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Xiangyu Guo1,2, Pernille Sarup3, Ahmed Jahoor3,4, Just Jensen1 and Ole F. Christensen1*    

Abstract 

Background  Metabolomics measures an intermediate stage between genotype and phenotype, and may therefore 
be useful for breeding. Our objectives were to investigate genetic parameters and accuracies of predicted breeding 
values for malting quality (MQ) traits when integrating both genomic and metabolomic information. In total, 2430 
plots of 562 malting spring barley lines from three years and two locations were included. Five MQ traits were meas-
ured in wort produced from each plot. Metabolomic features used were 24,018 nuclear magnetic resonance intensi-
ties measured on each wort sample. Methods for statistical analyses were genomic best linear unbiased prediction 
(GBLUP) and metabolomic-genomic best linear unbiased prediction (MGBLUP). Accuracies of predicted breeding val-
ues were compared using two cross-validation strategies: leave-one-year-out (LOYO) and leave-one-line-out (LOLO), 
and the increase in accuracy from the successive inclusion of first, metabolomic data on the lines in the validation 
population (VP), and second, both metabolomic data and phenotypes on the lines in the VP, was investigated using 
the linear regression (LR) method.

Results  For all traits, we saw that the metabolome-mediated heritability was substantial. Cross-validation results 
showed that, in general, prediction accuracies from MGBLUP and GBLUP were similar when phenotypes and metabo-
lomic data were recorded on the same plots. Results from the LR method showed that for all traits, except one, 
accuracy of MGBLUP increased when including metabolomic data on the lines of the VP, and further increased 
when including also phenotypes. However, in general the increase in accuracy of MGBLUP when including both 
metabolomic data and phenotypes on lines of the VP was similar to the increase in accuracy of GBLUP when includ-
ing phenotypes on the lines of the VP. Therefore, we found that, when metabolomic data were included on the lines 
of the VP, accuracies substantially increased for lines without phenotypic records, but they did not increase much 
when phenotypes were already known.

Conclusions  MGBLUP is a useful approach to combine phenotypic, genomic and metabolomic data for predicting 
breeding values for MQ traits. We believe that our results have significant implications for practical breeding of barley 
and potentially many other species.
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Background
The aim of plant breeding activities is to maximise selec-
tion gain per unit of time [1]. To reach this goal, scientific 
breeding activities aim at ranking early and accurately 
the selection candidates by their genetic merit, which 
is estimated by an appropriate experimental design and 
statistical analysis of their performance [2]. The history 
of scientific breeding of plants can be traced back to the 
theoretical basis of Mendel’s inheritance laws and the 
concepts of evolutionary biology [1, 3]. Following the 
rediscovery of Mendelian inheritance, many quantita-
tive genetic techniques have become common practice in 
plant breeding [4]. In practical breeding, measurements 
of phenotypes are used to inform selection, and generally 
these measurements must be conducted in well-designed 
experiments repeated over locations and years to avoid 
confounding effects from the environment when selec-
tion is based on the phenotype alone [2, 5]. However, 
this traditional phenotypic selection program is time-
consuming and expensive, which limits the efficacy of the 
breeding program. Genomic selection (GS) has shown 
to be a promising strategy for increasing genetic gain 
in plant breeding [6]. In GS, dense genome-wide mark-
ers and phenotypes from a training population (TP) are 
used to predict genomic breeding values of candidates 
based only on genotype data but not phenotype data [7]. 
A prerequisite for the practical use of GS is the availabil-
ity of genome-wide markers on many individuals/lines at 
a low cost [8]. The application of GS makes early selec-
tion before phenotypes are collected possible, which can 
increase the efficiency of the breeding efforts consider-
ably due to shorter generation intervals and larger popu-
lations available for selection.

Various statistical models/methods have been pro-
posed in GS, among which a widely used method is 
genomic best linear unbiased prediction (GBLUP) [9, 
10]. Best linear unbiased prediction (BLUP) is a method 
used in linear mixed models for the prediction of random 
effects [11, 12], and has been widely applied in animal 
and plant breeding for ranking individuals/lines in breed-
ing programs, using the correlation between genetic 
effects that is due to pedigree relationships. In GS, the 
genetic effects on different individuals/lines are corre-
lated due to the sharing of observed marker alleles, and 
in GBLUP this is implemented via the construction of a 
marker-based relationship matrix between individuals/
lines that is computed from all available markers.

Similar to dense genome-wide DNA-markers, ‘omics’ 
data such as transcriptomic and metabolomic data are 
becoming available in increasingly larger quantities and 
at decreasing cost. Such ‘omics’ data consist of measure-
ments of effects that are intermediate between the gen-
otype and phenotype of interest for breeding. In recent 

years, the use of multi-omics data for the prediction of 
trait phenotypes has been investigated by several stud-
ies [13–15]. In these studies, both whole-metabolome 
effects and whole-transcriptome effects on individu-
als/lines were assumed to be correlated via similarity 
matrices, and effects were predicted using BLUP, which 
in both respects are similar to GBLUP. However, predic-
tion of phenotypes is the prediction of both the genetic 
and environmental effects, and only the predicted genetic 
effects are of interest for breeding purposes. Breeding 
values are the part of genetic effects that are transmit-
ted to the offspring, and these are of primary interest for 
selecting parental lines. Accurate prediction of breeding 
values is crucial in plant breeding programs to maxim-
ise genetic gain. In order to meet the need for integrat-
ing ‘omics’ data into a genetic evaluation system, a joint 
model for phenotypes and ‘omics’ data was developed by 
Christensen et al. [16], where methods for the computa-
tion of BLUP breeding values from such a model were 
also described. Martinez Boggio et  al. [17] investigated 
the model and methods on milk production traits and 
microbiota data as the omics data, but the results showed 
no increase in accuracy of predicted breeding values 
when including microbiota data, presumably due to the 
microbiota data only explaining a small proportion of the 
variation in the traits of interest. The model and meth-
ods in Christensen et  al. [16] provide an opportunity 
for improving accuracies of predicted breeding values 
in practical plant or animal breeding by incorporating 
‘omics’ data for traits that are genetically related to these 
‘omics’ data, and especially when the traits of interests 
are costly to measure or difficult to improve.

Barley (Hordeum vulgare L.) is the most common 
source of malt that is used in brewing alcoholic beverages 
[18]. Malting quality (MQ) traits are crucial in the practi-
cal breeding of malting barley, but the measurement of 
MQ traits is expensive and labor-intensive [19, 20]. In the 
whole process of brewing, numerous metabolic processes 
are involved, which results in distinct and time-depend-
ent alterations in metabolite profiles [21]. Therefore, two 
previous studies were conducted. The first study inves-
tigated the genomic variance in metabolomic profiles 
extracted from spring barley wort, and the metabolomic 
features were found to be both heritable and genetically-
related to MQ traits, and thus to have a good potential to 
be used in selection for high MQ [22]. The second study 
investigated the prediction of phenotypes using metabo-
lomic features and the results showed that these phe-
notypic predictions were highly correlated to the actual 
phenotypes in a validation dataset [23]. Keeping these 
two results in mind, the joint model for phenotypes and 
‘omics’ data proposed by Christensen et  al. [16] may be 
an appropriate tool in practical barley breeding for the 



Page 3 of 13Guo et al. Genetics Selection Evolution           (2023) 55:61 	

integration of both genomic and metabolomic informa-
tion into genetic evaluations.

Therefore, the aim of this study was to investigate 
the possibility of combining phenotypic, genomic, and 
metabolomic data for the genetic evaluation of MQ 
traits in spring barley. To reach this goal, the joint model 
including both genomic and metabolomic information 
(MGBLUP) was compared with the baseline genomic 
model (GBLUP) to estimate variance components (VC) 
and predict breeding values. The accuracies of predicted 
breeding values were evaluated with two cross-validation 
strategies: leave-one-year-out and leave-one-line-out 
schemes. In addition, the increase in accuracy from the 
successive inclusion of, first metabolomic data on the val-
idation lines, and second both metabolomic and pheno-
type data on the validation lines, was assessed using the 
LR method [24].

Methods
All data, including phenotypic, genomic, and metabo-
lomic data, used are available in a public accessible repos-
itory [25].

Data
In this study, a dataset on 2430 plots for 562 spring bar-
ley malting lines was included. These barley lines and the 
measurements of MQ traits are part of the current genomic 
breeding program from Nordic Seed A/S, and represent a 
subset of the plots analysed in Guo et al. [23], i.e. consist-
ing only of plots with records on all traits and lines with 
genotype information. We used samples from two loca-
tions in Denmark, which were collected from each plot 
individually, and the data covered three years from 2014 to 
2016. At both locations, the fields were divided into trials, 
which included 52 to 106 smaller plots (8.25 m2). Each trial 
was designed as a randomised complete block comprising 
20 to 45 lines with three replicates of each line [26]. Each 
trial included two control lines with three replicates. As a 
consequence, testing was conducted in a number of trials 
within each year-location combination. The malt sample 
from each plot was milled and extracted in water in order 
to produce a wort as described in a previous study [20]. The 
wort was used to measure malting quality (MQ) traits, and 
here we focused on filtering speed (FS), extract yield (EY), 
wort color (WC), beta-glucan content (BG), and wort vis-
cosity (WV), which are five of the six traits analysed in Guo 
et  al. [23], excluding one trait that showed little variation 
(wort clearness, for which 92% of the observations were in 
the first visually-scored category). A detailed description of 
these MQ traits is reported in Sarup et al. [20]. Genotypic 
data were based on the Illumina iSelect9K barley chip and 
3889 single-nucleotide polymorphisms (SNPs) were used 
after editing based on the following criteria: a minor allele 

frequency higher than 5%, and a proportion of missing 
markers lower than 20%. The remaining missing genotypes 
were assigned to the heterozygous genotype. Metabolomic 
features (MF) were nuclear magnetic resonance (NMR) 
data expressed as 24,018 intensities obtained from one-
dimensional (1D) 1H NMR spectra, the intensities were 
integrated over small chemical shift intervals, expressed 
in parts per million (ppm) in the frequency range from 
0.70 ppm to 9.00 ppm.

Statistical models and methods
A widely used approach for genetic evaluation is BLUP, 
which was derived by CR Henderson in 1950 [11, 12] to 
predict random effects in a statistical linear mixed model. 
The method has been widely used in animal and plant 
breeding for ranking the best individuals/lines in breed-
ing programs. In this study, genomic BLUP (GBLUP) and 
metabolomic-genomic BLUP (MGBLUP) methods were 
compared.

GBLUP
In this study, GBLUP from Guo et al. [22] was applied as 
a baseline model, specified as follows:

where y is the vector of records for each MQ trait, b is 
the vector of location × year × trial effects to correct for 
differences caused by experimental location, year, and 
trial, and all interactions between these effects, g is the 
vector of additive genomic effects for each line explained 
by genomic markers, l is the vector of line effects for dif-
ferences between lines that are not explained by additive 
effects of genomic markers, ig is the vector of additive 
genotype by environment (six location × year environ-
ments) interaction effect which accounts for the additive 
genetic differences in genotype caused by different loca-
tion × year environments, il is the vector of line-by-envi-
ronmental interaction effect, which accounts for the 
differences in line caused by different location × year 
environments but not explained by the additive genotype 
by environment interaction effect, t is the vector of 
effects for batches of samples malted and mashed simul-
taneously, which accounts for the environmental effects 
induced by the different batches, X , Zg , Zig , Zil and Zt are 
the corresponding incidence matrices for b , g , l , and t , 
respectively, and e is the vector of residual effects, i.e. 
variation that cannot be explained by the other effects in 
the model. In this model, b is the vector of fixed effects 
parameters, and g , l , ig , il , t and e are the vectors of ran-
dom effects with g ∼ N

(

0,Gσ 2
g

)

 , l ∼ N
(

0, Iσ 2
l

)

 , 

ig ∼ N
(

0, diag(G, · · ·G)σ 2
ig

)

 , il ∼ N
(

0, Iσ 2
il

)

 , t ∼ N (0, Iσ 2
t ) , 

y = Xb+ Zgg + Zg l + Zig ig + Zil il + Ztt + e, (GBLUP)
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e ∼ N (0, Iσ 2
e ) , and these random effects are assumed to 

be independent of each other. Matrix G denotes the 
genomic additive relationship matrix computed using 
genomic data with VanRaden’s method 1 [9], matrix 
diag(G, · · ·G) denotes the block-diagonal matrix with G 
as block-diagonal elements in the six location × year envi-
ronments, and I denotes the identity matrix.

MGBLUP
In this study, MGBLUP was used to allow the integration 
of both metabolomic and genomic data for prediction of 
breeding values. The model and methods closely follow 
the development by Christensen et al. [16]. First, we pre-
sent the model in the context of our study, and second we 
explain the MGBLUP applied in this study.

Metabolomic‑genomic model  The model developed by 
Christensen et al. [16] is a basic model for integrating dif-
ferent ‘omics’ data into genetic evaluations. In our study, 
we extend this basic model to include additional random 
effects as in the GBLUP model, and also to incorporate 
the fact that we have multiple phenotypic and metabo-
lomic records for each genotype. The model that we use is 
a joint model for phenotypes and metabolomic intensities 
and is specified by Eqs. (1) and (2) below:

where y , X , b , Zg , g , l , ig , il , Zt , t , e are defined as for the 
GBLUP model regardless of the subscripts 1 or 2. Equa-
tion (1) describes the relationship between phenotypes and 
metabolomic intensities. Here, matrix M contains, as col-
umns, the vectors m1 to mk of metabolomic intensities for 
each of the k features, α is the vector of the regression effects 
of metabolomic intensities on phenotypes, matrix Zm is an 
incidence matrix, and g1 is the vector of direct genetic effects 
(termed residual genetic effects in Christensen et  al. [16]), 
which are genetic effects on the phenotypes that are not 
explained through the observed metabolomic intensities. 
Equation (2) for metabolomic feature j = 1, . . . , k describes 
the relationship between metabolomic intensities mj and 
genetic and environmental effects for the lines. For the j th 
feature, βj is the vector of location × year × trial fixed effects, 
gj,2 is the vector of genetic effects on intensities, lj,2 is the 
vector of line effects on intensities, igj,2 is the vector of 
additive genotype by environment interaction effects on 

(1)
y = Xb1 + ZmMα+ Zgg1 + Zg l1 + Zig ig 1 + Zil il1 + Ztt1 + e1,

(2)mj = Xβj + Zggj,2 + Zg lj,2 + Zig igj,2 + Zil ilj,2
+ Zttj,2 + ej,2, j = 1, . . . , k

intensities, ilj,2 is the vector of line by environmental interac-
tion effects on intensities, tj,2 is the vector of batch effects on 
intensities, and ej,2 is the vector of residual effects on intensi-
ties. All the random effect vectors are independent and  
their distributions are α ∼ N

(

0, Iσ 2
α

)

 , g1 ∼ N
(

0,Gσ 2
g1

)

 , 

l1 ∼ N

(

0, Iσ 2
l1

)

 , ig1 ∼ N
(

0, diag(G, · · ·G)σ 2
ig1

)

 , il1 ∼ N
(

0, Iσ 2
il1

)

 , 

t1 ∼ N (0, Iσ 2
t1
) , e1 ∼ N (0, Iσ 2

e1
) , gj,2 ∼ N

(

0,Gσ 2
gj,2

)

 , 

lj,2 ∼ N
(

0, Iσ 2
lj,2

)

 , igj,2 ∼ N
(

0, diag(G, · · ·G)σ 2
igj,2

)

ilj,2 ∼ N  , 
(

0, Iσ 2
ij,2

)

 , tj,2 ∼ N (0, Iσ 2
tj,2
) , ej,2 ∼ N (0, Iσ 2

ej,2
) , 

j = 1, . . . , k . The connection between Eqs. (1) and  (2) is that 
the model in Eq. (2) is conditional on metabolomic intensi-
ties m1 to mk , and Eq.  (2) describes the model for these 
intensities. As explained in Christensen et al. [16], the vector 
of breeding values is a =

∑

jgj,2αj+g1 . In this paper, we 
denote the first term as the vector of metabolome mediated 
breeding values, although we are aware that the observed 
metabolomic data is not the actual metabolome itself. Con-
sequently, the heritability is also the sum of two terms, and 
we denote the first term as the metabolome-mediated 
heritability.

Prediction of breeding values using MGBLUP  In Chris-
tensen et  al. [16], it was shown that predicted breed-
ing values in the metabolomic-genomic model can be 
obtained by solving two mixed model equation systems 

successively, where each of these systems correspond to a 
linear mixed model. In our context, this implies that infer-
ence in the metabolomic-genomic model can be obtained 
from successively applying MGBLUP1 and MGBLUP2 as 
shown below.

The first step is:

where u is the vector of metabolomic effects on 
phenotype,

with Mα defined in Eq. (1), and the other effects are the 
same as in Eq.  (1). The metabolomics effects 
u ∼ N

(

0,Qσ 2
u

)

 , where Q =
MM

′

q  , with M being a p× q 
matrix of adjusted, centered and scaled NMR intensities 
(mean of 0 and standard deviation of 1 as in Guo et  al. 
[23], where further details can be found) with q = 24,018 

y = Xb1 + Zmu + Zgg1 + Zg l1 + Zig ig 1

+ Zil il1 + Ztt1 + e1, (MGBLUP1)

u = Mα,
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(equal to the number of MF) and p = 2430 (equal to the 
number of samples).

The second step is:

where û is the vector of predicted metabolomics  
effects from MGBLUP1, and the effects are defined simi-
larly to those in Eq.  (2). The distribution of random 
effects are g2 ∼ N

(

0,G
∑

j
σ 2
gj,2

σ
2

α

)

 , l2 ∼ N
(

0, I
∑

jσ
2
lj,2
σ
2

α

)

 , 

ig2 ∼ N

(

0, diag(G, · · ·G)
∑

jσ
2
igj,2

σ
2

α

)

 , il2 ∼ N

(

0, I
∑

jσ
2
ilj,2

σ
2

α

)

 , 

t2 ∼ N
(

0, I
∑

jσ
2
tj,2
σ
2

α

)

 , e2 ∼ N
(

0, I
∑

jσ
2
ej,2

σ
2

α

)

 , j = 1, . . . , k , 

according to Christensen et  al. [16]. For MGBLUP, the 
predicted breeding values were calculated as the sum of 
the predicted breeding values from MGBLUP1 and 
MGBLUP2, following the derivation in Christensen et al. 
[16],

Estimation of the variance components
The full dataset was used to estimate the variance com-
ponents (VC) in the models described above. The VC in 
all three models were estimated by restricted maximum 
likelihood (REML) using the DMU software package [27]. 
The relative variance component (RVC), which is the pro-
portion of each VC to the total phenotypic variance ( σ 2

P ) 
for each plot, was calculated. The total phenotypic vari-
ance was calculated as the sum of the VC in each model.

For GBLUP, σ 2
P = Gσ 2

g + σ 2
l + Gσ 2

ig
+ σ 2

il
+ σ 2

t + σ 2
e  , 

so that the genomic heritability of GBLUP is 
h2GBLUP = Gσ 2

g /σ
2
P , where G is the average of diagonal 

elements in the G matrix.
For MGBLUP, the calculation is σ 2

P1
= Qσ 2

u + Gσ 2
g1

+σ 2
l1
+ Gσ 2

ig1
+ σ 2

il1
+ σ 2

t1
+ σ 2

e1
 , where Q is the average 

diagonal of the Q matrix, thus the direct heritability is 
h2d = Gσ 2

g1
/σ 2

P1
 , and the metabolomic variance ratio is 

c2m = Qσ 2
u/σ

2
P1

 . Furthermore, according to Christensen 
et al. [16], the heritability of the metabolomic intensities 
can be obtained from MGBLUP2, i.e. here 
h2m = Gσ 2

g2
/(Gσ 2

g2
+ σ 2

l2
+ Gσ 2

ig2
+ σ 2

il2
+ σ 2

t2
+ σ 2

e2
) , and 

therefore according to Christensen et  al. [16], the 
genomic heritability based on the MGBLUP model is: 
h2MGBLUP = c2mh

2
m + h2d . For the VC other than the 

genomic ones, RVC are computed similarly.

û = Xb2 + Zgg2 + Zg l2 + Zig ig 2

+ Zil il2 + Ztt2 + e2, (MGBLUP2)

(3)â = ̂g1 + ̂g2.

It is common in plant breeding [28] to provide a herita-
bility of line mean instead of a heritability of plot records, 
as is done here. Such estimates for the heritability of line 
mean will increase with the introduction of an improved 
experimental design with more years and locations being 
tested, while the heritability of plot reflects, in a more 
neutral way, how heritable the traits of interests are, and 
in addition, in our study the MF were measured for each 
plot. Therefore, we chose to present the heritability of 
plot records in this study.

Cross‑validation
Cross-validation was carried out to compare the accu-
racies of predicted breeding values using GBLUP and 
MGBLUP. Two different cross-validation schemes, in 
which the whole population was divided into a training 
population (TP) and a validation population (VP), were 
investigated in this study based on two different hypoth-
eses regarding the factors that influence prediction accu-
racy. The two schemes were leave-one-year-out (LOYO) 
and leave-one-line-out (LOLO). In LOYO, one out of 
three years was left out so that the accuracy of predicting 
one year from the other two years could be investigated. 
This scheme is similar to the prediction of lines from a 
new breeding cycle. In LOLO, one out of 562 lines was 
left out so that the accuracy of predicting one line from 
all the other lines could be investigated. This scheme is 
similar to the prediction of lines for which no MQ phe-
notypes have been measured but the other lines from the 
same breeding cycle have been phenotyped for MQ.

In each round of the cross-validation, according to 
the setup for TP size, a certain number of plots were 
selected, and for the remaining plots both phenotypes 
and MF were masked (for LOLO, all plots for a given line 
were masked, and for LOYO, all plots in a given year were 
masked). The phenotypes of the masked samples were 
predicted based on the TP together with the genomic 
information. As a measure of the accuracy of predic-
tion, we report the correlation between phenotypes for 
each plot corrected for the location × year × trial fixed 
effect and the random batch effect based on GBLUP 
and the predicted breeding values from each model, and 
as an assessment of the dispersion bias we report the 
regression coefficient of these corrected phenotypes on 
predicted breeding values for each model. Differences 
in correlations between GBLUP and MGBLUP were 
assessed using a Hotelling-Williams t-test [29, 30] at a 
level of 5%.

The reader should note here that we do not present 
cross-validation results in the scenario in which only 
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phenotypes in the VP were masked (i.e. metabolomic 
data in the VP were not masked), although such pre-
dicted breeding values are very relevant from a practical 
view. The reason is that, in this scenario, the correlation 
between corrected phenotypes and predicted breed-
ing values would be influenced by environmental effects 
in a similar way to the situation with a bivariate model 
and records for the secondary trait being available for the 
lines in the VP (see Additional file 1: Text S1), and there-
fore this correlation is not an appropriate measure of the 
accuracy of predicted breeding values.

Ratios of accuracies and dispersion biases using the LR 
method
The LR method [24] provides estimators to assess pre-
dicted breeding values based on partial (p) and whole 
(w) datasets. Here, for different scenarios of partial and 
whole datasets, as described below, we computed ratios 
of accuracies and dispersion biases based on the vectors 
of predicted breeding values for the lines in the VP, âp 
and âw , from partial and whole datasets, respectively.

The estimator of the ratio of accuracies is the cor-
relation between âp and âw . The expected value of this 
estimator is the ratio of population accuracies from the 
partial and whole datasets, and thus, this estimator pro-
vides an assessment of the increase in population accu-
racy when including the additional information in the 
whole dataset compared to the partial dataset, i.e. a low 
correlation between âp and âw implies a large increase 
in accuracy. The estimator of the dispersion is the slope 
of the regression of âw on âp . The expected value of the 
estimator is 1, indicating no bias in dispersion, whereas a 
value below 1 indicates over-dispersion and a value above 
1 indicates under-dispersion.

Partial and whole data are defined according to the TP 
and VP for the LOYO and LOLO schemes as described 
in the subsection above on cross-validation. We name 
the scenarios according to the data resources for the VP 
as illustrated in Fig.  1, where GBLUPg is GBLUP with 
genomic and phenotypic data for the TP and genomic 
data for the VP, GBLUPgp is GBLUP with genomic and 
phenotypic data for both the TP and VP, MGBLUPg is 
MGBLUP with genomic, metabolomics and phenotypic 
data for the TP and genomic data for the VP, MGB-
LUPgm is MGBLUP with genomic, metabolomics and 
phenotypic data for the TP and both genomic and metab-
olomics data for the VP, and MGBLUPgmp is MGBLUP 
with genomic, metabolomic and phenotypic data for 
both the TP and VP.

Results
In this study, first the VC and heritabilities of MQ traits 
were estimated. Then, the breeding values of MQ traits 
were predicted by using GBLUP and MGBLUP, and these 
were assessed using cross-validation, and ratios of popu-
lation accuracies of predicted breeding values were com-
puted using the LR method.

Descriptive statistics for malting quality traits
Table  1 shows the descriptive statistics for all the MQ 
traits analysed in this study. In total, 2430 records were 
analysed for five MQ traits: filtering speed (FS), extract 
yield (EY), wort color (WC), beta-glucan content (BG), 
and wort viscosity (WV). The averages were 4.84 for FS, 
82.61 for EY, 5.87 for WC, 217.98 for BG, and 1.47 for 
WV. The coefficient of phenotypic variation ranged from 
2.23% for EY to 52.91% for BG.

Estimated variance components
Estimates of genomic and metabolomic variances for 
GBLUP and MGBLUP are in Table 2. First, we see that 
the estimated direct genomic variance from MGB-
LUP is substantially lower than the estimated genomic 
variance from GBLUP. This is most pronounced for 
BG, for which this variance decreased by 87% from 
2630 to 348, but also for FS, WC and WV, for which 
the estimated direct genomic variance from MGBLUP 

Fig. 1  Training and validation population data resources 
in cross-validation. GBLUP genomic best linear unbiased prediction, 
MGBLUP  metabolomics genomic best linear unbiased prediction, 
GBLUPg  GBLUP with genomic data in validation population, 
GBLUPgp  GBLUP with genomic and phenotypic data in validation 
population, MGBLUPg  MGBLUP with genomic data in validation 
population, MGBLUPgm  MGBLUP with genomic and metabolomic 
data in validation population, MGBLUPgmp  MGBLUP with genomic, 
metabolomic and phenotypic data in validation population, 
Pheno  phenotypic data, Meta  metablomic data, Geno  genomic data
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decreased by more than 50% compared to the esti-
mated genomic variance from GBLUP (0.014 to 0.005 
for FS, 0.14 to 0.04 for WC and 0.0004 to 0.0001 for 
VW), and only the variance for EY showed a small 
decrease (0.29 to 0.22). Second, the estimated metab-
olomic variance from MGBLUP is very large. For all 
five traits, the estimated metabolomic variance is 
more than 50% of the total variance from MGBLUP, 
i.e. 52% for EY, 67% for FS, 91% for WV, 95% for WC 
and 96% for BG, and for WC, BG and WV, it was even 
substantially larger than the variance of the phenotype 
in Table  1 (about four times larger for WC and VW 
and eight times larger for BG). Third, for all the traits, 
the total phenotypic variance from GBLUP is much 
smaller than both the total phenotypic variance from 
MGBLUP and the variance of phenotype in Table  1, 
and for all traits except EY, the total phenotypic vari-
ance from MGBLUP is much larger than the variance 
of phenotype in Table 1. Estimates of all other VC for 
GBLUP and MGBLUP1 are shown in Additional file 2: 
Table S1.

Estimated heritabilities are in Table 2. The estimated 
genomic heritabilities ( ̂h2 ), which are also RVC for 
genomic effects, ranged from 0.06 (FS) to 0.28 (WC) 
when using GBLUP. When metabolomic data were 

included via the MGBLUP model, the ̂h2 increased for 
all five MQ traits, and ranged from 0.12 (FS) to 0.28 
(WC). The ̂h2 estimated from MGBLUP is the sum of 
a metabolome-mediated part and a direct part, and the 
decomposition of ̂h2 based on MGBLUP is in Table  2. 
As shown in Table  2, the direct ̂h2d ranged from 0.00 
(BG) to 0.07 (EY), thus the metabolome-mediated her-
itability accounted for most of the ̂h2 . Estimates of RVC 
from GBLUP and MGBLUP for all model components 
are shown in Additional file 3: Fig. S1] and Additional 
file 2: Table S2.

Predicted breeding values
LOLO and LOYO cross-validation schemes were inves-
tigated for GBLUP and MGBLUP. For the lines in the 
VP, correlations between predicted breeding values 
and corrected phenotypes are in Tables  3 and 4 for the 
LOLO and LOYO schemes, respectively. The general 
picture for both schemes is that the results from MGB-
LUP and GBLUP are similar, except for BG and LOYO 
for which MGBLUP (cor = 0.22) is more accurate than 
GBLUP (cor = 0.19), and for WV and LOYO for which 
MGBLUP (cor = 0.12) is slightly more accurate than 
GBLUP (cor = 0.11). Comparison of the results with the 
LOLO and LOYO schemes shows that the correlations to 

Table 1  Descriptive statistics for malting quality traits

FS  filtering speed, EY  extract yield, WC  wort color, BG  beta-glucan, WV  wort viscosity, N-obs  number of observations, CV coefficient of phenotypic variation, EBC 
European Brewery Convention

Trait N-obs Unit Average Variance Min Max CV

FS 2430 cm/20 min 4.84 0.38 2.30 6.30 12.81%

EY 2430 % 82.61 3.39 70.38 92.39 2.23%

WC 2430 EBC units 5.87 0.71 3.59 8.99 14.31%

BG 2430 mg/L 218 13,303 70 752 52.91%

WV 2430 mPa·s 1.47 0.0036 1.29 1.73 4.08%

Table 2  Estimated genomic and metabolomic variances for malting quality traits using GBLUP and MGBLUP

GBLUP  genomic best linear unbiased prediction, MGBLUP  metabolomic-genomic best linear unbiased prediction, FS  filtering speed, EY  extract yield, WC  wort color, 
BG  beta-glucan, WV  wort viscosity

Gσ 2
g  : estimated genomic variance for GBLUP ( h2 is the heritability estimate for GBLUP, i.e. proportion of total phenotypic variance); total: total phenotypic variance 

(GBLUP); Gσ 2
g,1 : estimated direct genomic variance for MGBLUP ( h2d is the estimated direct heritability for MGBLUP, i.e. proportion of total phenotypic variance); Qσ 2

u  : 
estimated metabolomic variance for MGBLUP ( c2m is the estimated metabolomic variance ratio for MGBLUP, i.e. proportion of total phenotypic variance); total: total 
phenotypic variance (MGBLUP); h2m : estimated heritability of metabolomic intensities; h2 : estimated heritability for MGBLUP, h2 = c2mh

2
m + h2d . Standard errors on 

estimates are in Additional file 2: Tables S1 and S2)

Trait GBLUP MGBLUP

Gσ 2
g  ( h2) Total Gσ 2

g,1 ( h
2
d

) Qσ 2
u(c2m) Total h2m h2

FS 0.014 (0.06) 0.236 0.005 (0.01) 0.345 (0.67) 0.516 0.17 0.12

EY 0.29 (0.17) 1.68 0.22 (0.07) 1.65 (0.52) 3.17 0.23 0.19

WC 0.14 (0.28) 0.50 0.04 (0.01) 3.15 (0.95) 3.32 0.28 0.28

BG 2625 (0.23) 11,636 348 (0.00) 111,868 (0.96) 116,102 0.27 0.27

WV 0.0004 (0.15) 0.0025 0.0001 (0.01) 0.0156 (0.91) 0.0170 0.25 0.24
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corrected phenotypes are much larger for the LOLO than 
for the LOYO scheme. The regression coefficients for the 
LOLO and LOYO schemes are also shown in Tables 3 and 
4, respectively. These coefficients are based on a regres-
sion of corrected phenotypes on predicted breeding val-
ues, and the expectation is that they should equal 1. For 
the LOLO scheme, the coefficients are similar between 
MGBLUP and GBLUP, and in general reasonably close to 
1. For the LOYO scheme and the FS and EY traits, the 

regression coefficients are all close to 1 for both GBLUP 
and MGBLUP. However, for the LOYO scheme and the 
WC, BG and WV traits, the regression coefficients devi-
ate substantially from 1, in particular for WV with a coef-
ficient of 0.42 for GBLUP and 0.56 for MGBLUP.

The ratios of the population accuracies of predicted 
breeding values obtained with the LR method with the 
partial and whole datasets, respectively, are in Tables  5 
and 6 for the LOLO and LOYO schemes, respectively. We 
see that the ratios of the accuracies between GBLUPg and 
GBLUPgp and between MGBLUPg and MGBLUPgmp 
are similar for all traits in both the LOLO (ratios ranging 

Table 3  Predictive performance of GBLUP and MGBLUP for the 
LOLO scheme

GBLUP  genomic best linear unbiased prediction; MGBLUP  metabolomic-genomic 
best linear unbiased prediction; LOLO  leave one line out

FS  filtering speed, EY  extract yield, WC  wort color, BG  beta-glucan, WV  wort 
viscosity

GBLUPg is GBLUP incorporating genotypes on lines in VP, and MGBLUPg is 
similarly defined

“cor” columns show the correlations between predicted breeding values and 
corrected phenotypes for lines in VP, and “reg” columns show the regression 
coefficients of corrected phenotypes on predicted breeding values. For all traits, 
none of the differences between the two correlations are statistically significant 
using a Hotelling-Williams t-test at a 5% level. Standard error on regression 
coefficient is 0.01 in all cases

Trait GBLUPg MGBLUPg

cor reg cor reg

FS 0.18 1.00 0.18 1.04

EY 0.32 1.02 0.32 1.07

WC 0.46 1.05 0.46 1.05

BG 0.38 1.09 0.38 1.15

WV 0.34 1.13 0.34 1.17

Table 4  Predictive performance of GBLUP and MGBLUP for the 
LOYO scheme

GBLUP  genomic best linear unbiased prediction; MGBLUP  metabolomic-genomic 
best linear unbiased prediction; LOYO  leave one year out

FS  filtering speed, EY  extract yield, WC  wort color, BG  beta-glucan, WV  wort 
viscosity

GBLUPg is GBLUP incorporating genotypes on lines in VP, and MGBLUPg is 
similarly defined

“cor” columns show the correlations between predicted breeding values and 
corrected phenotypes for lines in VP, and “reg” columns show the regression 
coefficients of corrected phenotypes on predicted breeding values

*Denotes that for the given trait, the difference between the two correlations is 
statistically significant using a Hotelling-Williams t-test at a 5% level. Standard 
error on regression coefficient is 0.02 in all cases

Trait GBLUPg MGBLUPg

cor reg cor reg

FS 0.13 0.95 0.13 1.19

EY 0.27 0.98 0.27 1.05

WC 0.29 0.75 0.30 0.75

BG 0.19* 0.63 0.22* 0.86

WV 0.11* 0.42 0.12* 0.56

Table 5  Ratios of population accuracies of predicted breeding 
values for malting quality traits using GBLUP and MGBLUP (LOLO 
scheme)

GBLUP  genomic best linear unbiased prediction; MGBLUP  metabolomic-genomic 
best linear unbiased prediction; LOLO  leave one line out

FS  filtering speed, EY  extract yield, WC  wort color, BG  beta-glucan, WV  wort 
viscosity

GBLUP-g/gp is the ratio of population accuracies for lines in VP from GBLUPg 
and GBLUPgp, where GBLUPg is GBLUP incorporating genotypes on lines in VP, 
and GBLUPgp is GBLUP incorporating genotypes and phenotypes on lines in 
VP. MGBLUP-g/gm, MGBLUP-gm/gmp and MGBLUP-g/gmp are similarly defined 
with “gm” denoting genotypes and metabolomics on focal lines, and “gmp” 
denoting genotypes, metabolomics and phenotypes on lines in VP

Trait GBLUP-g/gp MGBLUP-g/gm MGBLUP-gm/
gmp

MGBLUP-g/
gmp

FS 0.93 0.95 0.97 0.92

EY 0.93 1.00 0.94 0.93

WC 0.93 0.97 0.97 0.93

BG 0.93 0.95 0.98 0.92

WV 0.91 0.95 0.97 0.91

Table 6  Ratios of accuracies of predicted breeding values for 
malting quality traits using GBLUP and MGBLUP (LOYO scheme)

GBLUP  genomic best linear unbiased prediction; MGBLUP  metabolomic-genomic 
best linear unbiased prediction; LOYO  leave one year out

FS  filtering speed, EY  extract yield, WC  wort color, BG  beta-glucan, WV  wort 
viscosity

GBLUP-g/gp is the ratio of population accuracies for lines in VP from GBLUPg 
and GBLUPgp, where GBLUPg is GBLUP incorporating genotypes on lines in VP, 
and GBLUPgp is GBLUP incorporating genotypes and phenotypes on lines in 
VP. MGBLUP-g/gm, MGBLUP-gm/gmp and MGBLUP-g/gmp are similarly defined 
with “gm” denoting genotypes and metabolomics on focal lines, and “gmp” 
denoting genotypes, metabolomics and phenotypes on lines in VP

Trait GBLUP-g/gp MGBLUP-g/gm MGBLUP-gm/
gmp

MGBLUP-g/
gmp

FS 0.73 0.84 0.87 0.73

EY 0.78 0.99 0.81 0.79

WC 0.71 0.88 0.89 0.71

BG 0.69 0.81 0.88 0.71

WV 0.59 0.81 0.80 0.60
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from 0.91 for WV to 0.93 for EY) and LOYO (ratios rang-
ing from 0.60 for WV to 0.79 for EY) schemes. We also 
see that the ratios for the LOYO scheme are smaller than 
those for the LOLO scheme for all traits and methods. 
For MGBLUP, the ratios between MGBLUPg and MGB-
LUPgm are smaller or similar (ranging from 0.97 to 0.98 
for LOLO, and from 0.81 to 0.88 for LOYO) than the 
ratios between MGBLUPgm and MGBLUPgmp (rang-
ing from 0.95 to 0.97 for LOLO, and from 0.80 to 0.89 for 
LOYO), except for EY, for which the opposite is observed 
(the first ratio is 1.00 for LOLO and 0.99 for LOYO, and 
the second ratio is 0.94 for LOLO and 0.81 for LOYO). 
For all traits, the product of the ratios between MGB-
LUPg and MGBLUPgm and of the ratio between MGB-
LUPgm and MGBLUPgmp is slightly smaller than the 
ratio between MGBLUPg and MGBLUPgmp, i.e. the 
estimates of these three ratios are not completely con-
sistent with each other because they are estimated inde-
pendently. The regression coefficients obtained from the 
LR method (see Additional file 3: Tables S3 and S4] are 
closer to 1 than those based on cross-validation, but gen-
erally show the same patterns.

Discussion
For all the traits, we see that the metabolome-mediated 
heritability is substantial. Cross-validation results show 
that, in general, the accuracies of MGBLUP and GBLUP 
are similar when phenotypes and metabolomic data are 
recorded on the same plots, and for all traits, except one, 
and the results of the LR method show that the accuracy 
of MGBLUP increases when including MF in the VP. 
Comparing the estimates of the genetic parameters in 
GBLUP and MGBLUP, we see that, for all the traits, the 
direct genomic variance from MGBLUP is substantially 
smaller than the genomic variance from GBLUP, this 
being most pronounced for BG, but also for FS, WC and 
WV, for which it is decreased by more than 50%. This pat-
tern is also reflected by the large proportion of estimated 
metabolomic variance for all traits, being largest for BG 
(96%), but also very large for FS, WC and WV. Conse-
quently, very large proportions of the heritabilities are 
mediated by the metabolome. These large proportions 
of metabolome-mediated heritability are also consistent 
with one of our previous studies, which found significant 
genetic correlations between MF and MQ traits [22]. 
Taken together this implies that the part of breeding val-
ues mediated by the metabolome is substantial for these 
traits, and is largest for BG and smallest for EY.

For MGBLUP, both the metabolomic variance and 
the total phenotypic variance are large for all the traits. 
Such large metabolomic variances were also reported 
by Guo et al. [22]. For all the traits, the total phenotypic 
variance is larger for MGBLUP than for GBLUP, which 

is reasonable, since the MF may capture environmental 
effects that would otherwise be captured by the loca-
tion × year × trial fixed effect. Usually, the total pheno-
typic variance from a model is smaller than the variance 
of the phenotype, since part of the variation would be 
captured by the fixed effects in the model, and this is also 
seen in our results from GBLUP for all the traits. Thus, 
it is surprising that for all the traits, except for EY, the 
total phenotypic variance from MGBLUP is larger than 
the variance of the phenotype. A better understanding of 
the relationship between the total phenotypic variances 
from GBLUP and MGBLUP1, and the variance of the 
phenotype is needed. In Additional file 4: Text S2, formu-
las are derived for the first two moments of the variance 
of the phenotype, S2y , i.e. expectation and variance of S2y , 
in the situation with no fixed effects. First, the expecta-
tion of S2y for a given model is equal to the total pheno-
typic variance from the same model. Second, the variance 
of S2y from MGBLUP1, with matrix Q and its associated 
estimated variance component from our results, is much 
larger than the variance of S2y from GBLUP with matrix 
G and its associated estimated variance component 
from our results. Therefore, a large difference between 
total phenotypic variance and S2y is unrealistic, and tak-
ing into account that the phenotypic variance is reduced 
when including fixed effects, as in the models used in 
this paper, then the total phenotypic variance being 
much larger than S2y is unrealistic. However, the vari-
ance of S2y needs to be taken into account, and since that 
from MGBLUP1 is very large, we consider that these very 
large total phenotypic variances from MGBLUP are not 
entirely implausible. However, we still do not have a com-
plete understanding of this phenomenon.

Generally, a large total phenotypic variance from MGB-
LUP could also be the sign of possible deficiencies of the 
model. One deficiency is the assumption of independ-
ence of the MF as postulated by Eq. (2), which is violated 
since a specific metabolite would often correspond to 
several MF, and that MF model mediation pathways that 
are unlikely to be completely independent. In principle, 
the model in Eqs. (1) and (2) could be extended to incor-
porate both the genetic covariances between the differ-
ent MF, and the covariances between the direct genetic 
effect, g1 , and the effects explained through the observed 
metabolomic intensities, gj,2 , j = 1, . . . , k (implying that 
the procedure for predicting breeding values, MGBLUP1 
and MGBLUP2, no longer applies, and also that more 
parameters have to be estimated). However, this defi-
ciency refers to the joint model for the phenotype and 
MF in Eqs. (1) and (2), whereas the large total phenotypic 
variances reported in this paper were computed from 
MGBLUP1, i.e. from the model for phenotypes condi-
tional on MF in Eq.  (1). Another possible deficiency of 
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Eq.  (1) is the assumption of additivity of metabolomics 
effects, which implies that matrix Q has a quadratic form. 
Models with alternative forms of matrix Q , and more 
generally, the possible deficiencies of the models used 
here, seem worth investigating further in relation to the 
total phenotypic variance.

The heritabilities of MF in this study are assumed to 
be constant across features, i.e. one common heritability, 
and this is an assumption that is needed when using the 
two models MGBLUP1 and MGBLUP2 for the prediction 
of breeding values [16]. Here, we estimated this com-
mon heritability using REML in MGBLUP2, as suggested 
in Christensen et al. [16], and the results show estimates 
of heritability ranging from 0.17 to 0.28 depending on 
the trait. According to Eq.  (2), this estimated herit-
ability should not actually depend on the trait, and this 
approach for its estimation is an approximation. In addi-
tion, an estimate ranging from 0.17 to 0.28 may seem 
large compared to the results of Guo et  al. [22], who 
estimated heritabilities for individual MF ranging from 
0 to 0.38 with an average of 0.025, and found only 0.3% 
of the MF having an estimate larger than 0.2. However, 
such a trait-dependent estimate of the common heritabil-
ity of MF is actually an estimate of the heritability of a 
weighted sum of MF, where the weights on MF are the 
estimated regression effects of metabolomic intensities 
on phenotypes in Eq. (1). Consequently, MF that do not 
influence the actual trait are down-weighted, and this 
seems to be a desirable property. A better understanding 
of the implications of assuming a common heritability for 
MF and the development of efficient approaches to esti-
mate this parameter would be useful.

The model in Eqs. (1) and (2) can easily be modi-
fied to allow different heritabilities for different MF. 
The approach used for prediction in MGBLUP1 and 
MGBLUP2 could be extended by splitting the metabo-
lomic effects into two components with two different 
heritabilities, i.e. two similarity matrices constructed 
from MF that have a high and low heritability, respec-
tively, similar to the extensions of GBLUP with two 
genomic components [16]. This would require a pre-
liminary step in the analysis, with a screening of MF to 
decide which have a low or a high heritability. Alterna-
tively, a full Bayesian approach where heritabilities are 
assigned a prior distribution would be a possibility, for 
example using the framework in Zhao et  al. [31]. Mod-
els that allow different heritabilities for MF would be an 
interesting topic for future research.

Predictive performances of GBLUP and MGBLUP 
were investigated by cross-validation using the LOYO 
and LOLO schemes. In the LOLO scheme, the aim was 
to predict breeding values of a barley line using the phe-
notypes of all the other lines, and hence the size of the 

TP was larger than in the LOYO scheme. In addition, 
lines are generally much more related within year than 
across years, which causes a stronger genetic relation-
ship between TP and VP in the LOLO than in the LOYO 
scheme. Therefore, it was expected that a higher predic-
tion accuracy could be obtained from LOLO than from 
LOYO, and the results obtained are consistent with this 
expectation. The results also show that prediction accu-
racies from the LOLO scheme for GBLUP and MGB-
LUP are similar, with nearly no dispersion bias for either 
GBLUP or MGBLUP. Hence, incorporating MF for the 
phenotyped plots, does not increase the accuracy of lines 
without phenotypes and MF. By combining these results 
with the results from the LR method, which shows that 
the ratios for MGBLUPgmp and MGBLUPg are the same 
as those for GBLUPgmp and MGBLUPg, we also see 
that incorporating MF for the phenotyped plots does 
not increase the accuracy of lines with phenotypes. The 
predictions from the LOLO scheme have less practical 
importance than those from the LOYO scheme, because, 
in practical breeding, we usually want to predict one year 
ahead.

The LOYO scheme mimics a practical breeding system, 
since a new set of lines should be developed every year. 
Here, the prediction accuracies of GBLUP and MGBLUP 
are similar, except for BG and WV, which have higher 
prediction accuracies in MGBLUP than GBLUP, with the 
increase in accuracy being largest for BG. These results 
are consistent with BG being the trait with the largest 
proportion of estimated metabolomic variance, and also 
with the proportion of estimated metabolomic variance 
being large for WV. Regarding dispersion biases, there 
were only small differences between GBLUP and MGB-
LUP, but we observed very strong dispersion biases, 
in particular, for WV, but also for BG (primarily with 
GBLUP) and WC. Apparently, prediction across years 
does not work well for these traits and this dataset. An 
explanation may be that with only two years in the TP, the 
representation of the variation between performances of 
lines under different environmental conditions is insuf-
ficient for these two years. This interpretation is sup-
ported by the results in Table 3 in Sarup et al. [20], who 
found less dispersion bias for these traits with GBLUP 
and LOYO in a dataset consisting of one additional year, 
one additional location, and additional records in 2015 
for the two locations in our study. Similar to the LOLO 
results, the combination of the results of prediction accu-
racy from the LOYO scheme with the results from the LR 
method of the ratios for MGBLUPgmp and MGBLUPg 
that are the same as the ratios for GBLUPgmp and MGB-
LUPg for LOYO shows that we do not gain much in accu-
racy by incorporating MF on the same plots for which 
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we do have recorded phenotypes (whether they are own 
phenotypes and metabolomic data on lines or not).

For MGBLUP and LOYO, a very important question 
for practical breeding is to assess the accuracy of pre-
dicted breeding values of the lines without phenotypic 
records (either because they are to be obtained later, 
or are too expensive to record on many lines) based on 
metabolomic samples (i.e. metabolomic data on the VP, 
but no phenotypic records on the VP), but as explained 
in the Methods section this cannot be assessed using 
cross-validation. An increase in accuracy from the 
inclusion of metabolomic data on lines in the VP can 
be assessed from the results of the ratios of accuracies 
by the LR method as follows. First, the accuracy from 
MGBLUPg can be computed by dividing the correlation 
between the predicted breeding values and corrected 
phenotypes in Table 4 by the square root of the genomic 
heritability of corrected phenotypes (calculated from the 
estimated variances from GBLUP in Additional file  2: 
Table S1); Second, the increase in accuracy of predicted 
breeding values when including metabolomic data can 
be assessed by multiplying one minus the ratio of accu-
racies from MGBLUPg and MGBLUPgm by the accuracy 
from MGBLUPg. Computing these numbers, we obtain 
an increase in accuracy when including metabolomic 
data on lines in the VP from 0.46 to 0.54 for FS, from 
0.53 to 0.59 for WC, from 0.44 to 0.53 for BG and from 
0.25 to 0.29 for WV and no increase in accuracy 0.62 for 
EY. The increase in accuracy due to the inclusion of both 
metabolomic data and phenotypes on lines in the VP can 
be computed similarly from the ratio of accuracies from 
MGBLUPg and MGBLUPgmp. When including both 
metabolomic data and phenotypes on lines in the VP, 
we obtain an increase in accuracy from 0.46 to 0.59 for 
FS, from 0.62 to 0.75 for EY, from 0.53 to 0.68 for WC, 
from 0.44 to 0.57 for BG and from 0.25 to 0.35 for WV. 
Note that for all the traits, a slightly smaller increase in 
accuracy would have been obtained when including both 
metabolomic data and phenotypes, if instead of the ratio 
between MGBLUPg and MGBLUPgmp, we had used the 
ratio between MGBLUPgm and MGBLUPgmp, since the 
estimates of these three ratios of accuracies are not com-
pletely consistent with each other. We conclude that for 
all the traits except EY, there is an increase in accuracy of 
the lines in the VP when metabolomic data on the lines 
in the VP are included, and this increase is roughly simi-
lar to the subsequent increase when both metabolomic 
data and phenotypes are included. In other words, except 
for EY, a substantial proportion of the increase in accu-
racy that could be obtained from having own records on 
plots, can be obtained from incorporating metabolomic 
data on these plots instead, i.e. phenotypic records of 

MQ can be replaced by metabolomic data for a propor-
tion of the plots.

If we focus on the differences between the results for 
the MQ traits, we see that EY was the trait with the 
lowest proportion of variance explained by MF, and 
also the trait for which inclusion of metabolomics data 
on the lines in the VP without recorded phenotypes 
did not increase the accuracy of its predicted breeding 
value; and BG was the trait with the largest proportion 
of variance explained by metabolomics, and also the 
trait for which the inclusion of metabolomic data on 
the plots with phenotypes increased the accuracy of its 
predicted breeding value. The actual reasons for these 
differences in patterns between phenotypes are not 
known to us. However, we note that EY is a measure 
of the total concentration of fermentable and non-fer-
mentable sugars, and since the dominant metabolites in 
the NMR spectra are sugars, then the normalisation of 
the NMR spectra could result in the removal of impor-
tant differences related to EY. We also note that the BG 
trait is actually a metabolite in itself, which is repre-
sented in the NMR spectra in several MF.

If we focus on the practical relevance of these results, 
we note that NMR was recorded on malt, and therefore 
only available after the plots were harvested and the 
samples malted. Using these MF for the prediction of 
lines for which the MQ traits are not recorded could 
be economically beneficial since the cost to record MQ 
traits could be avoided, but they do not represent a sit-
uation where the selection decision can be done in the 
early generations of a breeding cycle to decrease gen-
eration time and increase selection intensity. To do this, 
we need to be able to carry out non-destructive sam-
pling, e.g. by sampling leaf cuts. Investigating the per-
formance of MGBLUP or similar models in a situation 
where MF were observed on growing plants would be 
very relevant.

In recent years, the integration of multi-omics data 
has received much interest for predicting the pheno-
types of traits [13–15]. In our previous study, we found 
that the prediction accuracy for MQ phenotypes using 
MF was very high [23]. However, the core of animal and 
plant breeding programs is the prediction of breeding 
values, and our study is about an implementation of a 
joint model for prediction of breeding values by inte-
grating ‘omics’ data into genetic evaluation. The suc-
cessful implementation of such a joint model is very 
relevant to practical plant breeding where traits can be 
improved by selecting lines with high genetic potential. 
The MGBLUP model that was applied in the current 
study would also be applicable for integrating other 
‘omics’ data such as transcriptomics, and therefore it 
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also could be interesting to expand the data resources 
integrated in the genetic evaluation of malting barley.

Conclusions
In conclusion, we have demonstrated that MGBLUP is 
a useful approach for combining phenotypic, genomic 
and metabolomic data for the prediction of the breed-
ing values of MQ traits in barley. We believe that the 
results from the current study have significant impli-
cations for practical breeding of barley and potentially 
many other species.
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