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Abstract 

Background  Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identifica-
tion of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable 
genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported 
a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymor-
phisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which 
refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data.

Results  We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide 
association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits 
and six simulated traits with varying genetic architectures using two representative models (genomic best linear 
unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combina-
tions of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait 
were optimized in the training population by five fold cross-validation and then tested in the validation population. 
Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architec-
ture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) 
or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-
by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improve-
ments in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL 
and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN.

Conclusions  The SLDP marker selection method can be incorporated into mainstream prediction models to yield 
accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advan-
tage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture 
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of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based 
genomic selection.

Background
The genomic prediction (GP) method proposed by Meu-
wissen et  al. [1] is commonly used to predict breeding 
values based on high-density genome-wide single nucleo-
tide polymorphisms (SNPs) and has been widely used 
in farm animals [2–4], plants [5–7], and human disease 
risk models [8]. Compared with pedigree-based breeding 
methods, in pigs the advantage of genomic selection is 
primarily reflected in the improved accuracy of genomic 
estimated breeding values (GEBV) rather than shorter 
generation intervals as in dairy cattle, since pigs and dairy 
cattle have different breeding characteristics. Therefore, 
improving prediction accuracy is the main objective of 
pig breeding. Prediction models and genetic markers are 
the two core elements for improving the accuracy of GP.

Genomic best linear unbiased prediction (GBLUP) is a 
commonly used prediction model that is based on a lin-
ear mixed model, which assumes that the effects of all the 
genetic markers contribute to phenotypic variation, and 
follow the same normal distribution [9, 10]. In contrast, 
Bayesian Alphabet models may be more adapted to the 
real situation, as most of them consider only a propor-
tion of markers that contribute the genetic variance and 
as the markers have independent variances that follow a 
specific distribution [11, 12]. In addition, incorporating 
prior information into the basic model is more effective 
by making the model more biologically specific. Some 
studies have reported that the prediction accuracy of the 
GBLUP model based on pre-selected markers could be 
improved by increasing the weight of significant genome-
wide association study (GWAS) markers in the genomic 
relationship matrix (GRM) [13, 14] or by combining chip 
data and panels of significant markers [15, 16]; moreover, 
fitting significant markers as separate variance compo-
nents in the GBLUP model (i.e., multiple genomic rela-
tionship matrices-GBLUP) could also increase prediction 
accuracy [17, 18].

From the perspective of genetic markers, the degree 
of linkage disequilibrium (LD) between markers and the 
causal variant has a major impact on prediction accuracy. 
With the decline in sequencing costs and the emergence 
of low-coverage sequencing (LCS) strategies, it is now 
possible to use whole-genome sequencing (WGS) data 
for GP. The higher marker density in WGS data could 
increase the LD between markers and quantitative trait 
loci (QTL), in addition to enhancing the opportunity to 
directly capture the causal variant, which may conse-
quently increase the overall accuracy of GP, as reported 

by several simulation studies [19–21]. However, the 
results obtained on real data remain ambiguous. For 
example, one study reported only a slight improvement in 
prediction accuracy when using imputed WGS data com-
pared to using the 80K SNP chip in combined pig popu-
lations [22]. Another study showed that the use of WGS 
data did not increase the accuracy of GP for milk produc-
tion and reproductive traits in Holstein–Friesian cattle 
[23] and for commercial traits in pigs when the sample 
size was limited [24]. There are two possible reasons for 
these findings. First, most WGS-based GP models are 
based on markers that are imputed from low- or high-
density SNP arrays [25, 26]. The accuracy of this method 
is influenced by the quality of the reference panel and 
the genetic relationship with the target population [27], 
which can interfere with the genotyping quality and fur-
ther critically impact the prediction accuracy. A second 
explanation is that massive noisy markers that are not 
in LD with any causal variant, were incorporated in the 
WGS data since the increase in SNP density is at random. 
Under this assumption, a large proportion of the variants 
in low LD with causal variants should be excluded when 
using millions of variants from WGS data.

Previously, we reported LCS genotyping analyses that 
can yield millions of highly accurate SNPs in pigs [28]. In 
the current study, we focused on marker selection and 
our aim was to identify the benefits of using WGS data 
for GP in a pure Duroc boar population. Toward this end, 
we propose a marker selection method called selective 
linkage disequilibrium pruning (SLDP) for selecting a 
subset of variants from LCS data based on GWAS prior 
information to improve prediction accuracy. The GBLUP 
and BayesR models were used in GP analyses for three 
real traits in pigs and six simulated traits with different 
genetic architectures. As a control, we simulated a series 
of SNP panels that were obtained using other genotyping 
techniques, including two commercial SNP arrays and 
genotyping-by-sequencing (GBS) [29], which were used 
in our earlier work [30].

Methods
Populations and phenotypes
In total, 3579 Duroc boars born between 2011 and 2016 
were sampled from one nucleus farm provided by the 
Guangdong Wen’s Foodstuff Group (Guangdong, China), 
which included some boars from previous studies [28, 30, 
31]. Phenotypic data included age at 100  kg live weight 
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(AGE), backfat thickness (BF), and total teat number 
(TTN), representing quantitative traits with three dis-
tinct genetic architectures. In this population, AGE is a 
typical “infinitesimal trait” (i.e., no major QTL could be 
detected after long-term artificial selection), whereas 
TTN is mainly affected by several major QTL on Sus 
scrofa 11.1 chromosome (SSC)7 and BF is a transitional 
quantitative trait affected by several major loci and many 
minor gene interactions [28, 32, 33]. The trait statistics 
are summarized in Table 1 and Additional file 1: Fig. S1.

A previous study showed that using the same reference 
individuals for pre-selecting variants through a GWAS as 
the GP training population can decrease prediction accu-
racy and result in biased predicted breeding values [23]. 
Considering this factor and to prevent overfitting, in this 
study, we divided the animals (after genotype quality con-
trol) into three non-overlapping populations. Matching 
the breeding practice, 441 pigs born in or after 2014 were 
treated as a validation population and were used to pre-
dict GEBV and determine accuracy and bias; 1000 indi-
viduals were randomly selected in the remaining samples 
as the discovery population, which were used to detect 
QTL or significant SNPs by GWAS; and the remaining 
2108 samples were treated as a training population to 
predict the GEBV of the validation population. Selective 
linkage disequilibrium pruning and linkage disequilib-
rium pruning (LDP) parameters were optimized in the 
training population by five-fold cross-validation.

Genotype data
The genomes of all boars were sequenced on an Illu-
mina (paired-end 150) or BGI (paired-end 100) platform, 

with an average sequencing depth of ~ 0.68 × for all indi-
viduals. SNP calling for these individuals was performed 
following the processing procedures for LCS data as pre-
viously described [28]. The BaseVar [34] version 1.01 and 
STITCH [35] version 2.0 software were used to call SNP 
variants and impute genotypes, respectively. After SNP 
calling and genotype imputation, 15,689,585 autosomal 
SNPs were identified in the study population. SNPs with a 
minor allele frequency (MAF) < 0.05 and a call rate < 0.95, 
and individuals with a call rate < 0.90 were excluded from 
further analyses using the VCFtools (version 1.17). After 
quality control, 3549 of the 3579 pigs and 10,109,688 
SNPs were retained for subsequent analyses.

SNPs on the commercial chip 80k (CC 80k), commer-
cial chip 50k (CC 50k), and GBS panel were extracted 
from the LCS clean panel for marker detection simulation 
to evaluate the performance of different genotyping tech-
nologies in GP. Details on the GBS markers are reported 
in [30]. Some SNPs might be missed as LCS cannot cap-
ture all the genome variants. To ensure a more objective 
evaluation of the marker panels, the missing SNP data 
were represented by the nearest markers (within 1  kb 
upstream/downstream region) and only autosomal SNPs 
were retained. Finally, 55,216, 36,851, and 94,832 SNPs 
from the CC 80k, CC 50k, and GBS panels, respectively, 
were included in this study.

Trait simulation
To evaluate the performance of SLDP under known 
genetic architectures, we conducted phenotypic simula-
tions based on real LCS 10.1  M genotypes. In the data 
simulation, only additive genetic and residual effects 
were considered. We simulated six traits, each with dif-
ferent numbers of quantitative trait nucleotides (QTN) 
(100 or 10,000) and heritability levels (h2: 0.15, 0.30, or 
0.50). The lower QTN condition (100) represented sim-
ulation scenarios where traits are influenced by a few 
major genes, while the higher QTN condition (10,000) 
represented scenarios of traits controlled by an infinite 
number of loci. We used the R package SIMER (https://​
github.​com/​xiaol​ei-​lab/​SIMER) for the simulation analy-
ses. QTN were randomly selected from all SNPs and 
their effects were sampled from the same standard nor-
mal distribution using the SIMER software with default 
settings. Residual terms were sampled from another nor-
mal distribution with the variance parameter adjusted to 
the heritability level.

GWAS for the selection of significant sequence variants 
in the discovery population
To obtain prior information for the GP tests, we con-
ducted GWAS on 10,109,688 clean genotypes from the 
LCS panel for each real and simulated trait. Association 

Table 1  Summary of the populations, number of animals used 
in the analyses, and means/medians of the phenotypic traits

The discovery population was used in the GWAS to select significant SNPs. The 
training population was used to optimize the parameters of SLDP and LDP and 
as the reference population to predict the GEBV of the validation samples. The 
validation population included animals born in or after 2014 and was used for 
validation in the genomic prediction test

AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number

Phenotype Population Individuals Mean ± standard 
deviation

Median

AGE Discovery 1000 154.66 ± 9.01 154.48

Training 2108 155.07 ± 9.43 155.01

Validation 441 153.81 ± 9.41 154.06

BF Discovery 1000 10.94 ± 2.36 10.61

Training 2107 10.98 ± 2.17 10.77

Validation 441 10.76 ± 1.92 10.64

TTN Discovery 1000 10.70 ± 1.05 11.00

Training 2108 10.71 ± 1.07 11.00

Validation 441 10.76 ± 1.03 11.00

https://github.com/xiaolei-lab/SIMER
https://github.com/xiaolei-lab/SIMER
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results based on the discovery population were used for 
subsequent SLDP marker selection. The mixed linear 
model used in the GWAS and fitted using the GCTA 
“mlma” model (version 1.92.0) [36], was as follows: 

where y is the vector of phenotypes; β is the vector of 
fixed effects, including the year and season effects; α is 
the effect of a candidate SNP and b is the correspond-
ing vector of genotypes (coded 0, 1, and 2); g is the vec-
tor of random polygenic effects, with g ∼ N (0,Gσ2g) ; G is 
the GRM constructed using LCS SNPs; σ2g is the variance 
explained by SNPs; e is the vector of random residual 
effects, with e ∼ N (0, Iσ2e) ; I is the identity matrix; and X 
and W are the design matrices connecting phenotypes to 
fixed effects and random polygenic effects, respectively.

Implementing a strict threshold may result in false 
negatives, while a relaxed threshold may introduce false 
positives. To capture more genetic effects and explore the 
optimal parameter combination for each trait (defined 
as parameters combined with the highest prediction 
accuracy in the training population via five-fold cross-
validation for each trait), we established a relatively con-
servative P-value threshold gradient of 0.0001 to 0.01 to 
select critical markers. We defined genome regions of 
50 kb on either side of each associated SNP as QTL-cov-
ered regions.

For the simulated traits, markers in high LD with QTN 
are likely to emerge as significant. Hence false-positive 
SNPs were defined as non-QTN SNPs that have a low 
LD (r2 < 0.50) with all the actual QTN. Detected QTN or 
markers that have a higher LD (r2 ≥ 0.50) with QTN were 
classified as informative SNPs. The estimated false-posi-
tive rate was calculated by dividing the number of false-
positive sites by the number of detected sites.

Genomic prediction models
To assess the universality of our marker selection 
method, we used two representative models for GP: 
GBLUP and BayesR [37]. We carried out a five-fold cross-
validation in the training population to optimize the 
parameters of SLDP and LDP. The accuracy of the differ-
ent models and marker panels was then evaluated in the 
validation population. Accuracy was defined as the Pear-
son correlation between GEBV and the true phenotype 
for the real traits, and between GEBV and the true breed-
ing value (TBV) for the simulated traits. In addition, bias 
was identified as the regression coefficient of phenotypes 
or TBV on GEBV.

y = Xβ+ αb+Wg + e,

GBLUP
Genomic estimated breeding values based on GBLUP 
were estimated for individuals using the following 
equation: 

where y is the vector of phenotypes; β is the vector of 
fixed effects, including the year and season effects, and 
only the overall mean was included in the simulation 
data; u is the vector of GEBV, with u ∼ N (0,Gσ2g) ; σ2g is 
the genetic variance explained by SNPs; e is the vector of 
random residuals, with e ∼ N (0, Iσ2e) ; G is the GRM esti-
mated using each SNP panel; I is the identity matrix; σ2e is 
the residual variance; and X and Z are the design matri-
ces connected to fixed effects and GEBV, respectively. 
Genomic relationship matrices were constructed using 
the GCTA software [36], while the prediction model was 
fitted using the MTG2 software [38].

BayesR
The BayesR analytical methodology described by Erbe 
et  al. [39] was used with a mixture of normal distribu-
tions as the prior for variant effects, including one distri-
bution that sets the variant effects to zero, and the model 
was fitted using the following equation:

 where y is the vector of phenotypes; β is the vector of 
fixed effects, including the overall mean, year, and season 
effects, and only the overall mean was included in the 
simulation data; Z is the design matrix of variant geno-
types; ε is the vector of variant effects, distributed as a 
mixture of four normal distributions, including a null 
distribution, N (0, 0σ2g) , and three others, N (0, 0.0001σ2g) , 
N (0, 0.001σ2g) , and N (0, 0.01σ2g) , where σ2g is the additive 
genetic variance for each trait; e is the vector of random 
residuals, with e ∼ N (0, Iσ2e) ; I is the identity matrix; and 
σ
2
e is the residual variance. Variance effects were esti-

mated using the Markov chain Monte Carlo approach 
and BayesR software [37] with default settings.

Selection of variants from LCS by LDP and SLDP
Due to the high level of LD in the genome, most SNPs are 
redundant; a previous study suggested that an excess of 
SNPs in high LD might introduce noise and cause biased 
GP [40]. Consequently, prediction accuracy might be 
improved by applying LDP. For traditional LDP, we used 
a sliding window-based LD pruning method, setting the 

y = Xβ+ Zu + e,

y = Xβ+ Zε+ e,



Page 5 of 18Zhu et al. Genetics Selection Evolution           (2023) 55:72 	

window and step size to 500 and 200 SNPs, respectively. 
Any SNP pairwise r2 values equal to or greater than the 
threshold was removed. In LDP, we used 20 r2 thresh-
olds that ranged from 0.05 to 1; for example, r2 = 1 meant 
that only SNPs in complete LD were removed, while the 
remaining SNP set was labeled as “LCS_LD1.”

Selective linkage disequilibrium pruning considers 
prior information and amplifies the weights of candidate 
QTL regions in the prediction model. Figure  1a pro-
vides a schematic representation of SLDP. For each real 
and simulated trait, we first identified the “important 

SNPs” in the LCS panel, defined as significant SNPs with 
a P-value below the association threshold (gradient from 
0.0001 to 0.01) or SNPs in high LD (r2 > 0.90) with any 
significant SNPs. Then, we applied the same sliding win-
dow-based LD pruning method as used in LDP; however, 
all “important SNPs” were retained after SLDP. We tested 
180 parameter combinations (9 P-values × 20 LD r2 val-
ues) for each real and simulated trait. For the simulated 
traits, both GWAS and real QTN locations were used in 
SLDP (marked as SLDP_GWAS and SLDP_QTN, respec-
tively). In SLDP_QTN scenarios, the “important SNPs” 

Fig. 1  Schematic representation of SLDP and different SNP distributions across the genome. a Schematic representation of SLDP. SNPs (per cycle) 
marked in light red represent “important SNPs,” while those in light blue represent other SNPs. The set of “important SNPs” is marked according 
to GWAS prior information. SLDP retains all “important SNPs” in sliding window-based LD pruning. b Schematic illustration of the SNP distribution 
for different marker sets. The SNPs along the genome are colored according to their GWAS–logP value, with red and gray indicating high or low 
significance levels in GWAS, respectively. The GBS and chip sets were extracted from the LCS panel and SNPs non-overlapping with the LCS panel 
nearest and within the 1 kb range were extracted; only autosomal SNPs were retained
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were defined as real QTN or SNPs in high LD (r2 > 0.90) 
with any real QTN. Figure 1b illustrates the difference in 
SNP distribution between each marker panel. After arti-
ficial modification, more SNPs were enriched in candi-
date QTL regions in the SLDP panel. We used the PLINK 
[41] software and scripts coded by the authors for these 
analyses.

Results
Phenotypic distribution and population structure
Table  1 and Additional file  1: Fig. S1 present the basic 
statistical characteristics of the discovery, training, and 
validation populations. Probably due to artificial selec-
tion, compared to the other populations, the validation 
population displayed phenotypic progress. AGE and BF 
conformed to a normal distribution, as confirmed by 
the Kolmogorov–Smirnov test (P = 0.326 for AGE and 
P = 0.235 for BF), but not TTN (P < 2.20 × 10–16), since 
it showed a discontinuous distribution. We conducted 
a principal component analysis (PCA) using the LCS_
LD0.90 SNP set to determine the population structure of 
all the populations and samples. Additional file 2: Fig. S2 
shows the three populations with the mixed state in prin-
cipal components 1 to 3 with no sub-group stratification. 
This revealed the effectiveness of using marker pre-selec-
tion and prior GWAS information that was identified in 
the discovery population.

Genetic parameters and architecture
Table  2 shows the results of the variance component 
estimates obtained through GBLUP and BayesR for each 
marker panel. Although there were large differences in 
the number of markers between the different panels, no 

significant difference was observed in the heritability 
estimated with either GBLUP or BayesR. However, the 
estimated heritability using the BayesR model was signifi-
cantly higher than that using the GBLUP model for AGE 
and slightly higher for BF. For example, the estimated 
heritability using the CC 80k panel in the BayesR model 
was 0.17 for AGE and 0.36 for BF, higher than the respec-
tive estimates of 0.13 and 0.33 based on the GBLUP 
model. This may be attributed to the greater ability of the 
Bayes model than GBLUP to capture the QTL effect since 
only BF and AGE were subjected to artificial selection in 
this population.

Table  3 lists the number of SNPs that were selected 
under varying P-value thresholds, ranging from 0.0001 
to 0.01. Additional file 3: Fig. S3 presents the Manhattan 
plot for AGE, BF, and TTN in the discovery population, 
non-discovery population, and all samples. Under a strict 
threshold condition (P < 0.0001), a significantly larger 
number of SNPs was obtained for BF and TTN than for 
AGE, with almost no significant SNPs detected for AGE. 
Although numerous significant SNPs were identified 
for TTN, most of them (64%) were concentrated on the 
known Sus scrofa 11.1 chromosome (SSC)7 QTL region. 
We further analyzed the genomic regions covered by sig-
nificant (P < 0.0001) SNPs for each trait. Genomic regions 
of 50 kb on either side of each associated SNP were con-
sidered as QTL-covered regions; the 343 SNPs for AGE 
spanned a 7.10-Mb genomic region, the 12,624 SNPs for 
BF spanned a 21.30-Mb genomic region, and the SNP 
number for TTN i.e., 12,343 SNPs similar to that for BF 
in TTN spanned only a 13.87-Mb genomic region. These 
results suggest that the QTL distribution varies between 
traits.

Table 2  Variance components for different traits estimated on four marker panels, based on GBLUP and BayesR

AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number, CC 80k commercial chip 80K, CC commercial chips 50K, GBS genotyping-by-sequencing, 
LCS low-coverage sequencing

Trait Marker panel Number of markers Vg (se) Ve (se) Heritability (se)

GBLUP BayesR GBLUP BayesR GBLUP BayesR

AGE CC 80k 55,216 9.89 (2.30) 11.97 (3.27) 68.37 (2.58) 58.38 (3.22) 0.13 (0.03) 0.17 (0.03)

CC 50k 36,851 9.87 (2.33) 10.20 (3.43) 68.51 (2.57) 59.92 (3.24) 0.13 (0.03) 0.15 (0.03)

GBS 89,012 9.30 (2.22) 10.13 (3.29) 68.82 (2.57) 59.84 (3.46) 0.12 (0.03) 0.15 (0.04)

LCS 10,109,688 9.92 (2.31) 11.42 (3.86) 68.32 (2.58) 58.59 (4.03) 0.13 (0.03) 0.16 (0.04)

BF CC 80k 55,216 1.31 (0.17) 1.43 (0.17) 2.63 (0.12) 2.54 (0.13) 0.33 (0.03) 0.36 (0.03)

CC 50k 36,851 1.29 (0.17) 1.37 (0.18) 2.67 (0.11) 2.60 (0.13) 0.33 (0.03) 0.34 (0.03)

GBS 89,012 1.25 (0.16) 1.37 (0.17) 2.66 (0.11) 2.57 (0.13) 0.32 (0.03) 0.35 (0.03)

LCS 10,109,688 1.28 (0.17) 1.43 (0.19) 2.64 (0.11) 2.53 (0.13) 0.33 (0.03) 0.36 (0.04)

TTN CC 80k 55,216 0.31 (0.04) 0.29 (0.05) 0.81 (0.03) 0.81 (0.03) 0.27 (0.03) 0.26 (0.03)

CC 50k 36,851 0.32 (0.04) 0.27 (0.05) 0.80 (0.03) 0.82 (0.03) 0.28 (0.03) 0.25 (0.04)

GBS 89,012 0.29 (0.04) 0.29 (0.05) 0.82 (0.03) 0.80 (0.03) 0.26 (0.03) 0.26 (0.03)

LCS 10,109,688 0.29 (0.04) 0.29 (0.05) 0.82 (0.03) 0.81 (0.04) 0.26 (0.03) 0.27 (0.04)
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Subsequently, we estimated the proportion of SNPs in 
each distribution using the BayesR model. Overwhelm-
ingly, most (more than 97%) SNPs had a variance of 0 for 
all traits and were estimated to be in the first distribution. 
TTN had a higher percentage of SNPs with a variance of 
0 (98.17%) and a larger proportion of SNPs in the fourth 
distribution (0.01 * σ2

g) than AGE and BF. Conversely, BF 
had more SNPs with a variance different from 0 and the 
highest proportion of SNPs in the second and third dis-
tributions yet the smallest number of SNPs in the fourth 

distribution (Table 4). These results confirmed that fewer 
QTL control TTN, while BF and AGE are influenced by 
a larger number of QTL with a small effect. Moreover, 
the detection of any definite QTL associated with AGE in 
this study proved challenging.

Genomic prediction based on different marker density 
panels using real data
We used two SNP chips and two sequencing-based 
methods (GBS and LCS) for GP in order to investigate 

Table 3  SNPs detected using different P-value thresholds in the discovery population, the non-discovery population, and in all 3549 
samples

SNPs with a P-value lower than each threshold were selected for each trait. Non-discovery means the samples include 2108 training and 441 validation samples

AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number

Trait Population P-value thresholds

0.0001 0.0003 0.0005 0.0007 0.001 0.003 0.005 0.007 0.01

AGE Discovery 105 1300 2994 5158 9052 27,662 43,604 62,631 94,385

Non-discovery 319 1588 4281 7093 11,312 31,880 54,720 79,016 103,418

All 343 2273 5152 6686 8537 28,082 49,399 73,167 108,976

BF Discovery 4342 6403 7591 9236 12,033 32,926 54,589 73,302 101,580

Non-discovery 8711 15,582 20,086 23,274 27,369 44,655 60,946 79,791 106,278

All 12,624 16,895 19,203 21,012 23,068 40,461 59,719 77,576 105,749

TTN Discovery 2774 7079 12,726 17,925 22,400 43,547 63,641 80,742 107,811

Non-discovery 5733 11,605 15,370 19,011 23,697 47,462 64,705 83,287 111,884

All 12,343 20,169 23,003 25,560 29,767 54,070 74,004 92,246 116,156

Table 4  Proportion of the number of SNPs and genetic variance explained in the four normal distributions modeled in BayesR

Results were obtained using the LCS_LD0.90 marker set

σ2
g genetic variance explained by the LCS_LD0.90 marker set, Pnum proportion of the number of SNPs in a distribution to the total SNP set (LCS_LD0.90), Pvar 

proportion of genetic variance explaining σ2g , AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number

Trait 0 * σ2g 0.0001 * σ2g 0.001 * σ2g 0.01 * σ2g

Pnum (%) Pvar (%) Pnum (%) Pvar (%) Pnum (%) Pvar (%) Pnum (%) Pvar (%)

AGE 97.42 0 2.30 29.17 0.24 30.34 0.032 40.20

BF 97.29 0 2.37 29.85 0.32 39.03 0.028 30.89

TTN 98.17 0 1.52 19.21 0.26 32.86 0.040 47.64

Table 5  Prediction accuracy and bias in the validation population for three traits based on GBLUP

Accuracy was defined as the Pearson correlation between the GEBV and phenotypes, while bias was defined as the regression coefficient of phenotypes on GEBV

AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number, CC 80 k commercial chip 80k, CC 50k commercial chip 50k, GBS genotyping-by-sequencing, 
LCS low-coverage sequencing

CC 50k CC 80k GBS LCS_LD1 LCS

Accuracy Bias Accuracy Bias Accuracy Bias Accuracy Bias Accuracy Bias

AGE 0.219 1.213 0.229 1.285 0.196 1.108 0.239 1.016 0.203 1.104

BF 0.375 1.020 0.363 1.003 0.377 1.137 0.381 1.157 0.376 1.120

TTN 0.344 0.955 0.346 0.933 0.356 0.982 0.345 0.973 0.351 0.993
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the effects of marker density and SNP genotyping on 
prediction accuracy and bias. Marker density exhibited a 
several 100-fold increase from the SNP chip to LCS data 
(Table 2). However, an increase in marker density did not 
correspondingly improve prediction accuracy; in some 
cases, the accuracy even decreased to a certain extent 
when using the GBLUP model (Table 5). Apart from the 
LCS_LD1 set, the CC 80k panel was particularly effective 
for GP of AGE, demonstrating a 2.60% higher accuracy 
than the LCS panel. GBS outperformed the other panels 
in terms of accuracy for BF and TTN. Table  6 provides 
the prediction accuracy and bias for the three traits based 
on the BayesR model; the LCS panel was not included 
in this analysis due to the extensive computational 
resources necessary for BayesR with over 10 million 
SNPs. The LCS_LD1 set showed a significant advantage 
for AGE and BF in both GBLUP and BayesR models. In 
addition, the accuracy of BayesR was superior to that 
of GBLUP for all three traits across all marker panels, 
exhibiting a 5.4 to 7.3% increase for AGE, a 0.2 to 2.6% 
increase for BF, and a 1.7 to 2.5% increase for TTN. The 
bias due to using the LCS_LD1, CC 80k, and LCS panels 
in the GBLUP model, and that due to using the CC 80k, 
LCS_LD1, and CC 50k panels in the BayesR model, were 

relatively lower than those due to using other SNP panels 
for the three real traits. Compared to the two SNP chips, 
the use of unfiltered WGS data did not improve the pre-
diction accuracy in the GBLUP model. However, predic-
tion accuracy increased when SNPs in perfect LD were 
removed from the LCS panel for AGE and BF. This result 
indicated that WGS data does not offer accuracy and bias 
advantages over the SNP array or GBS when all markers 
are used.

Prediction performance of the top 10% and bottom 10% 
SNPs in GWAS
SNPs in the LCS panel were ranked according to their 
GWAS P-values for the three real traits in the discovery 
population (from small to large). The top 10% and bot-
tom 10% SNPs were selected for accuracy assessment 
in the validation population to explore the performance 
of phenotypically related and unrelated SNPs during 
GP. The prediction accuracy of the top 10% SNPs for 
each trait was significantly higher than that of the bot-
tom 10% SNPs in both the GBLUP and BayesR models 
(Fig.  2). This indicates that the contribution of markers 
to the prediction differed throughout the genome and 
suggested that markers exhibiting a higher correlation 

Table 6  Prediction accuracy and bias in the validation population for three traits based on BayesR

Accuracy was defined as the Pearson correlation between the: GEBV) and phenotypes, while bias was defined as the regression coefficient of phenotypes on GEBV

AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number, CC 80k commercial chip 80k, CC 50k commercial chip 50k, GBS genotyping-by-sequencing, 
LCS_LD1 low-coverage sequencing set after removing SNPs in complete LD with other SNPs

CC 50k CC 80k GBS LCS_LD1

Accuracy Bias Accuracy Bias Accuracy Bias Accuracy Bias

AGE 0.280 0.847 0.283 0.893 0.269 0.861 0.293 0.882

BF 0.379 0.860 0.389 0.949 0.379 0.885 0.401 1.025

TTN 0.365 0.880 0.363 0.851 0.375 0.884 0.370 0.872

Fig. 2  Comparison of genomic prediction accuracy. Comparison of genomic prediction accuracy of the top 10%, LCS or LCS_LD1, and bottom 
10% SNPs in the GBLUP and BayesR models in the validation population. AGE age to 100 kg live weight, BF back fat thickness, TTN total teat number, 
Top_10% the top 10% significant SNPs in the discovery GWAS, LCS low-coverage sequencing, Bottom_10% the bottom 10% significant SNPs 
in the discovery GWAS
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with QTL had higher prediction power than the others. 
Both informative and noisy markers exist in WGS data, 
which may explain why the WGS data did not have a sig-
nificant advantage in GP compared with SNP chips. This 
also suggested that pre-selecting SNPs from high-density 
WGS panels may improve the prediction accuracy.

Prediction performance of LDP and SLDP
In this study, the LCS panel was filtered using a sliding-
window LDP approach based on r2 threshold gradients 
(see “Methods”); a lower r2 indicated that fewer markers 
remained. Additional file 4: Table S1 shows the remaining 
number of SNPs after filtering with different thresholds. 
The number of LCS SNPs decreased rapidly after LD fil-
tering. For example, when r2 was > 0.99, the number of 
LCS SNPs decreased from 10.1  M to 361  K. The accu-
racy of the GBLUP and BayesR models for predicting the 
three real traits after LDP exhibited different patterns, as 
shown in Fig. 3. In the GBLUP model, with a decrease in 
r2, the accuracy of GP for AGE and BF initially increased 
and then decreased; by contrast, the accuracy of GP for 
TTN decreased with a lower r2 setting. In the BayesR 
model, the general trend was the same as that found 
in GBLUP. In contrast, for TTN, the accuracy of the 
BayesR model declined faster than that of GBLUP, with a 
decrease in r2.

To consider GWAS prior information in GP, we used 
an improved LDP method termed SLDP. Figure 4 shows 
the prediction accuracy of the 180 combinations of 
parameters for the three real traits in the GBLUP and 
BayesR models used on the training population deter-
mined by five-fold cross-validation. The number of SNPs 
used in each scenario for AGE, BF, and TTN is shown in 

Additional files 5, 6, 7: Tables S2, S3, S4, respectively. For 
the GBLUP model, the accuracy of prediction for AGE 
and BF was more affected by LDP, whereas the accu-
racy for TN was significantly affected by the P-value. For 
GBLUP, the optimal parameter combinations for the GP 
of AGE was a P-value of 0.0001 and r2 of 0.30, of BF was a 
P-value of 0.0001 and r2 of 0.40, and of TN was a P-value 
of 0.01 and r2 of 0.30 (Fig. 4a, c, and e). A similar pattern 
was obtained with the BayesR model, and the optimal 
combination of the two models had the same P-value. For 
BayesR, the optimal parameter combination for the GP of 
AGE was a P-value of 0.0001 and r2 of 0.40, of BF was a 
P-value of 0.0001 and r2 of 0.50, and of TN was a P-value 
of 0.01 and r2 od 0.45 (Fig. 4b, d, and f ). Notably, the opti-
mal combination for BayesR tended to have a higher r2 
threshold, suggesting that BayesR is more suitable for 
high-density marker panels than GBLUP. The parameter-
optimized marker sets by LDP and SLDP (i.e., those with 
the highest prediction accuracies for each trait) were fur-
ther evaluated in the validation population. The distribu-
tion of MAF changed after LDP, with the proportion of 
the lower and higher MAF SNPs increasing, especially 
when using a lower r2 threshold (see Additional file 8: Fig. 
S4), which is a concern. Based on LDP, SLDP increases 
the number of SNPs in some MAF intervals since it tends 
to select clusters of SNPs in the genome.

Figure 5 summarizes the accuracy of each SNP panel in 
the validation population. LDP had an advantage over the 
two SNP chips for AGE and BF, but the accuracy of LDP 
was relatively lower for TTN. In the GBLUP model, the 
accuracy of prediction based on SLDP for the three traits 
(AGE, BF, and TTN) increased by 2.23, 1.87, and 3.22% 
compared to the CC 50k chip, and increased by 1.19, 3.01, 

Fig. 3  Genomic prediction accuracy of the LCS panel after LDP. Genomic prediction accuracy of the LCS panel after LDP according to the r2 
gradient (from 1 to 0.05) in the GBLUP and BayesR models in the training population. AGE age to 100 kg live weight, BF back fat thickness, TTN 
total teat number. The accuracy was obtained by five-fold cross-validation in the training population and defined as the Pearson correlation 
between GEBV and phenotypes
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and 2.94% compared to the CC 80k chip, respectively. We 
also observed a similar improved accuracy for SLDP in 
the Bayesian model. Compared to LDP, SLDP showed an 
improvement of 1.04 and 3.07% in GBLUP and of 0.84 
and 1.40% in BayesR for BF and TTN, respectively, but 
exhibited a slightly reduced accuracy for AGE. However, 
the optimal marker panel for bias was not robust, and 
SLDP did not have a significant advantage over the other 
panels. In summary, after marker selection, LCS data had 
the highest accuracy (compared to SNP chips and GBS) 
in most cases, indicating that using sequencing data has 
potential in GP.

Prediction performance of SLDP with simulation data
To assess the performance of SLDP for evaluating differ-
ent traits with a known genetic structure, we performed 
prediction using simulated data (see Methods). Fig-
ure 6 shows the prediction accuracy for SLDP with 180 

combinations of parameters in the training population by 
GBLUP; the result using the BayesR model is shown in 
Additional file 9: Fig. S5. The traits that were controlled 
by fewer QTN tended to gain more accuracy improve-
ment from GWAS prior information (with a lower LD r2). 
Figure 7 shows the prediction accuracy and bias for dif-
ferent SNP sets in the GBLUP and BayesR models under 
six simulation scenarios in the validation population. In 
general, the prediction accuracy of each marker panel 
was significantly improved with increasing simulated 
heritability. In the three simulation scenarios with fewer 
QTN, the accuracy of SLDP_QTN, where the real QTN 
location was used, was significantly higher than that of 
the other marker panels; for example, the accuracy of 
SLDP_QTN increased by 17.15, 13.89, and 15.92% rela-
tive to those of LCS in the GBLUP model and increased 
by 13.01, 6.28, and 3.39% relative to those of LCS_LD1 in 
the BayesR model at heritability levels of 0.15, 0.30, and 

Fig. 4  Heat map of genomic prediction accuracy for three real traits using SNPs after SLDP. Heat map of genomic prediction accuracy for three 
real traits using SNPs after SLDP according to the r2 (from 1 to 0.05) and P-value (from 0.0001 to 0.01) gradient in the training population. AGE, 
age to 100 kg live weight; BF, back fat thickness; TTN, total teat number. Panels a, c, and e show the results of the GBLUP model; panels b, d, 
and f show the results for the BayesR model. Each square represents a parameter combination and the accuracies are indicated with deeper 
colors corresponding to high (red) or low (blue) accuracy. Black dots mark the optimal combination of parameters for accuracy. The accuracy 
was obtained by five-fold cross-validation in the training population and defined as the Pearson correlation between GEBV and phenotypes
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0.60, respectively. The improvement in accuracy with 
SLDP was clearly greater for the GBLUP model than for 
the BayesR model. For the scenarios using the infinitesi-
mal model, SLDP_QTN showed only a 0 to 0.4% increase 
in accuracy relative to LCS in GBLUP and an increase 
of 0 to 0.8% in accuracy relative to LCS_LD1 in BayesR 
when the simulated number of QTN was 10,000. 

In practice, the information on the genomic localiza-
tion of all the real QTN cannot be accurately obtained; 
therefore, we performed SLDP based on the GWAS 
results where the parameters were optimized in the 
training population to match the real traits. For SLDP_
GWAS, the accuracy also increased compared with that 
obtained with the other marker panels for the three 
traits controlled by fewer QTN. For example, the accu-
racy of SLDP_GWAS increased by 6.93, 7.70, and 11.47% 
relative to LCS in the GBLUP model and increased by 

5.30, 2.45, and 1.23% relative to the LCS_LD1 set in the 
BayesR model at heritability levels of 0.15, 0.30, and 0.60, 
respectively. However, the accuracy of SLDP_GWAS 
was significantly lower than that of SLDP_QTN due to 
the presence of false positives and negatives obtained in 
the GWAS; that is, some noisy SNPs might have been 
detected, while some true QTN might have been missed. 
Regarding bias, both SLDP_GWAS and SLDP_QTN had 
no stable advantage for all traits.

The results of the simulated GWAS based on six sim-
ulated traits in the discovery population are shown in 
Fig.  8 and Additional file  10: Table  S5. They show that 
only a small proportion of QTN could be detected by 
GWAS, especially in the low-heritability scenarios when 
only 1000 samples were used. For example, only 22 of the 
100 QTN could be detected at a P-value threshold of 0.05 
in scenario “QTN_100_h2_0.15” (see Additional file  10: 

Fig. 5  Prediction accuracy and bias of SNP sets for real traits in GBLUP and BayesR models in the validation population. a and b 
Results of the GBLUP model. c and d results of the BayesR model. CC_50k commercial chip 50K, CC_80k commercial chip 80K, GBS 
genotyping-by-sequencing, LCS low-coverage sequencing, LCS_LD1 low-coverage sequencing set after removing completely linked disequilibrium 
SNPs, LDP linkage disequilibrium pruning and parameter (r2) optimized in the training population, SLDP selective linkage disequilibrium pruning 
and parameters (P-value and r2) optimized in the training population. The accuracy was defined as the Pearson correlation between GEBV 
and phenotypes
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Table  S5), with a 98.10% estimated false-positive rate. 
This indicates that the detection power of GWAS is lim-
ited. In addition, the improvement in accuracy obtained 
with SLDP was lower for real traits than for the simulated 
traits, possibly due to their simpler genetic architecture 
because only additive effects are considered in the simu-
lated data and the reliable prior information obtained by 
GWAS for real traits is more limited. This suggests that 
future studies in GP should integrate more clues, in addi-
tion to those obtained from GWAS.

Discussion
With the advent of next-generation sequencing technolo-
gies and the continuous reduction in sequencing costs, 
it is now feasible to apply GP using WGS data. Never-
theless, maximizing the benefits of WGS in GP remains 

challenging, especially when dealing with various com-
plex traits. In this study, we systematically evaluated the 
factors that influence prediction accuracy when using 
WGS data by examining real and simulated traits in a sin-
gle pig population and developed a methodology (SLDP) 
from the perspective of marker selection. This methodol-
ogy was then used to select SNPs from a WGS high-den-
sity marker set by GWAS prior information, which led 
to an increase in prediction accuracy for real traits with 
major QTL and for simulation traits controlled by a small 
number of QTN. Prediction accuracy improved with the 
SNPs detected after SLDP compared to that obtained 
using data from SNP chips or GBS, suggesting that the 
use of pre-selected WGS data can improve GP accuracy 
of major traits.

Fig. 6  Heat map of genomic prediction accuracy for simulated traits using SNPs after SLDP. Heat map of genomic prediction accuracy 
for simulated traits using SNPs after SLDP according to the r2 (from 1 to 0.05) and P-value (from 0.0001 to 0.01) gradient in the training population. 
The results of the GBLUP model are shown; each square represents a parameter combination and the accuracies are indicated with deeper 
colors corresponding to high (red) or low (blue) accuracy. Black dots mark the optimal combination of parameters for accuracy. The accuracy 
was obtained by five-fold cross-validation in the training population and defined as the Pearson correlation between GEBV and TBV. a QTN_100_
h2_0.15 simulated traits with 100 QTN and a heritability of 0.15, b QTN_10000_h2_0.15 simulated traits with 10,000 QTN and a heritability of 0.15, 
c QTN_100_h2_0.30 simulated traits with 100 QTN and a heritability of .030, d QTN_10000_h2_0.30 simulated traits with 10,000 QTN and a heritability 
of 0.30, e QTN_100_h2_0.60 simulated traits with 100 QTN and a heritability of 0.60, f QTN_10000_h2_0.60 simulated traits with 10,000 QTN 
and a heritability of 0.60
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The application of WGS data in GP remains conten-
tious. Meuwissen and Goddard [25] reported that using 
WGS data increased the prediction accuracy of genetic 
values by more than 40% relative to that achieved by 
using a 30  k SNP chip, according to simulated data. 
Other simulation studies have also indicated that the use 
of WGS data can increase prediction accuracy [19, 20, 
42]. Although the use of whole-genome data has ena-
bled the identification of mutations underlying complex 
traits, the impact on GP accuracy was limited [22, 24, 
43, 44]. A similar conclusion was drawn from the cur-
rent study when WGS data were initially used directly, 
although the marker density increased by several hun-
dred folds compared to the two SNP chips or the LCS 
data. The inconsistency between the results from theo-
retical and practical research can be attributed to two 
main reasons. First, van Binsbergen et  al. [26] reported 

that, at the technical level, potential genotyping errors 
in a SNP array-based imputation panel might affect 
prediction accuracy. Our previous study [28] demon-
strated that using genotypes based on LCS data, where 
more than 99% of the genotypes were consistent with 
those from the CC 80 k SNP array for common variants 
(MAF > 0.01), yielded higher prediction accuracy than 
the array-based imputation strategy [45, 46]. Therefore, 
we believe that genotyping errors may not be the main 
reason for the absence of improvement in accuracy in 
this study. Another hypothesis is that WGS data include 
many noisy sites that are useless in GP (i.e., a significant 
number of SNPs cannot capture the QTL effect), which 
may adversely affect GP [43]. To verify this hypothesis, 
we selected the top and bottom 10% of the GWAS SNPs 
in the discovery population to evaluate the accuracy 
of GP for three real traits. Our results suggest that the 

Fig. 7  Prediction accuracy and bias of SNP sets based on simulation data with the GBLUP and BayesR models. a and b Results of the GBLUP 
model. c and d Results of the BayesR model. CC_50k commercial chip 50 K, CC_80k commercial chip 80 K, GBS genotyping-by-sequencing, LCS 
low-coverage sequencing, LCS_LD1 low-coverage sequencing set after removing completely linked disequilibrium SNPs, SLDP_GWAS selective 
linkage disequilibrium pruning based on discovery GWAS prior and parameters (P-value and r2) optimized in the training population, SLDP_QTN 
selective linkage disequilibrium pruning based on real QTN. The accuracy was defined as the Pearson correlation between GEBV and TBV
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contribution of prediction accuracy varies at different 
loci throughout the genome, where SNPs in high LD with 
QTL (top SNPs) exhibit a superior predictive perfor-
mance than those with unrelated markers (bottom SNPs). 
This finding implies that although WGS data may contain 
more useful information than a SNP array, this positive 
effect is counteracted by the introduction of noisy sites in 
WGS, leading to an overall limited improvement or even 
decrease in GP. We also investigated the effect of a range 
of LD pruning parameters on the GP of different traits 
and demonstrated that the prediction accuracy could be 
improved using the LD pruning method for predictions 
of AGE and BF. In conclusion, retaining effective sites 
using pre-selected markers and eliminating noisy sites 
could improve the accuracy of GP using WGS data.

The basic LD pruning method can remove collinear 
SNPs, as high LD can cause redundancy of genomic 
information between markers. Previous findings have 
suggested that LD pruning can improve prediction accu-
racy in WGS data [40]. Considering the advantages of 
using the LD pruning strategy and introducing GWAS 
prior information for GP in terms of accuracy and com-
putational complexity, in this study, we combined these 
approaches and used a marker selection method, SLDP, 
to consider the prior information of GWAS during SNP 
filtering. Post SLDP, the marker density increased in 
the potential QTL region and the weight of this region 
increased in GP (Fig. 1). The principle is similar to that 
of other methods which integrate the GWAS prior into 
prediction models. The greatest difference with the SLDP 
method is that only SNP combinations are changed 

Fig. 8  Manhattan plot of genome-wide association analysis for six simulated traits in the discovery population. Simulated QTN and other SNPs are 
colored by red and gray points, respectively. The blue dotted line represents the P-value threshold 5 × 10–8, 10–4, 0.001, 0.01 from top to bottom. 
The number of QTN detected and the estimated false-positive rate for each P-value threshold are shown in Additional file 10: Table S5. a QTN_100_
h2_0.15 simulated traits with 100 QTN and a heritability of 0.15, b QTN_10000_h2_0.15 simulated traits with 10,000 QTN and a heritability of 0.15, 
c QTN_100_h2_0.30 simulated traits with 100 QTN and a heritability of 0.30, d QTN_10000_h2_0.30 simulated traits with 10,000 QTN and a heritability 
of 0.30, e QTN_100_h2_0.60 simulated traits with 100 QTN and a heritability of 0.60, f QTN_10000_h2_0.60 simulated traits with 10,000 QTN 
and a heritability of 0.60. The result shows the difficulty in detecting most QTN by GWAS, especially for the low-heritability trait
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without model modifications, which is more conveni-
ent in real breeding practices. Further study is needed 
to establish the benchmark of similar methods in larger 
and broader data. When selecting “important SNPs,” we 
did not use only the significant loci (after multiple test-
ing corrections) in this study as prior information for 
GWAS, since this method alone cannot confirm the 
true causative mutation. In contrast, multiple mutations 
may cumulatively contribute to a QTL, as a so-called 
local minor-effect polygene interaction [47]. In addition, 
unlike a QTL mapping study, the objective of SLDP is to 
enrich the predictive SNPs in WGS data rather than to 
define one or several causative mutations; consequently, 
SLDP has a higher tolerance for false positives than QTL 
mapping. Thus, a relatively conservative gradient P-value 
threshold, ranging from 0.0001 to 0.01, was used in our 
analyses. We used three real and six simulated traits to 
test the prediction accuracy and bias for SLDP; several 
SNP panels, including two commercial SNP chips, GBS, 
LCS, and basic LDP, were set as benchmarks. The param-
eters of SLDP were optimized in the training population 
by five fold cross-validation and then used for predic-
tion in the validation population. Prediction accuracy 
increased for BF and TTN when SLDP was used for the 
three real traits compared with the accuracy obtained 
with the other control panels.

Moreover, using SLDP, the accuracy increased to a 
greater extent for TTN than for BF, as more significant 
and major QTL exist for TTN (see Additional file 3: Fig. 
S3). In contrast, accuracy of GP slightly declined for 
AGE when SLDP was used compared to LDP, due to the 
low power of the GWAS for AGE which detected only 
a small number of significant SNPs. Although a similar 
trend was observed, BayesR seemed to perform better in 
terms of prediction accuracy compared to GBLUP for all 
real traits. We believe that the main reason for the dif-
ference in prediction performance of SLDP can be pri-
marily attributed to the substantial differences in GWAS 
results caused by variations in the genetic architecture 
of the three traits. Therefore, for further comparison, 
we performed analyses of the genetic architecture of 
the three traits. First, we estimated the heritability of all 
traits using GBLUP and BayesR Gibbs sampling, which 
showed that AGE is a complex trait with a low herit-
ability, whereas BF and TTN have a moderate heritabil-
ity. For both AGE and BF, the estimated heritability was 
higher when using the BayesR model than the GBLUP 
model, which reflects the superior accuracy of the Bayes 
model in evaluating genetic variance based on a higher 
density of markers for minor-effect polygenic traits, lead-
ing to overall higher prediction accuracy. The heritability 
estimates obtained for AGE and BF in this study are sig-
nificantly lower than those reported in previous studies 

[48, 49], since the detection power of QTL decreases due 
to a reduction in allele frequency. The comparison of the 
GWAS for the three traits showed that more significant 
SNPs were obtained for BF and TTN than for AGE. How-
ever, the identification of significant SNPs for AGE was 
challenging, TTN is mainly controlled by major-effect 
QTL (Table 3 and see Additional file 3: Fig. S3).

Furthermore, the BayesR mixed distribution model was 
used to estimate the proportion of SNPs in each distribu-
tion. The results showed that TTN had the largest num-
ber of ineffective QTL and large-effect QTL, whereas BF 
had more QTL with a non-zero-variance and the highest 
proportion of QTL in the second and third distributions 
but relatively the lowest proportion of QTL in the fourth 
distribution. These results confirm that a few major QTL 
control TTN, whereas BF and AGE are controlled by 
more small-effect QTL with major and moderate QTL 
also existing for BF.

To further explore the influence of the genetic archi-
tecture of traits on the predictive performance of SLDP, 
we simulated six traits with three heritability levels con-
trolled by 100 or 10,000 QTN. Similar to the analyses 
with real traits, we also used the discovery population 
for GWAS, the reference population for parameter opti-
mization of SLDP, and the validation population for the 
prediction test. SLDP showed a significant increase in 
prediction accuracy for the three simulated traits with a 
small number of QTN; however, SLDP exhibited little to 
no accuracy improvement under the infinitesimal simula-
tion scenarios. SLDP improved accuracy of prediction to 
a greater degree when the real positions of the QTN were 
used (SLDP_QTN) compared with GWAS prior-based 
SLDP (SLDP_GWAS) since both false positives and 
negatives exist in GWAS data (Fig. 8 and see Additional 
file 10: Table S5). SLDP had a lower bias in the three traits 
with fewer QTN but no advantage under infinitesimal 
simulation scenarios. Therefore, the results obtained for 
both the real and simulated traits showed that the per-
formance of SLDP was strongly influenced by the genetic 
architecture of the traits and that traits with major QTN 
or those that are controlled by a small number of QTN 
were more likely to show greater improvement in accu-
racy. This is consistent with our expectations and pre-
vious GWAS prior-based prediction analyses such as 
TABLUP [13], GFBLUP [50], and KAML [14] or when 
combining significant SNPs from WGS with chip data 
[22, 43]. Previous simulation studies also reached similar 
conclusions [24, 51]. Two main reasons may explain this 
phenomenon. On the one hand, it is easier to detect sig-
nificant markers in GWAS for traits that are controlled 
by major and fewer QTN, when sample size is limited, 
resulting in a larger signal-to-noise ratio of GWAS prior 
information and better prediction performance in SLDP. 
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On the other hand, traits not controlled by major QTN 
hinder the detection of significant SNPs without signifi-
cant accuracy improvement, such as the case for AGE and 
10,000 QTN simulation traits in this study. Our results of 
the simulated GWAS also showed that, in the scenarios 
with traits controlled by 100 QTN, a higher proportion of 
real QTN was detected than in the scenarios with traits 
controlled by 10,000 QTN. Moreover, improving predic-
tion accuracy by highlighting a small proportion of the 
SNPs or genome regions is difficult if the effects of the 
trait are spread across multiple variants throughout the 
genome. Otherwise, when too many markers or regions 
are weighted, the per-variant or region weight will 
decrease, which will induce a loss of accuracy. Therefore, 
we recommend the use of SLDP according to the genetic 
architecture of the traits that are relevant in breeding 
practice. It is also important to improve the reliability of 
prior information, which could increase the sample size 
of the discovery population. Our GWAS results show 
that more significant sites and higher significance levels 
were obtained with an increase in sample size. In addi-
tion, the prior information obtained only from genome 
and phenotypic associations is insufficient. The results 
of the simulation GWAS proved that the QTN detection 
power of GWAS is limited, especially for low-heritability 
traits. Genomic functional annotation or clues provided 
by multi-omics data should be used to enrich the prior 
information.

However, some limitations of this study should be 
noted. First, our study was conducted in a single pig pop-
ulation only; hence, further investigations in other lines 
or species and multi-breed populations are necessary. 
Second, the identification of the optimal SLDP param-
eter required massive computation making it impossible 
to optimize the parameters for each generation in breed-
ing practice. Therefore, the stability of these parameters 
necessitates further testing on a larger number of gen-
erations. If the parameters prove to be relatively stable 
across generations, one-time parameter optimization 
may be sufficient within a given generation. Finally, the 
performance of SLDP relies highly on the genetic archi-
tecture of the target traits, which could pose constraints 
on the application of this method in real breeding prac-
tice. We look forward to further research that explores 
and optimizes the applications of these techniques across 
diverse contexts.

Conclusions
We developed selective linkage disequilibrium pruning, 
a marker selection method, to select trait-personalized 
marker sets from tens of millions of WGS data. This 
method increases the weight of candidate QTL regions 

in prediction models by taking prior information from 
GWAS into account. Our results showed that for real 
traits controlled by major QTL and for simulation traits 
controlled by a small number of QTN, SLDP performs 
better than the common LDP or SNP chips in the GBLUP 
and BayesR models; however, for traits not controlled by 
major QTL or those controlled by a massive number of 
minor QTL, there was no significant improvement in the 
prediction accuracy of SLDP. There are still some chal-
lenges to overcome in the application of SLDP, including 
the need for a more efficient and accurate identification 
of the predictive variants in the discovery set and the 
dependency on genetic architecture. In spite of these 
challenges, our results provide a valuable foundation for 
further research and applications of WGS-based genome 
selection.
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