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Abstract 

Background  It has been challenging to implement genomic selection in multi-breed tropical beef cattle popula-
tions. If commercial (often crossbred) animals could be used in the reference population for these genomic evalu-
ations, this could allow for very large reference populations. In tropical beef systems, such animals often have 
no pedigree information. Here we investigate potential models for such data, using marker heterozygosity (to 
model heterosis) and breed composition derived from genetic markers, as covariates in the model. Models treated 
breed effects as either fixed or random, and included genomic best linear unbiased prediction (GBLUP) and BayesR. 
A tropically-adapted beef cattle dataset of 29,391 purebred, crossbred and composite commercial animals was used 
to evaluate the models.

Results  Treating breed effects as random, in an approach analogous to genetic groups allowed partitioning 
of the genetic variance into within-breed and across breed-components (even with a large number of breeds), 
and estimation of within-breed and across-breed genomic estimated breeding values (GEBV). We demonstrate 
that moderately-accurate (0.30–0.43) GEBV can be calculated using these models. Treating breed effects as ran-
dom gave more accurate GEBV than treating breed as fixed. A simple GBLUP model where no breed effects were 
fitted gave the same accuracy (and correlations of GEBV very close to 1) as a model where GEBV for within-breed 
and the GEBV for (random) across-breed effects were included. When GEBV were predicted for herds with no data 
in the reference population, BayesR resulted in the highest accuracy, with 3% accuracy improvement averaged 
across traits, especially when the validation population was less related to the reference population. Estimates of het-
erosis from our models were in line with previous estimates from beef cattle. A method for estimating the number 
of effective breed comparisons for each breed combination accumulated across contemporary groups is presented.

Conclusions  When no pedigree is available, breed composition and heterosis for inclusion in multi-breed genomic 
evaluation can be estimated from genotypes. When GEBV were predicted for herds with no data in the reference 
population, BayesR resulted in the highest accuracy.

Background
Genomic selection has accelerated genetic gains in a 
number of livestock populations, particularly those 
based on a small number of breeds and in cases where 
large existing reference populations were available [1, 2]. 
The prime example of genomic selection is in Holstein 
and Jersey dairy cattle, for which semen samples from 
many progeny-tested bulls formed the basis of reference 
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populations [3]. In other livestock populations, the 
implementation of genomic selection has proved more 
challenging, both because they consist of many differ-
ent breeds and crossbreds, and because such ready-made 
historical reference populations that are available in dairy 
populations do not exist [4, 5].

Multi-breed genomic evaluations for livestock are 
desirable as they allow producers to select sires and 
dams across breeds, crossbreds and composites, which 
increase selection intensity. The advantage of multi-breed 
evaluations for increasing accuracy of genomic predic-
tion, particularly for breeds with smaller reference set 
sizes, has been demonstrated in dairy cattle [6], sheep [4, 
7] and beef cattle [8]. Several approaches for multi-breed 
genomic predictions have been proposed (see Misztal 
et al. [9] for a comprehensive review). de Roos et al. [10] 
made an assumption that the effects of single nucleotide 
polymorphisms (SNPs) would be shared across breeds 
if they were sufficiently dense. For this to occur, the 
causative mutations that affect a trait would have to be 
the same across breeds, and for multibreed predictions, 
SNPs would have to be close enough to the mutation so 
that the linkage disequilibrium phase between SNPs and 
the causative mutation persists across breeds. As a proxy 
for SNP–causative mutation linkage disequilibrium 
phase, they investigated the extent of SNP–SNP linkage 
disequilibrium across three Bos taurus breeds. They con-
cluded that 300,000 equally-spaced SNPs would be suffi-
cient for multi-breed genomic predictions. Goddard and 
Hayes [11] extended this analysis to more breeds. They 
also concluded that 300,000 SNPs would be sufficient for 
multibreed genomic predictions in Bos taurus breeds, 
but that the associations between causative mutations 
and SNPs were unlikely to persist across Bos taurus and 
Bos indicus breeds. With the wide-spread availability of 
whole-genome sequence data (including the 1000 bull 
genomes reference set [12]), which can be used to impute 
SNP datasets to whole-genome sequence, if the assump-
tion that a causative mutation has the same effect across 
breeds is invoked, genomic prediction using these causa-
tive mutations should result in high accuracy genomic 
predictions from multi-breed evaluations. However only 
a small increase in multi-breed prediction accuracy has 
been observed using whole-genome sequence in cattle 
and sheep [13–16].

Kemper et  al. [17] suggested that a Bayesian model 
with a prior that allowed SNPs to have moderate to large 
effects (e.g. BayesB [18] or BayesR [19]) may be more 
suitable for multibreed evaluations with high-density 
markers than best linear unbiased prediction (BLUP) 
models. Their reasoning was that these models might 
ascribe larger effects to individual SNPs, with effects 
possibly persisting across breeds, in contrast to BLUP 

models that “smear” effects of causal mutations across 
many SNPs on a large chromosome segment (as a result 
of the BLUP prior which is all SNPs have small, non-zero 
effects), which may not persist across breeds. Some evi-
dence supporting this was provided from the analysis of a 
multi-breed dairy population [17].

In contrast to the models of de Roos [10] and Goddard 
and Hayes [11], a different approach for multi-breed eval-
uation is to allow for quantitative trait loci (QTL) with 
different effects, and/or different QTL segregating across 
breeds, by treating each breed as a different, but poten-
tially correlated trait [20, 21]. These estimated genetic 
correlations from this approach indicate the extent of the 
QTL and their effects, shared across breeds.

Refining this type of model to specify the location of 
QTL that are different across breeds, the breed-of-origin 
of alleles (BOA) model [22] is based on the hypotheses 
that “in crossbred populations: (1) effects of SNPs may 
be breed-specific, and (2) linkage disequilibrium may 
not be restricted to markers that are tightly linked to the 
QTL”. They proposed a model for genomic selection to 
select for commercial crossbred performance with breed-
specific effects of SNP alleles, i.e. the model with breed-
specific allele effects (BSAM), which subsequently the 
authors have termed the BOA models [23]. Accuracies 
of genomic prediction from BOA models based on cross-
bred populations have been demonstrated to be more 
accurate than those from models that do not explicitly 
model the breed-of-origin of alleles, for some but not all 
traits [24].

The above models have all been implemented and eval-
uated in Bos taurus breeds. An even greater challenge is 
the analysis of data from cattle with both Bos indicus and 
Bos taurus ancestry, as these subspecies diverged 600,000 
to 800,000  years ago [25]. Multi-subspecies populations 
are common in tropical beef production systems in Aus-
tralia, Latin America and Indonesia, and in tropical dairy 
production systems in India and Africa, e.g. [26–28]. For 
the analysis of such data, Bolormaa et al. [29] suggested 
a model that is similar to the BOA model, but at the sub-
species level. They suggested that allocating chromosome 
segments to Bos indicus or Bos taurus origin would take 
into account the fact, that given the long divergence time 
between the sub-species, the differences in allele frequen-
cies at QTL would be large, resulting in substantially dif-
ferent SNP-QTL linkage disequilibrium patterns between 
the sub-species. For multi-sub-species populations, a 
model that attempts to capture the advantages of both 
the multi-breed models proposed by de Roos et al. [10], 
Kemper et al. [17] and the BOA models is the “multi-sub-
species” model proposed by Warburton et al. [30]. In this 
BayesR model, which is inspired by the model of Bolor-
maa et al. [29], the sub-species of origin of the haplotypes 
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is assigned, but within each sub-species it is assumed that 
high-density markers are in linkage disequilibrium with 
specific causative mutations in the sub-species.

Single-step BLUP (ssBLUP) which integrates pedigree, 
genomic and phenotype information is increasingly used 
in routine genomic evaluations. The metafounders’ model 
is a multi-breed extension of ssBLUP [31]. In the usual 
implementation of ssBLUP, pedigree founders are con-
sidered as unrelated. The metafounders’ approach assigns 
pedigree founders to an ancestral population (a breed 
or a line). The ancestral populations are represented 
as a "metafounder," a pseudo-individual included as a 
founder of the pedigree and similar to an “unknown par-
ent group.” [32]. The metafounders may share a genetic 
relationship (as in the multi-trait models), which can be 
estimated from markers. It should be mentioned that 
none of the above multi-breed models have yet achieved 
high accuracies of prediction for animals of breeds that 
are not represented in the reference set, which suggests 
that more research is required in this area [9]. At present, 
the solution is to include at least some animals of all the 
target breed(s), and crossbreds, in the reference set.

Perhaps the largest multi-breed beef cattle routine 
genomic evaluations are conducted in Ireland by the Irish 
Cattle Breeding Federation (ICBF) [33]. The models in 
these evaluations fit breed proportion as a fixed effect, as 
a continuous variable (breed proportion for each animal) 
with a separate effect fitted in the models for each breed. 
Heterosis in crossbred animals was modelled from pedi-
gree contributions of different breed sires and dams [34]. 
These evaluations include millions of animals. Efficient 
single-step methods have been used to combine pedi-
gree, genomic and phenotype information for this popu-
lation [35].

In practice, there are a number of challenges to over-
come for multi-breed predictions, especially in tropical 
beef cattle where crosses of Bos indicus and Bos taurus 
cattle are common. In particular, multiple breeds must 
be measured in the same contemporary groups in order 
to disentangle contemporary group effects from breed 
effects. Using commercial data from purebred, cross-
bred and composite animals (rather than data collected 
on studs) in multi-breed evaluations is attractive in this 
regard, as the head-to-head comparison of chromosome 
segments from different breeds can be done on a large 
scale. Using commercial data in the reference set may 
also be attractive because large reference populations can 
be assembled relatively quickly, for example by collecting 
records from processing plants where carcass traits and 
intra-muscular fat are scored on every carcass or preg-
nancy test records for fertility. Commercial data are also 
recorded in the target environment for production, so 
that the genotype-by-environment interaction between 

stud and commercial environments is no longer an issue 
(e.g. [36]). However in tropical beef populations, often 
little is known about breed composition or the heterosis 
of these animals, and limited or no pedigree is available, 
so that models such as ssBLUP and metafounders cannot 
be readily applied.

Another challenge in analysing commercial animal 
data is that, particularly, in tropical environments, the 
genomes of individual animals can be composed of seg-
ments from many breeds, i.e. reflecting the need to bal-
ance productivity and adaptation, which results in the 
use and testing of many breeds in these systems over 
time. With large numbers of breeds, some of the above 
models may be computationally challenging; for exam-
ple the incidence matrices in the BOA models expand to 
SNPs × number of breeds.

Here, we propose simple models for multi-breed 
genomic prediction based on large-scale commercial data 
that overcome at least some of these problems. One of 
the models treats breeds as analogous to genetic groups 
[32], which allows partition of the genetic variance into 
within-breed and between-breed components, even if a 
large number of breeds is involved. Our method is similar 
to the ‘genomic groups’ approach described by Plieschke 
et al. [37], which is extended to account for crossbred and 
composite animals from a large number of breeds.

Methods
Animals, phenotypes and genotypes
Fifty-four collaborator beef cattle herds from across 
tropical Australia participated in data collection for the 
Northern Genomics project. The properties were located 
across Northern Australia, including South Western, 
Central, Western and Northern Queenslandand the 
Northern Territory of Australia, and the Pilbara region 
of Western Australia [38]. These regions are character-
ised by a wet season, and a dry season with little pasture 
growth. Central and South Western Queensland regions 
tend to have good to high quality pasture, while Western 
Queensland and Western Australia regions are arid with 
low rainfall (350  mm or less per year) [38]. The 29,321 
heifers enrolled included crossbred and approximately 
8000 purebred heifers from at least 14 breeds, i.e. Angus, 
Belmont Red, Brahman, Charolais, Droughtmaster, Here-
ford, Limousin, MurrayGrey, SantaGertrudis, Shorthorn, 
Wagyu, Boran, Senepol, Tuli (for genetic distances and 
diversity parameters of these breeds see [39]).

Importantly, producers in this project are committed 
to have bulls in the paddock for at least 6 weeks. Traits 
measured from 2015 to 2020 on the heifers included live 
weight, hip height and body condition score (BCS) at an 
average of 600 days, and a heifer puberty trait. The heifer 
puberty trait was cycling or not cycling by an average 
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of 600 days (heifer puberty) assessed by the presence or 
absence of corpus luteum using ovary scanning [40]. To 
maximise genetic variation, the trait is actually measured 
when an estimated (by average live weight) 50% of the 
heifers are pubertal, i.e., at 1 to 2.5 years of age. Further 
details on the phenotypes are described in Copley et al. 
[38].

All heifers were genotyped with the 35 k or 50 k Trop-
Beef SNP array by Neogen, Australasia. SNPs were 
removed if more than 10% of the genotypes were missing 
for that SNP. If an individual genotype had a GC score 
less 0.6, it was set to missing and recovered by impu-
tation. Genotypes were imputed up to 709,768 SNPs 
(bovine high-density (HD) array) using the findhap soft-
ware [41] and a panel of 4506 cattle from relevant breeds 
that were genotyped with the Bovine HD array. This 
panel of HD SNPs was obtained by removing the SNPs 
that had less than 10 copies of the minor allele in the 
imputation reference panel, and the SNPs that had more 
than 10% missing genotypes. All heifer breeds were rep-
resented by at least 50 animals that were genotyped with 
the Bovine HD array in the imputation reference set. The 
accuracy of imputation was at least 93% for all breeds/
crossbreds.

Statistical models
First, we estimated the breed proportions of each heifer 
for each of the 14 breeds known to be in the dataset using 
the 35 K array data only (Fig. 1). A separate large dataset 
consisting of 4506 purebred cattle was used to estimate 
SNP effects for breed composition. This dataset included 
at least 50 cattle from all the breeds that comprised the 

heifers’ ancestry. A genomic (G)BLUP model was fitted, 
where the phenotype was 1 if the animal was from that 
breed and 0 if not [42, 43]. The effect of each SNP for the 
proportion of each breed was then derived by back-solv-
ing for the SNP effects, treating breed as a trait [44], and 
the resulting prediction equations for each breed were 
used to estimate the breed proportions in the heifers.

To predict genomic estimated breeding values (GEBV), 
four multi-breed models were evaluated.

•	 Model 1 (BREEDFIXED) was:

where y is the vector of trait records (Clscore, live 
weight, hip height or body condition score); µ is the 
population mean, and 1n is a vector of 1s; f  is the vec-
tor of fixed effects including contemporary group, the 
herd + birth year + paddock (enclosed field) that the 
heifers were in before they were gathered together for 
trait recording (there were 148 contemporary groups, 
each group included at least 50 animals), the year of 
recording (2015, 2016, 2017, 2018, 2019, and 2020), and 
f  also included a linear covariate of the heterozygosity 
of each heifer as measured by the proportion of marker 
genotypes that were heterozygous (to capture het-
erosis effects); X is the design matrix that relates fixed 
effects to records; W is the matrix of records × num-
ber of breeds, with each element, measuring the pro-
portion of each breed in the heifers as described above 
(14 breeds); b is the vector of fixed effects for each of 
the 14 breeds; u is the vector of random genetic effects 
~ N (0,Gσ 2

g ) with G being the genomic relationship 

y = 1nµ+ Xf +Wb+ Zu + ε,

Fig. 1  Average proportion of each breed, and Bos indicus proportion, across the 54 herds. Average proportion of each breed, maximum 
and minimum average proportions for each of the herds
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matrix between all the heifers and σ 2
g  the genetic vari-

ance captured by the SNPs, with G constructed accord-
ing to method 1 of [45]; Z is the design matrix that 
relates records to animals; ε is the vector of random 
deviations ~ N (0, Iσ 2

e ) with I an animal-by-animal iden-
tity matrix and σ 2

e  is the error variance.
There were at least 50 animals in each contemporary 

group. Marker heterozygosity in the dataset ranged 
from ~ 0.25 (for a purebred) to 0.5 (for an F1 cross). 
Maximum heterosis was achieved for F1 crosses (e.g. 
when marker heterozygosity was 0.5) and minimum 
heterosis was achieved for purebreds (when marker 
heterozygosity was 0.25). Accordingly, we re-scaled the 
estimate of heterosis to be on the scale of purebred (0) 
to F1 (1). For this model, variance components were 
estimated with the genome-wide complex trait analysis 
(GCTA) tool [44], using the greml option with separate 
files for fixed effects (covar) and covariates (qcovar), 
and the heritability of the traits (in this case, the pro-
portion of phenotypic variance captured by the SNPs) 
was estimated as h2 = σ̂ 2

g /(σ̂
2
g + σ̂ 2

e ). The GEBV for this 

model were predicted as: GEBV = Wb̂+ û.

•	 Model 2 (BREEDRANDOM) was:

where effects are defined as above, and a is a vector of 
random variables (the breed effects combined into one 
value for an animal) and follows ~ N (0,Bσ 2

b ) , where 
B = WWT . A small amount (0.01) was added to the 
diagonal to aid with matrix inversion. If desired, the 
estimates of breed effects can be obtained from this 
model using the following derivation. If we assume that 
the combined across-breed breeding value, or more 
precisely the effect pertaining to a particular breed 
compisition ( a ) is a weighted sum of (the now random) 
individual breed effects ( b ), then the estimates of breed 
effects can be obtained as follows:

Noting that â = Wb̂ , multiplying both sides by 
WT results in WTâ = WTWb̂ . Then, multiply-
ing both sides by the inverse of WTW we obtain 
[
WTW

]−1
W

T
â =

[
WTW

]−1
W

T
Wb̂ , such that the 

estimates of breed effects equal b̂ =
[
WTW

]−1
W

T
â.

For this model, GEBV = â + û.

•	 Model 3 (NOBREED)

A GBLUP model was also fitted where no breed 
effects were fitted, in order to investigate if the GEBV 
from this model were the same as â + û (i.e. within- and 
across-breed estimates of the breeding values from the 

y = 1nµ+ Xf + Za + Zu + ε,

BREEDRANDOM model). The model for NOBREED 
was:

where terms are as above.
For this model GEBV = û.

•	 Model 4 (BAYESR)

Finally a BayesR model was fitted (BAYESR):

where effects are as above. S is the matrix of records by 
animal allocating genotypes to records, where the geno-
types were recorded as 0 = AA, 1 = AB, 2 = BB, and in the 
matrix S , these genotypes were centred and standardized; 
g is a vector of SNP effects. In BayesR, the variance asso-
ciated with the ith SNP is assumed to come from one of 
four distributions, either σ2i = 0 , or 10−4

σ
2
g , or 10−3

σ
2
g , or 

10−2
σ
2
g ; where σ2g is the genetic variance of the trait. This 

allows the BayesR model [19] to have a flexible SNP effect 
distribution, which is a mixture of four possible normal 
distributions, either N (0, 0) or N

(
0, 10−4

σ
2
g

)
 , or 

N (0, 10−3
σ
2
g) , or N (0, 10−2

σ
2
g) , all with a mean of 0 but 

with different variances. Note that no breed effects were 
fitted in this model.

For the BAYESR model, GEBV = Sĝ.

Validation
The accuracy of GEBV from each of the four models was 
evaluated by selecting at random 10 herds for validation, 
and then for each herd dropping the last contemporary 
group (the latest birth year of heifers for which data were 
recorded) for validation. The breed composition of these 
validation contemporary groups (in total, 3790 heifers) 
ranged from purebred Brahman to crossbreds of Bos taurus 
breeds. Genomic estimated breeding values were predicted 
for the heifers in the 10 excluded contemporary groups, 
then the GEBV were correlated with the actual phenotypes 
(adjusted for fixed effects) of the heifers within each con-
temporary group, and then averaged over the 10 groups. 
This correlation was divided by the square root of the herit-
ability of the trait to obtain the accuracy of genomic predic-
tion. Validations were also performed when the data for the 
entire herd for each of the 10 randomly chosen herds was 
removed. Genetic parameters for all the models were re-
estimated when the validation sets were removed.

We also assessed the accuracy of genomic predictions 
for heifer puberty in a completely independent data-
set, i.e. the Beef CRC groups of 894 and 1088 Brahman 

y = 1nµ+ Xf + Zu + ε,

y = 1nµ+ Xf + Sg + ε,
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and Tropical composite cattle (respectively). These cat-
tle were phenotyped for a different, but related fertility 
trait, than the one we used, which was age at first cor-
pus luteum, assessed by ultrasound scanning at six-week 
intervals [46]. Genotypes for these cattle were imputed to 
the same 709,768 SNPs used in the genomic predictions.

Ultimately for multi-breed evaluations, head-to-head 
comparisons of breeds in the same herd/environment 
are necessary. We assessed the number of head-to-head 
comparisons as 

∑n
i W

′

i
Wi , where for each of the n con-

temporary groups in the dataset, Wi is a matrix of breed 
proportions in contemporary group i , of dimensions 
equal to the number of heifers in the contemporary group 
× number of breeds. This formula sums the number of 
head-to-head comparisons made within each contem-
porary group, then for each breed-by-breed comparison 
sums across contemporary groups. Standard errors on 
breed-by-breed comparisons can also be calculated, and 
these reflect the number of head-to-head comparisons 
within contemporary groups. An example of standard 
errors is given for the Angus comparisons (see Additional 
file 1: Table S1).

Results
Breed composition of the reference population
The average proportion of each breed across herds, and 
the maximum proportion and minimum proportion of 
each breed across herds are given in Fig. 1. The error of 
the prediction of breed proportions was derived by cal-
culating the prediction for an independent dataset of ani-
mals of known breed; this error was 0.05.

Estimated heterosis and breed effects
Estimates of heterosis were similar across all models 
(Table  1) although slightly smaller for BAYESR, per-
haps because this model captures more additive vari-
ance (Table 2). Heterosis was substantial for some traits 
such as weight and heifer puberty, and was positive for all 
traits (Table 1).

Breed effects across models were similar for the breeds 
that were well represented in the dataset. However, for 
breeds such as Tuli, Wagyu and Senepol, for which only a 
few animals were available thus representing a moderate 

to small proportion of the breeds, the estimated effects 
were much smaller than for the other breeds when effects 
were treated as random, reflecting substantial shrinkage 
towards 0 (Fig.  2). The correlation between the random 
and fixed effect breed estimates was above 0.9 for all 
traits.

Genetic parameter estimates
Estimates of heritability from the genomic data were 
quite similar from all four models (Table 2) although the 
NOBREED and BAYESR models gave slightly higher esti-
mates, which might be expected as breed effects were not 
explicitly fitted in these models. The estimated heritabil-
ity was moderate for heifer puberty and body condition 
score, and higher for live weight and hip height (Table 2).

For the BREEDRANDOM model, the within-breed 
and across-breed variance were almost equal for weight, 
while almost all the variance was within-breed for body 
condition score, and split into two thirds and one third, 
respectively, for heifer puberty condition score.

Accuracies of GEBV for the validation set
The correlations between the GEBV from the differ-
ent models for each trait are in Table 3. The lowest cor-
relations were between the BREEDFIXED and BAYESR 
models. Model BREEDRANDOM and NOBREED gave 
very similar GEBV for all traits, suggesting these models 
are almost equivalent at the level of GEBV. The BREED-
FIXED model produced GEBV that were consistently 
greater in magnitude than the models treating breed 
as random, which probably reflects the fact that breed 
effects could be over-dispersed with this model.

Accuracies of GEBV in the 10 validation contempo-
rary groups were moderate, and fairly consistent across 
herds, which is reflected by the relatively small standard 
error of these accuracies (Fig. 3). BREEDRANDOM gave 
considerably higher accuracies than BREEDFIXED, for 
all traits, regardless of whether the validation was with 
all contemporary groups in the 10 validation herds com-
pletely removed from the reference set, or if only the last 
contemporary group of data was removed. BAYESR gave 
slightly higher accuracies, for all traits, when the valida-
tion was for all data for the removed 10 validation herds 

Table 1  Estimates of heterosis for tropically-adapted beef heifer traits at approximately 600 days of age from four multi-breed models

Live weight (kg) Hip height (mm) Body condition score (1–5) Heifer puberty (0 or 1)

Number of records 26,721 25,567 26,794 29,367

BREEDFIXED 47.6 ± 2.9 50.5 ± 3.8 0.30 ± 0.03 0.47 ± 0.03

BREEDRANDOM 45.4 ± 2.8 48.4 ± 3.7 0.30 ± 0.03 0.44 ± 0.03

NOBREED 47.0 ± 2.9 50.5 ± 3.7 0.30 ± 0.03 0.46 ± 0.03

BAYESR 40.6 ± 2.8 46.3 ± 4.3 0.22 ± 0.03 0.46 ± 0.05
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Fig. 2  Estimates of breed effects. Estimates of breed effects for body condition score (BCS), heifer puberty, liveweight and hip height when effects 
were treated as either fixed (BREEDFIXED model) or random (BREEDRANDOM)

Table 3  Correlations between the GEBV from the different models for four traits

Standard errors for the correlations are 0.006, using Fischer’s approximation of 1/√(n-3)

BCS = body condition score

Models compared Live weight Hip height BCS Heifer puberty

Correlation

BREEDFIXED – BREEDRANDOM 0.97 0.96 0.96 0.98

BREEDFIXED – NOBREED 0.96 0.94 0.95 0.97

BREEDFIXED – BAYESR 0.93 0.90 0.92 0.95

BREEDRANDOM – NOBREED 1.00 0.98 1.00 1.00

BREEDRANDOM – BAYESR 0.97 0.95 0.98 0.98

NOBREED – BAYESR 0.97 0.96 0.98 0.98

Regression (first model GEBV on second model GEBV)

BREEDFIXED – BREEDRANDOM 1.21 1.01 1.06 1.20

BREEDFIXED – NOBREED 1.21 1.00 1.06 1.21

BREEDFIXED – BAYESR 1.21 1.02 1.01 1.20

BREEDRANDOM – NOBREED 1.01 1.00 1.00 1.02

BREEDRANDOM – BAYESR 1.01 1.03 0.97 1.00

NOBREED – BAYESR 1.00 1.01 0.96 0.99
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but was similar to BREEDRANDOM when the valida-
tion was for the last contemporary group of data from the 
removed validation herds.

In the Beef CRC validation, the correlation between the 
GEBV for age at corpus luteum and heifer puberty was 
−  0.45 for 894 Brahmans and −  0.21 for 1088 Tropical 
composites. This negative correlation is expected, as a 
younger age at corpus luetum should be associated with 
a higher probability that the heifer has a corpus luteum at 
600 days. The stronger negative correlation in the Brah-
mans than in the Tropical composites, may reflect the 
substantial representation of Brahmans in the reference 
population.

The number of head-to-head comparisons that were 
possible from the dataset and allowed estimation of 
the breed effects, was largest for Angus versus Brah-
man (337), Brahman versus Droughtmaster (924) and 

Brahman versus Santa Gertrudis (421), but smallest for 
Wagyu and Belmont Red (Table 4).

Discussion
This study demonstrates that moderate accuracies of 
multi-breed genomic prediction can be achieved from 
large-scale commercial tropical beef reference data-
sets. Genomic heritabilities were consistent with previ-
ous estimates based on pedigree data for these traits for 
tropically-adapted beef cattle [40], as well as the heterotic 
effects [46] and breed effects [47–49].

In multi-breed commercial data, the challenges of 
unknown breed composition and level of heterosis can 
be solved using estimates of these parameters that are 
obtained directly from the genotype data, as previously 
demonstrated in both cattle and pigs [50–53], provided 
there is a reference population of purebred genotypes. 
Using crossbred data allows head-to-head comparison 

Fig. 3  Accuracies of GEBV from three prediction methods (BREEDFIXED, BREEDRANDOM and BAYESR). The validation set consisted of 10 herds, 
with all data from these 10 herds completely removed, or only the last contemporary group of data from each contemporary group removed 
from the reference set
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of chromosome segments derived from different breeds, 
which allows separation of breed effects from contempo-
rary group effects, at least to some extent (Fig. 2).

When cattle are derived from many breeds, and par-
ticularly when some of these breeds are represented by 
only a small number of individuals or only as a small pro-
portion of the genome of a limited number of animals, 
treating breeds as a random effect rather than a fixed 
effect appears to result in more accurate multi-breed 
genomic evaluations. This is likely because when breeds 
are treated as a fixed effect, the effects for breeds with 
limited representation in the dataset are over-estimated 
in magnitude, which reduces the accuracy of the multi-
breed GEBV.

The BREEDRANDOM model is attractive in that it 
results in two GEBV, a within-breed GEBV and a (single) 
across-breed GEBV, and it also partitions the genetic var-
iance into within-breed and across-breed components. 
This may be useful for comparisons with existing within-
breed evaluations, and for understanding how genetic 
variation is portioned within and between breeds. 
However, care should be taken when implementing this 
model; for example, if breeds are nested within environ-
ments, the breed effect will capture the environment 
effect as well, resulting in erroneous genomic evaluations 
(note that this will affect other models as well). The σ 2

b  in 
the BREEDRANDOM model is the variation in the pop-
ulation due to the different means for the traits for differ-
ent breeds, which in turn are a result of either different 
QTL segregating in different breeds, the same QTL seg-
regating across breeds at different frequencies, as well as 
different linkage disequilibrium patterns between SNP 
sand QTL in the different breeds. The differences across 
traits that we observed in the partitioning of the within-
breed and between-breed variances is likely to be, at least 

partly, due to different QTL segregating in the Bos indi-
cus and Bos taurus populations [29, 30].

If the allele frequencies in the base population for each 
breed were calculated, and further corrected to repre-
sent an F1 cross for each breed, σ 2

b  would then reflect the 
variance in the base population from which all breeds 
diverged [19, 54]. This would be an interesting approach 
and requires further investigation.

Fitting a separate random effect for breed, and allowing 
the genomic relationship matrix to capture breed effects 
(e.g. BREEDRANDOM and NOBREED models) resulted 
in very similar GEBV. The NOBREED model may be eas-
ier to implement as only one genomic relationship matrix 
is included in the model; however the NOBREED model 
does not partition the within- or across-breed genetic 
variance. Plieschke et al. [37] made a similar observation 
with both their genetic group model and their standard 
GBLUP, which were similar to our BREEDRANDOM and 
NOBREED models, respectively.

Genomic predictions from BAYESR were slightly more 
accurate for all traits than those from BREEDRANDOM, 
when the validation set included entire herds, but accu-
racies from the two models were very similar when the 
validation set included only the last contemporary group 
of animals from the 10 validation herds. This is likely 
because when the reference population includes data 
from the validation herds (other contemporary groups, 
except for the most recent one, from the validation herds 
were included in the reference set), there are some sub-
stantial genomic relationships between the reference 
and the validation sets (e.g. half sibs, quarter sibs), and 
GBLUP can take advantage of these for quite accurate 
prediction. When entire herds are dropped out, the rela-
tionships between the reference and validation sets are 

Table 4  Number of head-to-head breed comparisons, where each cell represents the number of genomes for a breed being 
compared to the number of genomes of the other breed

Murray Grey, Tuli, Senepol are omitted from the Table as they represent a very small proportion of the reference population

Angus Belmont Red Brahman Charolais Droughtmaster Hereford Limousin Santa 
Gertrudis

Shorthorn Wagyu

Belmont Red 7

Brahman 337 24

Charolais 20 2 153

Droughtmaster 123 15 924 44

Hereford 47 4 76 12 58

Limousin 21 3 97 13 33 13

Santa Gertrudis 111 7 421 31 208 35 27

Shorthorn 33 3 73 10 61 13 10 44

Wagyu 3 0 14 2 16 2 3 8 2

Boran 2 4 33 1 7 1 1 3 2 0
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more distant and prediction is based more on individual 
SNP effects, which favours BAYESR.

One issue with the BREEDRANDOM and NOBREED 
models described here is that as breed proportions in 
the dataset change over time (as more animals are gen-
otyped), the G matrix will be centred and scaled differ-
ently, such that variance components will be data-set 
dependent. REML updates of variance components 
will be required for each situation. This will have to be 
pointed out to the users of the GEBV. However, since no 
pedigree is used, we do not have the problem of the A 
and G matrices being on different bases, which may occur 
in a single step analysis, e.g. [9].

It is important to note that, in theory, models used to 
predict (and properly define) estimated breeding values 
in crossbred populations should allow different (addi-
tive) variances in each purebred population, as well 
as in each crossbred population [55–57]. We have not 
taken this approach here, because the size and structure 
of our dataset are unlikely to support the estimation of 
14 within-breed variances as well as variances for each 
breed × breed interactions. Nevertheless, as the dataset 
gets larger, it may be worth attempting a more precise 
partitioning of the variance to assess if higher accuracies 
of prediction could be achieved with such models.

Conclusions
In conclusion, data from crossbred and composite com-
mercial animals (with no pedigree) can be used to con-
struct reference populations for genomic prediction, 
provided the data collected are of high quality (e.g., con-
sistent measurement protocols, accurate matching of 
IDs and records). Such data could be collected on a very 
large scale, for example for carcass traits from processing 
plants, and for some fertility traits. Breed composition 
of animals can be recovered from the marker genotypes 
(provided there is a reference population of pure-bred 
animal genotypes), as marker heterozygosity which can 
be used as a proxy for heterosis. Extensive head-to-head 
comparisons of chromosome segments from different 
breeds in the same contemporary group are necessary for 
accurate multi-breed genomic evaluations, and the extent 
of these comparisons in a dataset can be determined 
from the genomic data.
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