

Methods
Experimental population
In this study, White Leghorn (WL) and Beijing You 
chicken (a Chinese indigenous breed, BY) were mated 
to produce purebred progenies and reciprocal crosses. 
WL was introduced from Canada and has been selected 
for egg production traits for more than 20 generations, 
whereas BY has been selected for egg production traits 
for 15 generations. The full mating procedure was pub-
lished previously [15]. Briefly, 30 BY roosters with good 
semen quality were randomly mated with 150 BY hens 
and 150 WL hens to generate YY and YW, respectively, 
and 30 WL roosters with good semen quality were ran-
domly mated with 150 different WL hens and 150 dif-
ferent BY hens to generate WL and WY, respectively. A 
2-generation pedigree including 60 sires and 417 dams 
from the parental generation and 984 hens from the F1 
generation was produced. Among these animals, only 
the F1 birds were measured for the traits of interest. 
All birds were hatched on the same day and housed in 
identical pens under standard management conditions 
on the experimental farm of IAS-CAAS. Each bird was 
raised in an individual cage and ad  libitum access to 
water and to a commercial corn–soybean diet that met 
National Research Council requirements during the 
feeding trial were provided.
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Measurement of feed efficiency traits and heterosis
Feed intake was collected on each hen during a 4-week 
(43 to 46 weeks of age) trial period by providing feed in 
an individual container for each hen. Feed was manu-
ally added daily and the total weight was recorded to 
compute daily feed intake (DFC). Egg number and 
weight were recorded daily to calculate total egg mass. 
Body weight was measured at the beginning and end 
of the test for each hen to calculate the mean body 
weight (BW), metabolic BW (BW raised to the power 
of 0.75), and daily body weight gain (BWG). Average 
daily egg mass (DEM) was calculated as the total egg 
mass divided by the number of test days. Feed conver-
sion ratio (FCR) was calculated as the ratio of DFC to 
DEM. After removing data on hens without eggs, the 
remaining 904 hens, including 198 WL, 245 YY, 238 
YW, and 223 WY, were used to calculate residual feed 
intake (RFI) as the residual from a regression model of 
DFC on metabolic BW (MBW), BWG, and DEM [16] 
using the lm() function in the R software.

We then analyzed the phenotype by fitting the follow-
ing animal model with pedigree information using the 
AI-REML algorithm [17] implemented in the DMU soft-
ware (http:// dmu. agrsci. dk):

where y is the vector of observations,1 is a vector of ones, 
µ is the overall mean, b is the vector of fixed effects of 
groups, X is the incidence matrix of b , a and c are vec-
tors of random additive genetic and random non-additive 
effects, respectively, of each bird Za and Zc are the inci-
dence matrices of the additive and non-additive effects, 
respectively, and e is the vector of residuals. Then, mid-
parent heterosis ( H ) was calculated as:

where F , Pf  and Pm denote the average trait values esti-
mated by the animal model for the reciprocal crosses, the 
paternal and maternal lines, respectively. Significance of 
heterosis was estimated by a transformed Student’s t test 
value based on the formula:

where Fi is the phenotype of the i-th bird from the recip-
rocal crosses and n is the number of WY or YW birds 
[14]. We obtained the P value using the pt() function 
in the R software based on the t value and the degrees 
of freedom. A P value < 0.05 was considered to be 
significant.

(1)y = 1µ+ Xb+ Zaa + Zcc+ e,

(2)H =
F− (Pf + Pm)/2

(Pf + Pm)/2
,

(3)
t =

H

2

√

∑

(Fi−F)
2

n−1
/
[

(Pf + Pm)×
√
n
]

,

RNA extraction and sequencing
Eight hens from each group with records that were close 
to each group mean for RFI were euthanized by cervical 
dislocation and the hypothalamus, liver, and duodenum 
mucous were isolated for subsequent RNA sequenc-
ing. Total RNA was extracted using the TRIzol® Rea-
gent (Invitrogen, USA) according to the manufacturer’s 
instructions. The extracted RNA was first evaluated by 
1% agarose gel electrophoresis. RNA purity, concen-
tration, and integrity of all eligible RNA samples were 
determined using a NanoPhotometer® spectrophotom-
eter (IMPL EN, CA, USA). Ninety-six qualified samples 
were used for RNA sequencing, including 31 hypothala-
mus, 33 liver, and 32 duodenum mucosae samples (see 
Additional file 1: Table S1). Approximately 3 μg of RNA 
per sample was subjected to RNA-seq library construc-
tion using the NEBNext® UltraTM RNA Library Prep Kit 
(Illumina, USA) according to the manufacturer’s guide. 
After PCR amplification and purification, 150-bp paired-
end sequencing was performed on the Illumina nova 
6000 platform (Illumina Inc., San Diego, CA, USA).

Quality control, mapping, and transcriptome assembly
Raw reads were removed based on the following param-
eters: (a) those containing adaptors; (b) with more than 
10% unknown nucleotides; and (c) with more than 50% 
low-quality bases (Qphred ≤ 20). After quality control, 
high-quality reads with Q20 > 95% were mapped to the 
chicken reference genome (GRCg6) using the Hisat2 
(v2.1.0) program [18]. Then, the mapped data were used 
as inputs for Stringtie (v2.1.5) [19] to assemble aligned 
reads into transcripts [20], using default parameters (−f 
0.01, −c 1). The number of mapped reads was normalized 
into fragments per kilobase million (FPKM). Expressed 
genes were defined as having a FPKM > 0 in at least one 
sample, and tissue-expressed genes were defined as hav-
ing a FPKM > 0 in more than 30% of the samples from a 
particular tissue.

Identification of lncRNA
We used strict filters to identify potential lncRNA from 
the 96 samples. First, the assembled transcripts were 
merged by Stringtie with parameters (−m 200, −F 1, −c 
2) to remove transcripts shorter than 200  bp, with low 
expression levels (FPKM < 1), and low coverage (< 2). 
Second, the merged transcripts were matched to the 
Ensembl gene annotation file using the GffCompare 
(v 0.12.6) software with parameters (−M) to filter out 
transcripts with only one exon. Third, transcripts with a 
class code “i”, “u” and “x” were extracted for the further 
analysis. Subsequently, sequences of known lncRNA 
from the ALDB [21] and NONCODE databases [22] were 

http://dmu.agrsci.dk
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downloaded for aligning the putative transcripts with 
parameters (e value ≤ 1 × 10e−6, perc_identity ≥ 90%) 
implemented in BLAST (version 2.2.26). We calcu-
lated the coding potential for the remaining transcripts 
using the CPC [23], CNCI [24], and PLEK [25] tools. 
All putative transcripts were translated into amino acid 
sequences to remove transcripts that contained known 
protein domains through open reading frames. The 
HMMER [26] software package was used to identify any 
known protein domain by searching against the Pfam 
database (Pfam 32.0). Transcripts with significant Pfam 
hits were excluded and those without coding potential 
were considered as candidate sets of lncRNA. Finally, the 
cis- and trans-acting relationship between lncRNA and 
potential protein-coding genes was predicted accord-
ing to their distances (gene located within 100 kb of the 
lncRNA) [27] and expression correlations (correlation 
coefficient ≥ 0.95 or ≤ −0.95 between gene expression 
and lncRNA expression) [28].

lncRNA and gene inheritance patterns
The lncRNA and gene count matrix was generated using 
the featureCounts software (v2.0.3) [29] and the resulting 
count data was “regularized log” transformed using the 
rlog() function for principal component analysis (PCA), 
which was visualized by the plotPCA () function in the 
DESeq2 package (v.1.16.1) [30]. The confidence interval 
of the PCA results was 0.95, which was calculated and 
plotted using the stat_ellipse() function in the ggplot2 
package. Differential expression analysis between the 
two purebred lines (WL vs. YY) and between the recip-
rocal crosses and purebred lines (WY vs. WL WY vs. 
YY, YW vs. WL and YW vs. YY) was carried out using 
the DESeq2 package (v.1.16.1). lncRNA and genes with 
an adjusted P value < 0.05 and |Log2Fold change|> 1.2 
were considered differentially expressed in the corre-
sponding contrast. We used the average FPKM value of 
the purebred and crossbred means and the average of 
the two purebred means to evaluate different inherit-
ance patterns of lncRNA and genes, which were fur-
ther classified into three inheritance patterns including 
additivity, dominance, and overdominance (see Addi-
tional file 2: Table S2) [31]. Briefly, additivity (4 and 10) 
occurred when the expression was significantly (adjusted 
P value < 0.05) different between the two parental lines, 
and the expression of the reciprocal crosses (WY or YW) 
was not significantly different (adjusted P value ≥ 0.05) 
from the average of the two parental line means. Expres-
sion in WY or YW that was not significantly different 
from that in one parental line but significantly (adjusted 
P value < 0.05) higher or lower than that in the other 
parental line was regarded as dominance including high 
parent pattern (3, 11) and low parent pattern (5, 9). Mean 

expression in WY or YW that was significantly (adjusted 
P value < 0.05) higher (or lower) than that in both paren-
tal lines was considered as overdominance including 
above high-parent pattern, above parent pattern (1, 2 and 
12) or underdominance including below low-parent pat-
tern, below parent pattern (6, 7 and 8).

Weighted gene co‑expression network analysis (WGCNA)
Co-expression modules were constructed separately 
for the normalized expression data of the hypothala-
mus, liver, and duodenum mucosa using WGCNA in 
R [32]. First, an appropriate “soft-thresholding” value 
was selected for each tissue by plotting the strength of 
the correlation against a series of soft threshold powers 
(from 1 to 30), with a signed pairwise correlation matrix 
generated by Pearson’s product moment correlation. The 
correlation matrix was subsequently transformed into an 
adjacency matrix, in which node and edge corresponded 
to lncRNA/gene and the connection strength between 
lncRNA/gene, respectively. Each adjacency matrix was 
normalized using a topological overlap function. Hier-
archical clustering was performed using average linkage. 
The hierarchical cluster tree was cut into modules using 
the dynamic tree cut algorithm with a minimum mod-
ule size of 50 lncRNA/gene. We merged modules if the 
correlation between their eigengenes (defined as the first 
principal component of their gene expression values) was 
greater or equal to 0.25. After obtaining modules for each 
tissue, the module eigengene that summarized as the first 
principal component of expression data was calculated 
with the “ModuleEigengenes” function. Correlation anal-
ysis between a module and the trait was performed with 
the “corPvalueStudent” function based on the module 
eigengene, and P < 0.01 was set for statistical significance.

We assessed the preservation of identified modules 
across the three tissues using the “modulePreservation” 
function implemented in WGCNA. The module pres-
ervation approach takes “reference” and “test” network 
modules as input and calculates statistics for three pres-
ervation classes: (i) density-based statistics, which assess 
the similarity of lncRNA/genes connectivity patterns 
between a reference network module and a test network 
module; (ii) separability-based statistics, which examine 
whether test network modules remain distinct in the ref-
erence network modules; and (iii) connectivity-based sta-
tistics, which are based on the similarity of connectivity 
patterns between lncRNA/genes in the reference and test 
networks [13]. The Zsummary score was used to measure 
preservation, with a value greater than 10 suggesting that 
the module is strongly preserved between the reference 
and test network modules, a value between 2 and 10 indi-
cating weak to moderate preservation, and a value less 
than 2 indicating no preservation [33].
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Gene ontology and pathway analysis
Gene ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of candidate genes were performed using the 
ClusterProfiler package implemented in R. The false 
discovery rate (FDR) method was used to adjust the P 
values for multiple testing. GO terms and KEGG path-
ways with adjusted P value < 0.05 were considered to 
be significantly enriched.

Western blot
To further demonstrate that non-additively expressed 
genes were related to negative heterosis for DFC and 
RFI, we performed a Western blot to quantify the pro-
tein expression of candidate genes in WL, YY, and YW. 
We randomly selected six birds from the purebreds 
and crossbreds to extract total protein from liver tis-
sue, using a total protein extraction kit (Solarbio, 
Beijing, China), while protein concentration was deter-
mined using a BCA protein determination kit (TIAN-
GEN, Beijing, China) according to the manufacturer’s 
instructions. Equivalent amounts of total protein from 
each bird were separated by 15% sodium dodecyl-sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to a polyvinylidene difluoride (PVDF) 
membrane. The membrane was blocked with Quick-
Block™ blocking buffer (Beyotime, Shanghai, China) 
for 1  h at room temperature. Then, the membranes 
were incubated with specific primary antibodies at 
room temperature for 1.5  h in the blocking solution 
under agitation, including anti-ATP5I (Proteintech, 
Wuhan, China; diluted 1:1000). After washing, they 
were incubated with a specific secondary antibody 
(Servicebio, Chengdu, China; diluted 1:5000). Finally, 
enhanced chemiluminescence (ECL) luminous fluid 
(Beyotime) was used for detection.

Results
Feed efficiency and relevant traits
A multivariate linear model was fitted to estimate RFI 
with a goodness of fit  (R2) of 0.38 (see Additional file 3: 
Table  S3). For the two purebreds and their reciprocal 
crosses, the adjusted DFC ranged from 90.8 to 103.3 g/d, 
and the adjusted DEM ranged from 36.8 to 52.9  g/d. 
The adjusted RFI ranged from – 3.14 to 3.72 g/d and the 
adjusted FCR ranged from 2.06 to 3.33 (Table 1). The dis-
tribution of the phenotypic values is shown in Additional 
file  4: Figure S1. Based on Eqs. (2) and (3), YW cross-
breds showed significant heterosis for both DFC and RFI, 
while WY crossbreds showed significant heterosis for 
RFI, FCR, and DEM. In practice, more feed intake means 
more cost and larger RFI means poorer feed efficiency. 
Therefore, the estimates of heterosis for DFC and RFI of 
YW were considered negative, and the estimates of het-
erosis for RFI of WY were considered positive.

Overview of the sequencing data
In total, 3,746,515,304 clean reads and 1,112,164,813,014 bp 
were generated from RNA sequencing of the 96 samples, 
among which an average of 39.33, 40.74, and 36.96 million 
clean reads were obtained for, respectively, the hypothala-
mus, liver, and duodenum mucosa. Among these, 94.63, 
95.86, and 93.62% of the clean reads were mapped to the 
chicken genome GRCg6a for, respectively, the hypothala-
mus, liver, and duodenum mucosa. Based on the mapped 
reads, we identified 23,117 genes, among which 22,620, 
20,556, and 20,839 were expressed in, respectively, the 
hypothalamus, liver, and duodenum mucosa. Summary sta-
tistics of the sequence data are in Additional file 1: Table S1. 
As shown in Fig. 1, we identified significant differences in 
the average number of expressed genes between the hypo-
thalamus (17,485 ± 106), liver (14,722 ± 61), and duodenum 
mucosa (14,932 ± 258). Overlaps of the expressed genes 
in the three tissues showed that 13,588 genes were shared 
by the three tissues, and 2648, 310, and 489 genes were 

Table 1 Adjusted mean values of phenotypes and their estimates of heterosis

RFI residual feed intake, DFC daily feed consumption, FCR feed conversion ratio, DEM daily egg mass, WL White Leghorn chicken, YY Beijing You chicken, WY and YW 
reciprocal crosses, respectively

ns not significant (P ≥ 0.05)

SE standard error

*P < 0.01.

Traits Adjusted value (Mean ± SE) Heterosis

WL WY YW YY WY YW

RFI, g/d 1.77 ± 0.72 − 3.14 ± 0.75 3.72 ± 0.84 − 2.26 ± 0.62 1181.63%* − 1618.37%*

DFC, g/d 100.27 ± 1.00 94.87 ± 0.98 103.28 ± 1.10 90.77 ± 0.91 − 0.68% ns 8.12%**

FCR, g/g 2.67 ± 0.37 2.06 ± 0.04 2.94 ± 0.33 3.33 ± 0.38 − 31.33%* − 2.00%ns

DEM, g/d 52.90 ± 0.91 47.80 ± 0.58 45.45 ± 0.69 36.77 ± 0.58 6.61%** 1.37%ns
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uniquely expressed in the hypothalamus, liver, and duode-
num mucosa, respectively (Fig. 1a). Similarly, a significantly 
larger average number of lncRNA was identified in the 
hypothalamus (2111 ± 28), while this number was compa-
rable between the liver (1759 ± 18) and duodenum mucosa 
(1759 ± 38). Among the tissue-expressed lncRNA, 1339 
lncRNA were expressed in all three tissues, and 526, 178, 
and 196 lncRNAs were uniquely expressed in the hypothal-
amus, liver and duodenum mucosa, respectively (Fig. 1b). 
Moreover, the global gene expression profiles within a 
given tissue were closely correlated between the purebreds 
and crossbreds, indicating highly conserved transcriptional 
features in the purebreds and reciprocal crossbred lines, 
which is the basis for identifying the core gene regulatory 
network that are associated with the significantly hetero-
sis of the crossbreds compared with its parents. The gene 
expression profiles for hypothalamus and duodenum 
mucosa were highly correlated, while the expression pro-
file for liver was moderately correlated with that for the 
other two tissues (Fig. 1c). These correlations are consistent 
with the high proportion of shared genes among the three 
tissues.

Divergent inheritance of genes and lncRNA leads 
to different levels of heterosis for feed intake and efficiency
Principal component analyses (PCA) were performed 
to compare the expression of the genes between pure-
breds and crossbreds (see Additional file  4: Figure 

S2a) and of lncRNA (see Additional file 4: Figure S2b), 
separately in the hypothalamus, liver, and duodenum 
mucosa. The results show that, for the three tissues, 
the two purebreds were separated from each other, 
while the two crossbreds were clustered in between the 
purebreds and closer to the WL chickens. We identi-
fied 234, 685, and 250 non-additive genes for WY in the 
hypothalamus, liver, and duodenum mucosa, respec-
tively, and 462, 797, and 444 non-additive genes for 
YW in the hypothalamus, liver, and duodenum mucosa, 
respectively. The detailed numbers of genes for each 
expression pattern are provided in Additional file  5: 
Table  S4. For WY, additive genes were predominant 
across the three tissues, while dominance was the prin-
cipal gene inheritance pattern for YW and accounted 
for 60.9, 52.6, and 45.3% of the total number of non-
additive genes in the hypothalamus, liver, and duode-
num mucosa, respectively. Genes with overdominance 
were rare across all tissues in both crossbreds, account-
ing for 0.16 to 0.74% of all genes (Fig.  2a). Given that 
the estimates of heterosis for feed intake and RFI 
were significantly different between WY and YW, we 
detected both unique and common non-additive genes 
between WY and YW. As shown in Fig. 2b, the number 
of YW-specific non-additive genes (YWG) was larger 
than the number of such genes for WY (WYG) across 
the three tissues, and the YWG were predominant in 
the hypothalamus and duodenum mucosa. Moreover, 

Fig. 1 Transcriptome landscape of the hypothalamus, liver, and duodenum mucosa in White Leghorn (WL) and Beijing You chicken (YY), and their 
reciprocal crosses (WY and YW). a Average number of expressed genes, shared genes, and uniquely expressed genes in three tissues. Boxes 
with different letters differ significantly in the number of expressed genes. The Venn figure was plotted with all the expressed genes in each 
tissue. b Average number of expressed lncRNA, shared lncRNA, and uniquely expressed lncRNA in the three tissues. Boxes with different letters 
differ significantly in the number of expressed lncRNA. The Venn figure was plotted with all expressed lncRNA in each tissue. c Pairwise Pearson 
correlation coefficients (PCC) between each pair of global gene expression
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tissue-specific genes accounted for 55.6 to 82.6% and 
for 59.1 to 73.3% of the total number of non-additive 
genes for each tissue in WY (130 for the hypothalamus, 
566 for the liver, and 183 for the duodenum mucosa) 
and YW (273 in the hypothalamus, 584 in the liver, and 
322 in the duodenum mucosa), respectively (Fig.  2c). 
Regarding lncRNA, the proportion of additive lncRNA 
was greater than 50% of the total lncRNA, and thus 
represents the major inheritance pattern for the three 
tissues for the two crossbreds (see Additional file  4: 

Figure S3a). For WY, we identified 56, 186, and 62 non-
additively expressed lncRNA for the hypothalamus, 
liver, and duodenum mucosa, respectively. Similarly, 
for YW, 77, 177, and 88 non-additive lncRNA were 
identified for the hypothalamus, liver, and duodenum 
mucosa, respectively (see Additional file  5: Table  S4). 
Similar to the gene expression pattern, the YW-specific 
non-additive lncRNA (YWL) were predominant in the 
hypothalamus and duodenum mucosa, accounting for 
61.04 and 62.07% of all genes, respectively (see Addi-
tional file 4: Figure S3b).

Fig. 2 Mode of inheritance of gene expression in the hypothalamus, liver, and duodenum mucosa in the reciprocal crosses (WY and YW). a The 
proportion of additive, dominant, and over-dominant genes in the three tissues. b The Venn plot for non-additive genes in WY (blue circle) and YW 
(orange circle). From left to right, the plot represents the hypothalamus, liver, and duodenum mucosa, respectively. c The shared and unique 
non-additively expressed genes in the three tissues for WY (blue circle) and YW (orange circle)
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Functional annotation of non‑additive genes and lncRNA
The divergent expression patterns of the genes between 
the two crossbreds in the hypothalamus, liver, and duo-
denum mucosa are putatively associated with differences 
in levels of heterosis for feed intake and RFI. Thus, we 
tested for enrichment of crossbred-specific non-addi-
tive genes against GO and KEGG pathways databases to 
detect biological process (BP), cellular components (CC), 
molecular functions (MF), and pathways associated with 
DFC and RFI for the three tissues (Fig. 3a). For WY, the 
crossbred-specific non-additive genes were significantly 
enriched for several CC, including for cell projection and 
periphery, synapse, and axon in the liver, and for vari-
ous BP, such as cellular component biogenesis, nitrogen 
metabolism, and cell–cell adhesion in the duodenum 
mucosa. No GO terms and KEGG pathways were identi-
fied to be enriched in the hypothalamus. For YW, unique 
non-additive genes were significantly enriched for dif-
ferent GO terms and KEGG pathways for the three tis-
sues (Fig.  3a). Notably, the oxidative phosphorylation 
(OXPHOS) pathway and mitochondrial components 
were enriched for all three tissues (Fig. 3a), including the 
mitochondrial protein complex, the inner mitochondrial 
membrane protein complex, oxidoreductase complex, 
and the respiratory chain complex and respirasome. The 
mitochondrial components genes were all involved in the 
OXPHOS pathway (see Additional file 6: Table S5).

The identical KEGG pathway and cellular compo-
nents that were shared among the three tissues from 
YW suggest that oxidative phosphorylation and mito-
chondrial components have a critical role in the nega-
tive heterosis for feed intake and efficiency. For YW, 
the number of non-additive genes that were associ-
ated with the enriched OXPHOS pathway was equal to 
5, 9, and 8 in the hypothalamus, liver, and duodenum 
mucosa, respectively. These genes were related to the 
ubiquinone oxidoreductase subunit, cytochrome b, ATP, 
and ubiquinol-cytochrome c reductase. Among these, 
ATP5I, CYTB, and ND4 were common to the three tis-
sues (Fig. 3b). These three genes showed additive patterns 
in WY and low-parent non-additive patterns in YW, 
respectively, with the expression level being significantly 
higher in YY than in WL, and YW and WL having similar 
expression levels (Fig. 3c).

To understand the possible biological function of the 
lncRNA in the negative heterosis for feed intake and RFI, 
we investigated the expression patterns of the unique 
non-additive lncRNA and their co-expressed non-addi-
tive gene targets in the three tissues of YW. First, we 
identified 4396 lncRNA that were significantly correlated 
with 13,697 genes in the 96 samples, including 56,441 cis-
acting pairs (see Additional file 7: Table S6) and 138,593 
trans-acting pairs (see Additional file 8: Table S7). Based 

on the cis- and trans-acting relationships between genes 
and lncRNA, we identified 36, 472, and 39 gene-lncRNA 
pairs in YW for which both gene and lncRNA were non-
additively expressed in the hypothalamus, liver, and 
duodenum mucosa, respectively (see Additional file  9: 
Table  S8 and Additional file  10: Table  S9). The GO and 
KEGG pathway analyses revealed that the OXPHOS 
pathway was significantly enriched among non-additive 
genes that were targeted by YWL in both the liver and 
duodenum mucosa (Fig. 4a), which suggests that lncRNA 
contribute to the expression of negative heterosis for feed 
intake and efficiency by regulating the expression of oxi-
dative phosphorylation genes. We further extracted 16, 
25, and 11 non-additive lncRNA that were related to 33, 
78, and 33 non-additive genes that were associated with 
significantly enriched GO terms and KEGG pathways 
for hypothalamus, liver, and duodenum mucosa, respec-
tively, in YW. Among these lncRNA, MSTRG.22724.6 
cis-targeted the CYTB, ND3, and ND4 genes that partici-
pate in the oxidative phosphorylation pathway in the liver 
and duodenum mucosa (Fig. 4b–d).

Co‑expression networks related to heterosis of feed intake 
and efficiency
Feed intake and RFI are assumed to be regulated by 
a transcriptional regulatory network involving multi-
ple genes and lncRNA. Thus, we took advantage of our 
high-resolution multi-tissue transcriptome atlases to gain 
insight into heterosis for feed intake and efficiency in the 
crossbred YW. Based on WGCNA, we constructed the 
mRNA-lncRNA co-expression networks for each tissue 
in WL, YY, and YW. In WGCNA, the top 40% most vari-
able genes and lncRNA were used to construct a signed, 
scale-free network for hypothalamus (n = 9382), liver 
(n = 7846), and duodenum mucosa (n = 8046), according 
to their topological overlap matrix of expression correla-
tions generated by introducing the corresponding power 
of 18, 16 and 18 (see Additional file  4: Figure S4). As 
shown in Fig. 5, 14, 6, and 14 gene-lncRNA co-expression 
modules were identified from the hypothalamus, liver 
and duodenum mucosa, respectively, as identified by the 
different colors. Correlations between modules and feed 
efficiency-related traits were calculated and are shown 
on the module-trait relationship heatmap. We identi-
fied 22 gene modules that had significant correlations 
with DFC or RFI across the three tissues, but no modules 
that were significantly correlated with BWG or MBW. 
Among the 22 modules that were significantly corre-
lated with DFC or RFI, MEblue, MEbrown, MEgreen, 
MEmagenta, and MEyellow were significantly positively 
correlated with both DFC (0.63–0.76, P < 0.01) and RFI 
(0.61–0.96, P < 0.01), while MEpink and MEpurple were 
significantly negatively correlated with both traits in the 
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hypothalamus (−0.96 to -0.60, P < 0.01) (Fig. 5a). For liver, 
MEblue and MEturquoise were positively correlated with 
both DFC (0.65 and 0. 74, P < 0.01) and RFI (0.83 and 

0.90, P < 0.01), and MEbrown was negatively correlated 
with both traits (−  0.7 and −  0.94, P < 0.01) (Fig.  5b). 
For duodenum mucosa, four modules were positively 

Fig. 3 Functional annotation of non-additively expressed genes that are related with heterosis for feed intake and efficiency in the hypothalamus, 
liver, and duodenum mucosa. a Significant GO terms and KEGG pathways of non-additive genes in the reciprocal crosses. Descriptions in red 
represent the GO terms and KEGG pathway shared by the three tissues. b Expression profile of non-additive genes involved in the oxidative 
phosphorylation pathway for White Leghorn (WL) and Beijing You chicken (YY), and their reciprocal cross (YW). Symbols in red represent the shared 
genes in the three tissues. c Relative expression of the shared genes in the three tissues for WL and YY, and their reciprocal crosses (YW and WY). The 
shared genes in the three tissues are non-additively expressed in YW and additively expressed in WY, respectively
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correlated with both DFC (0.53–0.60, P < 0.05) and RFI 
(0.79–0.84, P < 0.01), including MEblue, MEbrown, 
MEred and MEturquoise, while the MEmagenta and 
MEpink modules were negatively correlated with both 
DFC (− 0.58 to − 0.48, P < 0.05) and RFI (− 0.83 to − 0.74, 
P < 0.01) (Fig. 5c).

Enrichment analyses for the genes in the signifi-
cant modules identified 263, 129, and 277 significantly 
enriched GO terms and KEGG pathways for hypothala-
mus, liver, and duodenum mucosa, respectively (see 
Additional file  11: Table  S10). Interestingly, the genes 
present in the five negatively correlated modules were 
simultaneously enriched for the spliceosome, ribo-
some, and OXPHOS pathways (Fig.  6a). By focusing on 
the OXPHOS pathway, we extracted 11, 16, 49, 9, and 

22 genes for the five modules (MEpurple and MEpink 
for hypothalamus, MEbrown for liver, and MEpink and 
MEmagenta for duodenum mucosa, respectively) (see 
Additional file  12: Table  S11). In view of the similarity 
between the five modules that were negatively correlated 
with DFC and RFI (the OXPHOS-modules), we evalu-
ated the preservation of each module among the three 
tissues by conducting permutation tests. By project-
ing the transcriptome of one tissue onto the network of 
the other tissues, we found that the OXPHOS-modules 
exhibited moderate preservation (2 < Zsummary < 10) for 
all three tissues (see Additional file  4: Figure S5). These 
results suggest that the transcriptional architecture that 
underlies the negative heterosis for feed intake and effi-
ciency is conserved among the three tissues.

Fig. 4 Non-additively expressed lncRNA related to negative heterosis for feed intake and efficiency in the hypothalamus, liver, and duodenum 
mucosa in YW. a Significant GO terms and KEGG pathways of non-additively expressed genes targeted by YW-specific non-additively expressed 
lncRNA in the three tissues. Description in red represents the KEGG pathway shared by the liver and duodenum mucosa. The interaction 
network among the non-additively expressed lncRNA, targeted non-additively expressed genes and significantly GO terms/KEGG pathways 
in the hypothalamus (b), liver (c), and duodenum mucosa (d), respectively, for YW. The yellow arrows, blue circles, and green squares represent 
lncRNA, genes and GO terms/pathways, respectively
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Integrative analysis reveals key OXPHOS‑regulators 
that are involved in heterosis for feed intake and efficiency
To further identify the key regulators in the molecu-
lar network underlying heterosis for DFC and RFI, we 
detected the hub genes and lncRNA that were highly con-
nected to other gene/lncRNA and traits in the OXPHOS-
modules using WGCNA. The genes or lncRNA were 
characterized by high gene significance (GS) defined as 
the correlation of gene expression profiles with an exter-
nal trait and module membership (MM) values calcu-
lated by correlating its gene expression profile with the 
module eigengene of a given module. Then genes or lncR-
NAs with |GS|> 0.7 and |MM|> 0.7 within modules were 
regarded as hub genes. For DFC, we found 59 hub genes 
in the MEpurple module for hypothalamus, four hub 
genes in the MEpink module for hypothalamus, 42 hub 
genes in the MEbrown module for liver, one hub gene in 
the MEpink module for duodenum mucosa, and 36 hub 
genes in the MEmagenta module for duodenum mucosa 
(see Additional file 13: Table S12a). For RFI, we identified 
119 hub genes in the MEpurple module for hypothala-
mus, 69 hub genes in the MEpink module for hypothala-
mus, 273 hub genes in the MEbrown module for liver, 39 
hub genes in the MEpink module for duodenum mucosa 
and 95 hub genes in the MEmagenta module for duode-
num mucosa (see Additional file 13: Table S12b). We then 
screened these hub genes against the OXPHOS pathway 

genes for each tissue and found for DFC and RFI, respec-
tively, 3 and 10 overlapping genes in the hypothalamus, 5 
and 35 overlapping genes in the liver, and 1 and 11 over-
lapping genes in the duodenum mucosa. Interestingly, 
DFC-related genes (COX5B, ND6, and UQCR10 in the 
hypothalamus, COX5B, COX6A1, NDUFB6, NDUFB9, 
and NDUFB10 in the liver, and ATP5I in the duodenum 
mucosa) were also correlated with RFI (Fig. 6b). Among 
these overlapping genes, ATP5I was a non-additive gene 
that was identified in the three tissues, which suggests 
that, in the duodenum mucosa, ATP5I could be a key reg-
ulator involved in the heterosis for DFC and RFI. Regard-
ing the tissues, the non-additive gene COX5B was shared 
by both hypothalamus and liver and regulated DFC. For 
RFI, the shared genes between the three tissues included 
ATP5I, ATP5J2, COX5A, ND6, NDUFB4, NDUFB8, 
NDUFB9, NDUFB10, and UQCR10, with ATP5I, ND6, 
and UQCR10 being dominant genes that regulate hetero-
sis for RFI (Fig. 6c).

Based on the results of these integrative analyses, the 
ATP5I protein was selected for validation by Western 
blot in the liver tissue of WL, YW, and YY. The results 
show that the relative amount of ATP5I protein was low 
in WL and YW but high in YY (see Additional file  4: 
Figure S6), which is consistent with the expression lev-
els observed for ATP5I in these tissues. Therefore, this 
key gene, which is involved in the OXPHOS pathway, 

Fig. 5 Weighted gene co-expression network analysis for the YW reciprocal cross and its parents (WL and YY). The hierarchical cluster dendrogram 
and module-trait relationships were plotted for the hypothalamus (a), liver (b), and duodenum mucosa (c), respectively. Heatmap colors indicate 
positive/negative Pearson correlation coefficients. Correlation coefficients and P-values are shown within the cells (yellow font, P < 0.05). MBW 
metabolic body weight, BWG body weight gain, DEM daily egg mass, DFC daily feed intake and RFI residual feed intake
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could be a candidate target to regulate heterosis for 
feed intake and efficiency in laying chickens.

Discussion
In this study, we constructed a reciprocal crossbred pop-
ulation between White Leghorn and Beijing You chicken 
and measured their daily feed intake and RFI from 43 
to 46 weeks of age. Contrary to the findings reported by 
Bordas et al. [34], who reported similar heterosis values 
for RFI for two reciprocal crossbred populations from 

selected chicken lines with high and low RFI, we observed 
significantly different levels of heterosis between the two 
reciprocal crossbred populations for both feed intake and 
RFI. In animal production, whether heterosis for a trait is 
positive or negative depends on the practical significance 
of traits. We found that the YW crossbred consumed 
more feed and had a larger RFI than that of WY cross-
breds, which are both unfavorable since they increase 
feed costs, and, thus, the YW crossbreds displayed nega-
tive heterosis for these traits. Thus, heterosis does not 

Fig. 6 The hub genes in the oxidation phosphorylation pathway related to the negative heterosis for feed intake (DFC) and residual feed intake 
(RFI) in the hypothalamus, liver, and duodenum mucosa. a Significant biological processes and KEGG pathways enriched among genes harbored 
in the modules that are negatively related to feed intake and efficiency. Descriptions in red represent the KEGG pathway shared by the three 
tissues. b The Venn plot for the hub genes related to both DFC and RFI in each tissue. Genes in red are uniquely non-additively expressed genes 
in crossbred YW. The total number and shared number of hub genes are shown at the bottom of the circle. (c) The Venn plot for the hub genes 
in the three tissues for DFC and RFI, respectively. Genes in red are non-additively expressed genes in each tissue. The numbers denote the number 
of genes in each region
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always result in hybrid vigor for a certain phenotype [35]. 
Compared to positive heterosis, which is widely used and 
studied, negative heterosis is usually neglected in breed-
ing programs and genetic studies, although it frequently 
occurs in various agricultural and wild species [14].

Analysis of RNA-sequencing data is an effective tool 
for genomic studies in animal genetics and has been used 
to elucidate the molecular basis of heterosis in cattle [36], 
fish [37], and chicken [38]. However, most studies have 
focused on a single tissue or organ, which may not pro-
vide a comprehensive understanding of the interactive 
mechanisms that contribute to a phenotype and its het-
erosis [6]. For the first time, we provide a transcriptome 
atlas of three tissues that are associated with feed intake 
and efficiency (hypothalamus, liver, and duodenum 
mucosa) in hybrid chickens and their parents, allowing 
us to identify the shared and specific co-expression net-
works among these tissues underlying heterosis for feed 
intake and efficiency.

Our RNA-sequencing produced high proportions 
(overall mapping rate > 90%) of quality (Q20 > 98%) reads, 
which ensured the accuracy and reliability of the expres-
sion pattern analyses. The significantly larger number of 
expressed genes and lncRNAs found in the hypothalamus 
than in the liver and duodenum mucosa is similar to pre-
vious reports in humans and mouse [39], and indicates 
the central and sophisticated role that the hypothalamus 
plays in regulating body homeostasis [40]. As in the case 
of dominant or recessive alleles in classical genetics, non-
additive genetic variance is due to nonlinear phenotypic 
effects of alleles at one locus [41]. Recent transcriptome 
studies have proposed dominance as the most promis-
ing molecular basis for heterosis in plants [42], animals 
[38], and model organisms [11]. Similarly, our analysis 
revealed that non-additivity is the major gene expression 
pattern across three tissues in YW, which show a nega-
tive heterosis for both feed intake and RFI. These results 
suggest that the magnitude of the heterotic phenotype 
is related to the proportion of genes with non-additive 
expression [14]. Although the global gene expression pro-
file was similar among the three tissues, the non-additive 
genes that mostly differentially expressed between pure-
breds were expressed in a tissue-specific pattern in the 
crossbreds indicating that a majority of the differentially 
expressed genes between purebreds do not exhibit a con-
sistently non-additive expression pattern in different tis-
sues [43].

In the present study, the non-additively expressed 
genes found for the duodenum mucosa of WY were sig-
nificantly enriched in the cellular component biogen-
esis as previously reported in dwarf laying hens with 
divergent RFI [44], suggesting that the cellular com-
ponent of intestine mucosa is critical for modulating 

RFI. Compared to YW, we speculated that the positive 
heterosis for RFI observed for WY was less affected by 
feed intake and behavior that are regulated by the regu-
latory network of hypothalamus [45], since no GO term 
or KEGG pathway was enriched among non-additive 
genes in the hypothalamus. In contrast to WY, which 
showed negative heterosis for feed intake and efficiency, 
we found that mitochondrial components and oxidative 
phosphorylation pathways were significantly enriched 
among genes that were non-additively expressed for YW 
in the three tissues, which indicates the special and cru-
cial roles of energy metabolism in the negative heterosis 
of feed intake and RFI. The two traits were highly corre-
lated with each other genetically and phenotypically [16]. 
In the 1960s to 1970s, mitochondrial amalgamation and 
complementation were reported to be associated with 
heterosis in crops [46, 47] but the underlying mecha-
nism was not identified due to the limits of the molecu-
lar approaches used. Recently, researchers have linked 
growth-related traits of Arabidopsis thaliana hybrids [48] 
and chicken crossbreds [14] with energy production via 
oxidative phosphorylation. Our findings imply that oxi-
dative phosphorylation has a pleiotropic effect on the 
heterosis of the two traits.

To further validate the reliability and biological sig-
nificance of the OXPHOS pathway in the negative het-
erosis of feed intake and efficiency for YW, we analyzed 
the mRNA-lncRNA expression data using the WGCNA 
method, which focused on associations between co-
expression modules and investigated traits. Consistently, 
the OXPHOS pathway was identified in the co-expres-
sion modules that were significantly correlated with feed 
intake and RFI across the three tissues, indicating that 
the oxidative phosphorylation process plays an impor-
tant role in regulating feed intake and RFI. Furthermore, 
the ribosome pathway that is shared by the three tissues 
was reported to be associated with feed efficiency and 
energy balance in dairy cattle [49–51], which supports 
the robustness of our profiling data and bioinformatics 
analysis. Co-expression of the ribosome pathway with 
the OXPHOS pathway is expected to participate in pro-
tein synthesis, an energy-demanding process in which 
one mole of a polypeptide bond during protein synthesis 
requires ~ four ATP [52]. Highly connected hub genes in 
a module significantly associated with traits play essential 
roles in biological pathways and have been suggested as 
potential indicators of feed efficiency [58]. In our study, 
the non-additively expressed hub genes, which play an 
important role in the proton channel of ATP synthase to 
facilitate electron flow through the respiratory chain and 
provide energy for ATP synthesis, have been reported 
to be involved in the regulation of feed intake and feed 
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efficiency, including UQCR10 [59], NDUFB9 [60], 
ATP5J2 [49], COX5B [61], COX6A1 [62], and ND6 [63].

The energy of a eukaryotic cell is mainly (~ 90%) gen-
erated through oxidative phosphorylation in the mito-
chondria [53]. We observed that the level of expression 
of the OXPHOS-related genes was higher in the paren-
tal breed with the lower feed intake and RFI and lower 
in the YW crossbred, which had negative heterosis for 
feed intake and RFI. These findings are consistent with 
previously reported studies for expression in the rumen 
epithelium of low RFI steers [54, 55] and on the breast 
muscle of low RFI chickens [56]. Thus, the decreased 
levels of expression of OXPHOS-related genes that we 
observed for ATP5I indicate that crossbred YW may have 
a  lower protein expression of ATP5I than purebred YY, 
as validated by Western blot, and lower ATP produc-
tion, which impairs metabolic capacity to capture energy 
and nutrients from feeds consumed, resulting in higher 
feed intake [57]. Therefore, we measured feed intake/
efficiency and the expression level of OXPHOS-related 
genes in parental breed in advance and selected efficient 
breeds with highly expressed OXPHOS-related genes as 
maternal parent were expected to improve feed efficiency 
in the crossbreds. However, gene expression profiles in 
multiple tissues are dynamic and breed-specific [61]. Fur-
ther experiments are needed to confirm if the contribu-
tions of non-additively expressed genes and their related 
oxidative phosphorylation persist over a longer laying 
period in different crossbreds of laying chickens.

Conclusions
Heterosis for feed intake and efficiency differed between 
reciprocal chicken crosses, with WY showing positive 
heterosis for RFI, and YW showing negative heterosis for 
both feed intake and RFI. A comprehensive transcrip-
tome atlas of mRNA-lncRNA was developed for tissues 
related to feed intake and efficiency, i.e. hypothalamus, 
liver, and duodenum mucosa. Genome-wide expres-
sion pattern analysis showed that non-additivity is the 
major mode of inheritance for the three tissues in YW 
crossbred chickens, which had negative heterosis for 
both feed intake and RFI. The non-additive lncRNA and 
genes that were down-regulated in these tissues for YW 
are involved in the biological process of oxidative phos-
phorylation that reduces ATP production, which con-
tributes to the negative heterosis for feed intake and RFI 
observed for this cross. Our findings imply that measure-
ments of OXPHOS-related gene expression in tissues 
that are associated with feed efficiency may be valuable 
for screening candidate parental breeds or lines, thereby 
facilitating a rational choice of suitable material for pro-
ducing crossbred chickens.
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