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Abstract 

Background The ever-increasing availability of high-density genomic markers in the form of single nucleotide 
polymorphisms (SNPs) enables genomic prediction, i.e. the inference of phenotypes based solely on genomic data, 
in the field of animal and plant breeding, where it has become an important tool. However, given the limited number 
of individuals, the abundance of variables (SNPs) can reduce the accuracy of prediction models due to overfitting 
or irrelevant SNPs. Feature selection can help to reduce the number of irrelevant SNPs and increase the model perfor-
mance. In this study, we investigated an incremental feature selection approach based on ranking the SNPs accord-
ing to the results of a genome-wide association study that we combined with random forest as a prediction model, 
and we applied it on several animal and plant datasets.

Results Applying our approach to different datasets yielded a wide range of outcomes, i.e. from a substantial 
increase in prediction accuracy in a few cases to minor improvements when only a fraction of the available SNPs were 
used. Compared with models using all available SNPs, our approach was able to achieve comparable performances 
with a considerably reduced number of SNPs in several cases. Our approach showcased state-of-the-art efficiency 
and performance while having a faster computation time.

Conclusions The results of our study suggest that our incremental feature selection approach has the potential 
to improve prediction accuracy substantially. However, this gain seems to depend on the genomic data used. Even 
for datasets where the number of markers is smaller than the number of individuals, feature selection may still 
increase the performance of the genomic prediction. Our approach is implemented in R and is available at https:// 
github. com/ Felix Heinr ich/ GP_ with_ IFS/.
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Background
In the last two decades, new advances and technologies 
in the field of sequencing—commonly referred to as next-
generation sequencing—have dramatically decreased 
the cost and time necessary for genotyping an individ-
ual [1, 2]. The resulting abundance of genomic data was 
the prerequisite for genomic prediction to become an 
important tool in the field of animal and plant breeding 
[3–6]. Genomic prediction is the process of predicting 
phenotypic values based on genomic data in the form of 
genetic markers. Nowadays, these markers are typically 
biallelic single nucleotide polymorphisms (SNPs). The 
predicted phenotypes can then be used as an alternative 
to the actual phenotyping of individuals, which can be 
an expensive and time-consuming process, and, thereby, 
speed up the process of breeding programs and increase 
their efficiency [4].

Since Meuwissen et al. [7] popularized the concept of 
genomic prediction, many different algorithms have been 
developed. These include among others, linear regression 
based approaches such as best linear unbiased prediction 
(BLUP) and different Bayesian algorithms (e.g. BayesA, 
BayesB, BayesC, BayesCπ, or Bayesian ridge regression) 
as well as additional machine learning models, such as 
support vector machines, random forest or neural net-
works [8, 9]. To date, no single method has proven to be 
the universally best approach and their performances 
depend highly on the dataset being studied [9, 10]. How-
ever, Howard et al. [8] suggested the use of non-paramet-
ric models if the genetic architecture of the trait is not 
known to be strictly additive and includes non-additive 
effects such as interactions between loci. Regardless of 
the model chosen, accurate phenotype prediction gener-
ally requires a large number of genetic markers that ide-
ally cover all loci involved in the trait.

However, with the increasing availability of SNPs, 
the number of genotyped and phenotyped individu-
als has become the limiting factor for the development 
of genomic prediction models [10]. This leads to the 
so-called p ≫ n problem, where the number of features 
(p)—in this case SNPs—is much larger than the number 
of individuals (n), which can result in overfitted mod-
els with poor performance [11]. One way to solve this 
problem is to use a feature selection approach in order 
to reduce the number of SNPs in the dataset, which in 
addition would save computation time and resources 
[12–15]. Different feature selection approaches have been 
applied for genomic prediction. These range from sim-
ple filters that remove uninformative or redundant SNPs 
(e.g., using a variance threshold or linkage disequilibrium 
pruning) [16] to more complex algorithms such as Elastic 
Net, BayesA, least absolute shrinkage and selection oper-
ator (LASSO), gradient boosting machine (GBM), and 

others that are used to identify and select relevant SNPs 
[9, 12, 13, 17]. In their study on the prediction of human 
traits, Bermingham et al. [14] applied a feature selection 
approach that ranks the SNPs based on the strength of 
their association with the phenotype as determined by 
a genome-wide association study (GWAS). A similar 
approach was used by Jeong et  al. [15] for their feature 
selection program GMStool. Both studies reported that 
a GWAS-based feature selection approach may improve 
the accuracy of genomic prediction. However, it is still 
unclear under which circumstances feature selection 
results in an actual improvement compared to using all 
available SNPs. To address this, we describe an incremen-
tal feature selection approach based on GWAS, similar to 
[14, 15], in combination with random forest as a predic-
tion model and demonstrate its effectiveness by apply-
ing it on several animal and plant datasets. Our results 
suggest that the incremental feature selection approach 
may lead to a considerable improvement in prediction 
accuracy, but it depends strongly on the genotype data. 
Therefore, we have implemented our approach as an 
easy-to-use R script to enable researchers to decide for 
themselves if their dataset would benefit from incremen-
tal feature selection.

Methods
Data
We analyzed several publicly available genotype-pheno-
type datasets for animals and plants, some of which have 
already been used for genomic prediction [9, 18, 19]. In 
their benchmarking study on genomic prediction, Azodi 
et al. [9] analyzed genotypic data from six plant species, 
namely maize, rice, sorghum, soy, spruce, and switch-
grass. For each species, they provided three phenotypes. 
The datasets themselves were taken from different pub-
lications and contain SNP genotypes obtained through 
genotyping-by-sequencing as well as SNP chips. Since 
population size and number of SNPs varied considerably 
between these species, we were able to consider the effect 
of feature selection under different scenarios. However, 
for this study, we used only five of these six datasets, i.e. 
the rice dataset was excluded because the missing geno-
types were filled using the numeric genotype mean val-
ues, which made them unsuitable for our analysis (only 
968 out of 57,542 SNPs have no imputed genotypes) [20]. 
Cleveland et al. [18] published a dataset containing gen-
otypes and phenotypes for 3534 pigs, which was made 
available by the Genus company PIC. The genotypes were 
obtained using the Illumina PorcineSNP60 chip [21], 
and phenotypes were measured for five traits with her-
itability estimates ranging from 0.07 to 0.62. However, 
SNPs and phenotypes were anonymized, so what the real 
traits were, was not known. Another dataset used in this 
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study was published by Liu et al. [19] and relates to the 
egg weight of 1063 Rhode Island Red chicken. The ani-
mals were genotyped using the Affymetrix Axiom® 600K 
Chicken Genotyping Array and egg weight was meas-
ured at seven time-points up to an age of 80 weeks. Due 
to missing phenotype and genotype data, the numbers of 
individuals and SNPs in the pig and chicken datasets var-
ied depending on trait. Individuals and SNPs with miss-
ing values were removed. No further quality control was 
performed since the datasets were already filtered in their 
original publications. Table  1 gives a short overview of 
the datasets and their respective sizes.

Methodology
The incremental feature selection (IFS) approach that 
we used is analogous to the methods presented by Ber-
mingham et  al. [14] and Jeong et  al. [15]. In order to 
select an optimal number of SNPs, we first performed a 
GWAS on the training data (80% of the individuals) by 
using the PLINK software (version 1.90) [22]. Based on 
the reported p-values, we ranked the SNPs according 
to the strength of their association with the phenotype. 
With the ranking in place, we began by training a model 
using only the top-ranked SNP as input. Subsequently, 
we added new markers in a stepwise manner to the input 
dataset and trained models with those. This stepwise 
incrementation was continued until a trained model that 
used all SNPs was obtained. As the number of features 
increases, the training becomes more time-consuming. 
To speed up the process, we increased the step size after 
certain intervals (e.g. step size of 1 until 100, 5 until 500, 
10 until 1000, …).

To assess the impact of the IFS approach, we used a 
random forest (RF) algorithm for genomic prediction, 
although other methods for genomic prediction could 
also be applied. RF is a non-parametric algorithm, which 
works by averaging the prediction results of multiple 
independently trained regression trees [23]. Compared 
to other additive or linear approaches, RF has the advan-
tage of being able to capture interaction effects between 
SNPs as well as dominance effects [15, 24]. Furthermore, 
RF has proven to be a robust and highly predictive model 
for genomic prediction which can reach performances 
comparable to other classical approaches such as Bayes-
ian methods [9, 10, 15, 16, 25, 26]. We used the imple-
mentation provided in the R package ranger with default 
settings (500 trees, mtry = √p and a minimal node size 
of 5) [27]. Compared to other libraries, this is a highly 
optimized implementation that can be parallelized to 
increase speed.

Cross-validation was applied to measure the abil-
ity of the trained models to predict unobserved pheno-
types. Following Azodi et al. [9], we split the individuals 

into five separate folds, thus the training data consisted 
of 80% of the population and the model was tested on 
the remaining 20%. This fivefold cross-validation was 
repeated ten times with randomly reordered individuals. 
Previous studies have shown that only the training data 
should be used for feature selection since including the 
test data results in an inflation of the prediction accu-
racy [14, 28]. Therefore, the GWAS was repeated for each 
training dataset, separately.

Following previous studies [10, 17, 29–32], we meas-
ured the accuracy of the predictions using the coeffi-
cient of determination (R2), which can be interpreted as 
the proportion of the variance in the dependent variable 
that can be explained by the genotypes [33]. For each 

Table 1 Overview of the datasets used in our study

The last column contains the full name of the phenotype as well as its 
abbreviation that is used otherwise

Species #Individuals #SNPs Phenotypes (abbreviation)

Maize 391 244,781 Flowering time (FT)

Height (HT)

Yield (YLD)

Sorghum 451 56,299 Height (HT)

Grain moisture (MO)

Yield (YLD)

Soy 5014 4234 Height (HT)

Time to R8 developmental stage 
(R8)

Yield (YLD)

Spruce 1722 6930 Diameter at breast height (DBH)

Wood density (DE)

Height (HT)

Switchgrass 514 217,150 Anthesis date (AN)

Height (HT)

Standability (ST)

Pig 2804 33,861 Trait 1 (T1)

2715 33,861 Trait 2 (T2)

3141 33,861 Trait 3 (T3)

3152 34,468 Trait 4 (T4)

3184 34,464 Trait 5 (T5)

Chicken 1052 294,705 First egg weight (EWAFE)

1063 294,705 Egg weight at 28 weeks of age 
(EW28)

1063 294,705 Egg weight at 36 weeks of age 
(EW36)

1027 294,705 Egg weight at 56 weeks of age 
(EW56)

960 294,705 Egg weight at 66 weeks of age 
(EW66)

847 294,705 Egg weight at 72 weeks of age 
(EW72)

852 294,705 Egg weight at 80 weeks of age 
(EW80)
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repetition of the cross-validation, we calculated the R2 
value between the predicted and the observed pheno-
types for all folds. Based on these values, we reported the 
average R2 value as well as their standard error for each 
model. Although Pearson’s correlation coefficient (r) is 
the most widely used measure in genomic prediction, it 
does not necessarily mean that a high value of r reflects 
the accurate prediction of the true phenotype values. 
Furthermore, a repetition of our analysis using r as accu-
racy measure demonstrated a correlation of nearly 1 
between the two measures on the test results. Please note 
that R2 is equal to the square of r only in linear regression 
with no constraints [31].

To obtain a robust trend curve for the performance of 
the prediction model depending on the number of SNPs, 
we applied Friedman’s super smoother [34] on the R2 val-
ues. Based on these smoothed values, we determined the 
maximum R2 value to find the optimal number of SNPs.

In order to evaluate the performance of our IFS 
approach on data not included in selecting the SNPs and 
training the model, first we randomly split each dataset 
into two parts, with an 80%/20% ratio. Let Φ be the data-
set containing 80% of the data and Ψ the remaining data-
set. Subsequently, we applied the IFS approach on Φ to 
determine the optimal number of SNPs. During IFS, this 
dataset was further subdivided using the aforementioned 
cross-validation approach. Then, a random forest model 
was trained on the Φ dataset using this optimal number 
of SNPs. Finally, we employed the trained model to pre-
dict the phenotypes of the Ψ dataset and calculated the 
R2 value between predicted and true phenotypes.

We implemented our IFS approach for genomic predic-
tion as an R script that is available from https:// github. 
com/ Felix Heinr ich/ GP_ with_ IFS allowing for easy use. 
As mentioned in the previous sections, it requires the 
software PLINK to be installed as well as the R libraries 
ranger, data.table [35] and ggplot2 [36]. Genotype and 
phenotype data need to be given in the form of PLINK’s 
binary formats. Additional parameters such as the num-
ber of threads, the step sizes for feature selection, or the 
numbers of folds and repetitions for cross-validation can 
be easily modified by the user in the script.

Results
Both the increase in R2 obtained using the IFS approach 
and the baseline performance of the model trained 
using all available SNPs varied considerably between 
the different species and traits. Table  2 lists, for each 
dataset, the number of selected SNPs and the R2 value 
achieved with the Ψ data using the models trained 
only with the selected top SNPs as well as the mod-
els which were trained using all SNPs. Figures  1, 2, 3 

and Additional file 1: Fig. S1, Additional file 2: Fig. S2, 
Additional file 3: Fig. S3, and Additional file 4: Fig. S4 
show, for each species, the prediction accuracies of the 
phenotypes according to the number of SNPs used in 
the Φ data. Maize exhibited the strongest increase in R2 
due to IFS (Fig.  1), i.e. for the prediction of flowering 
time (FT), with only the top 0.18% of all SNPs (446 out 
of 244,781) ranked on association strength, the model 
reached an R2 value of 0.486, while with all available 
SNPs it achieved a value of 0.364. In the following, we 
refer to this increase in R2 value as the advantage of 
the IFS approach. For the height (HT) and yield (YLD) 
traits, the advantage was 0.034 and 0.068, respectively, 
using the 1.64% and 0.65% top SNPs, respectively. The 
application of our method on the soy dataset produced 
similarly higher prediction accuracies although the gain 
was not as impressive as for maize. For soy, the advan-
tage of IFS was between 0.003 and 0.012 when approxi-
mately the 10 to 23% top SNPs were used as input 
(Fig.  2). In contrast, for switchgrass, only the anthesis 
date (AN) and height (HT) traits showed an advan-
tage with IFS, with an advantage of 0.013 observed 
using the 35% top SNPs for AN, and an advantage of 
0.006 using the 60% top SNPs for HT (Fig. 3). Further-
more, for the standability (ST) trait, the model with all 
available SNPs reached the best performance on the 
Φ data. However, a similar level of performance could 
be achieved by using only ~ 10,000 SNPs instead of all 
217,150 SNPs. In the case of sorghum and spruce, the 
IFS approach suggested to use all SNPs for one trait 
in sorghum and for two traits in spruce (see Addi-
tional file 1: Fig. S1 and Additional file 2: Fig. S2). For 
the other traits, the models trained on the selected top 
SNPs performed similarly or slightly less well with the 
Ψ data than the model trained with all SNPs. In the 
chicken dataset, all egg weight traits showed a similar 
behavior with respect to IFS (see Additional file 3: Fig. 
S3). By using less than the 20% top SNPs, the prediction 
accuracy could be increased by up to 0.027. Of particu-
lar note in this dataset, is that the prediction accuracy 
for all traits strongly decreased when the model was 
initially trained using the up to ~ 200 top SNPs, and the 
R2 value started to increase, only after that point, until 
it reached its maximum. Among the traits included in 
the pig dataset, the IFS approach yielded an advantage 
of 0.009 for the T5 trait, while it achieved a compara-
ble or slightly less good performance than the model 
based on all SNPs for the other traits. This level of per-
formance was achieved only when between 9% and 28% 
of the SNPs were used (see Additional file  4: Fig. S4). 
However, the T1 trait, which has a reported heritability 
of only 0.07 [18], could not be predicted at all and our 

https://github.com/FelixHeinrich/GP_with_IFS
https://github.com/FelixHeinrich/GP_with_IFS
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approach wrongly suggested a model using only a single 
SNP.

Discussion
Previous studies have reported that feature selection 
for genomic prediction can reduce the number of SNPs 
required to achieve the same performance as models 
trained with all available SNPs, or even result in a greatly 
increased performance [13–15, 30, 37]. The latter is 
assumed to be the case when the number of individuals 
is much smaller than the number of features used by the 
model. In this case, reducing the number of features may 
reduce overfitting and increase the models’ ability for 
generalization [38]. However, even if only a similar per-
formance is reached with fewer SNPs, this can still lead to 
the development of new low-density SNP chips specific 
to certain traits, which can reduce the cost of genotyping 
and make genomic prediction more economically feasi-
ble in breeding programs [39]. In this paper, we present a 
feature selection approach based on incrementally adding 

SNPs that are sorted by their association strength to the 
phenotype as reported by a GWAS. This approach is an 
implementation of the methodology outlined by Ber-
mingham et al. in their study on the prediction of human 
traits [14]. While the authors proposed further alterna-
tive feature selection methods that incorporate linkage 
disequilibrium (LD) information to remove redundant 
markers, their results indicated that these modifications 
did not improve the results of feature selection [14]. Fur-
thermore, it has been shown that removing SNPs in LD 
can negatively impact prediction accuracy [40]. There-
fore, we did not include LD pruning in our method. This 
IFS approach was combined with random forest as a pre-
diction model, which has previously been shown to be a 
robust and highly predictive model for genomic predic-
tion [10, 16, 26]. Furthermore, while random forest is 
able to consider interactions between SNPs [41], in high-
dimensional data such interactions can be missed by the 
model [42, 43]. Therefore, reducing the number of SNPs 
through IFS can help in this regard.

Table 2 Prediction accuracy of phenotypes using selected SNPs compared to all SNPs on Ψ data

Number of selected SNP markers based on Φ data and prediction accuracy (measured as R2) of phenotypes on Ψ data using random forest trained on the selected SNP 
markers as well as on all SNPs. If the IFS approach selects all SNPs, the corresponding R2 value is given as –, since it would be the same value as in the last column

Species Phenotype #Selected SNPs (%) R2 (selected SNPs) R2 (all SNPs)

Maize FT 446 (0.18%) 0.486 0.364

HT 4021 (1.64%) 0.237 0.203

YLD 1601 (0.65%) 0.346 0.278

Sorghum HT 56,299 (100%) – 0.287

MO 27,001 (47.96%) 0.391 0.389

YLD 8501 (15.10%) 0.003 0.030

Soy HT 451 (10.65%) 0.213 0.201

R8 1001 (23.64%) 0.206 0.196

YLD 731 (17.27%) 0.373 0.370

Spruce DBH 6930 (100%) – 0.096

DE 2401 (34.65%) 0.141 0.142

HT 6930 (100%) – 0.143

Switchgrass AN 75,001 (34.54%) 0.767 0.754

HT 130,001 (59.87%) 0.519 0.513

ST 217,150 (100%) – 0.512

Pig T1 1 (0.003%) − 0.021 0.013

T2 9501 (28.06%) 0.190 0.192

T3 3201 (9.45%) 0.080 0.079

T4 8501 (24.66%) 0.112 0.111

T5 7001 (20.31%) 0.172 0.163

Chicken EW28 29,001 (9.84%) 0.046 0.046

EW36 41,001 (13.91%) 0.088 0.070

EW56 50,001 (16.97%) 0.091 0.079

EW66 43,001 (14.59%) 0.116 0.102

EW72 45,001 (15.27%) 0.015 − 0.012

EW80 60,001 (20.36%) 0.060 0.055

EWAFE 40,001 (13.57%) − 0.010 − 0.014
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A further advantage of the IFS approach is that it can 
be combined with most genomic prediction models. Sev-
eral studies have shown that it is the choice of prediction 
model that has the greatest impact on the accuracy of the 
predictions [16] and that the best performing method can 
vary with the dataset [9, 10]. For simplicity and because 
of the advantages already mentioned, we applied random 
forest in our study. However, in the supplied R script it 
can be easily replaced by a different model.

We applied our approach to datasets for seven animal 
and plant species, each with multiple traits, and observed 
a wide range of results (Table 2) that went from a consid-
erable improvement of the prediction accuracy of traits 
(e.g., in the maize dataset) to no improvement for several 
traits i.e. the IFS approach did not lead to a model that 
was better than that trained with all SNPs. In a few cases, 
the performance of the full model could also be achieved 
using a fraction of the SNPs. To find an optimal number 
of SNPs resulting in the best performance, we smoothed 
the R2 values and determined the maximum value among 
them. This approach works quite well if there is a peak 
in the trend curve (for example, Fig. 1 or 2). However, if 
there is no such peak and instead the trend curve strives 
to the asymptote that represents the performance of 
the full model (for example the ST trait in Fig.  3), the 

identified maximum tends to be more conservative and 
suggests to use more SNPs than what is actually nec-
essary. A manual selection might further reduce the 
number of SNPs that are required to reach the best per-
formance in such situations.

Of particular interest are the results for the chicken 
dataset. For all the traits in this dataset, the prediction 
accuracy started to decrease after about the first 30 SNPs 
and then started to increase again only after about 200 
SNPs (see Additional file  3: Fig. S3). Discarding these 
SNPs, which initially lead to lower prediction accuracy, 
could improve the final model. As an example, for egg 
weight at 36 weeks of age (EW36), for which the mini-
mum prediction accuracy was achieved using the top 236 
SNPs, we examined how the removal of these influenced 
the prediction accuracy (see Additional file  5: Fig. S5). 
We found that the new curve followed a similar trend, 
but the model that did not discard these SNPs reached 
a higher prediction accuracy. Thus, although they have a 
negative effect on the prediction accuracy when they are 
first added to the model, these SNPs still have a positive 
contribution on the final model. Therefore, we decided 
not to discard any SNPs in our approach.

The number of individuals and markers in the data-
sets under study differed strongly between the species, 

Fig. 1 Prediction accuracy of maize phenotypes.  Prediction accuracy (measured as mean R2) of maize phenotypes as a function of the number 
of SNPs used for the model (presented as logarithmic values) on the Φ data. The trend estimate, represented by the solid black curve, is obtained 
through smoothing. The maximum accuracy is indicated by the vertical green line. Mean performance of the model when trained on all SNPs 
is represented by the horizontal black line, with the shaded interval around it indicating the standard error of the mean of 10 cross-validation 
repetitions. The prediction accuracy of all three traits could be strongly increased using IFS with improvements ranging from 0.035 to 0.147
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which allowed us to consider different scenarios. The 
aforementioned p ≫ n problem suggests that feature 
selection should be more effective if the markers largely 
outnumber the individuals in the dataset [37]. However, 
this expectation is not reflected by our results. For exam-
ple, on the one hand, with the soy dataset that included 
a comparable number of individuals and markers (5014 
and 4234, respectively) we could improve the prediction 
accuracy by up to 0.012 using about 20% of the top SNPs. 
On the other hand, with the switchgrass dataset that 
included only 514 individuals and 217,150 markers, we 
could only improve the prediction accuracy for two of the 
three traits by 0.013 and 0.006, respectively. The predic-
tion accuracy of the third trait, standability, could not be 
improved, although only about 10,000 SNPs seemed to be 
necessary to achieve a similar level of performance as the 
model trained with all available SNPs. There is no detect-
able relationship between the size of the dataset and the 
effectiveness of the IFS approach. Therefore, our recom-
mendation is to always test for the effectiveness of fea-
ture selection even if the number of SNPs in the dataset 
is small. Furthermore, IFS seems to be more influenced 
by the genotype data than by the trait under study. The 
prediction accuracy curves for a specific species follow a 
similar trend across the different traits.

In their feature selection program GMStool, Jeong 
et  al. [15] applied a similar GWAS-based approach. 
However, instead of selecting a certain number of SNPs 
to be used, they selected specific SNPs that contributed 
positively to the model performance when they were 
initially added. SNPs without a positive contribution 
were not included and SNPs were added one by one 
until certain stop criteria (number of consecutive rejec-
tions or reaching target correlation) were met. To assess 
the effectiveness of our method, we compared it with 
GMStool. However, due to the greater computation 
time required for GMStool, we applied it only to the 
small datasets and to one of the larger datasets. Both 
methods were run on a dual Intel® Xeon® Gold 6138 
Processor using 60 threads. While GMStool offers mul-
tiple different genomic prediction models, we selected 
random forest, which allows a better comparison with 
our own approach, and the results are in Additional 
file  6: Table  S1. On average, the runtime of GMStool 
was four times longer than that of our script. The 
higher computational speed of our approach is most 
likely due to GMStool training more models as it uses 
a constant step size of 1. Jeong et al. [15] further used 
a different parallelization strategy (parallelizing the 
cross-validation instead of the random forest training) 

Fig. 2 Prediction accuracy of soy phenotypes.  Prediction accuracy (measured as mean R2) of soy phenotypes as a function of the number 
of SNPs used for the model (presented as logarithmic values) on the Φ data. The trend estimate, represented by the solid black curve, is obtained 
through smoothing. The maximum accuracy is indicated by the vertical green line. Mean performance of the model when trained on all SNPs 
is represented by the horizontal black line, with the shaded interval around it indicating the standard error of the mean of 10 cross-validation 
repetitions. The prediction accuracy of all three traits could be increased by up to 0.02 using IFS
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that was combined with a less efficient R package for 
random forest (randomForest [44]). For all the data-
sets examined, GMStool selected a smaller number of 
SNPs for the best model than our IFS approach. How-
ever, the performance of the resulting final models on 
the Ψ data was comparable between the two methods. 
In four of the 13 datasets analyzed, the models selected 
by GMStool achieved higher R2 values, and in eight of 
the other datasets, our method resulted in models with 
higher R2 values than GMStool. For the last dataset, 
both approaches achieved the same performance. The 
better performance of our IFS approach may be due 
to GMStool discarding the SNPs that do not improve 
the performance when they are initially added to the 
model. This can prevent the inclusion of SNPs that are, 
by themselves, not strongly associated to the phenotype 
but may be associated through interactions with other 
SNPs. With our method, we found that removing SNPs, 
which initially have a negative contribution, may lead to 
less accurate predictions (see Additional file 5: Fig. S5). 
Finally, the stop criteria may also cause GMStool to end 
its selection before all possible SNPs are tested. Com-
bined with its faster computation time, the improved 

results of our IFS method demonstrate its state-of-the-
art performance.

Conclusions
The objective of this study was to investigate the potential 
of incremental feature selection to improve the accuracy 
of genomic prediction. To this end, we have developed 
a framework for incremental feature selection based on 
ranking the SNPs according to the strength of their asso-
ciation with the phenotype as determined by a GWAS. 
In combination with random forest as prediction model, 
we applied this method to various datasets for plant and 
animal species. The results obtained ranged from sub-
stantial or minor increases in prediction accuracy to a 
reduction in the number of SNPs required to achieve the 
performance of the full model. A substantial improve-
ment could only be obtained in a few cases. Further-
more, we show that even with a small number of SNPs, 
feature selection can still improve the performance of the 
model. Therefore, we propose that genomic prediction 
programs should always test whether incremental fea-
ture selection can improve the model. Our approach has 

Fig. 3 Prediction accuracy of switchgrass phenotypes.  Prediction accuracy (measured as mean R2) of switchgrass phenotypes as a function 
of the number of SNPs used for the model (presented as logarithmic values) on the Φ data. The trend estimate, represented by the solid black curve, 
is obtained through smoothing. The maximum accuracy is indicated by the vertical green line. Mean performance of the model when trained on all 
SNPs is represented by the horizontal black line, with the shaded interval around it indicating the standard error of the mean of 10 cross-validation 
repetitions. Only for the trait of Anthesis date (AN) could the prediction accuracy be increased by 0.008
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been implemented as an R script and is freely available at 
https:// github. com/ Felix Heinr ich/ GP_ with_ IFS.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12711- 023- 00853-8.

Additional file 1: Figure S1. Prediction accuracy of sorghum phenotypes. 
Prediction accuracy (measured as mean R2) of sorghum phenotypes as a 
function of the number of SNPs used for the model (presented as logarith-
mic values) on the Φ data.

Additional file 2: Figure S2. Prediction accuracy of spruce phenotypes. 
Prediction accuracy (measured as mean R2) of spruce phenotypes as a 
function of the number of SNPs used for the model (presented as logarith-
mic values) on the Φ data.

Additional file 3: Figure S3. Prediction accuracy of chicken phenotypes. 
Prediction accuracy (measured as mean R2) of chicken phenotypes as a 
function of the number of SNPs used for the model (presented as logarith-
mic values) on the Φ data.

Additional file 4: Figure S4. Prediction accuracy of pig phenotypes. 
Prediction accuracy (measured as mean R2) of pig phenotypes as a func-
tion of the number of SNPs used for the model (presented as logarithmic 
values) on the Φ data.

Additional file 5: Figure S5. Prediction accuracy of the chicken EW36 
phenotype. Prediction accuracy (measured as mean R2) of the chicken 
EW36 phenotype as a function of the number of SNPs used for the model 
(presented as logarithmic values) with and without including the top 236 
SNPs.

Additional file 6: Table S1. Comparison of our method (IFS) and GMStool 
on several datasets. The results contain the necessary computation time 
(in minutes), the number of selected SNPs as well as the R2 value for the 
prediction of Ψ data.
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