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Abstract 

Background Commercial poultry production systems follow a pyramidal structure with a nucleus of purebred 
animals under controlled conditions at the top and crossbred animals under commercial production conditions 
at the bottom. Genetic correlations between the same phenotypes on nucleus and production animals can therefore 
be influenced by differences both in purebred-crossbred genotypes and in genotype-by-environment interactions 
across the two environments, known as macro-genetic environmental sensitivity (GES). Within each environment, 
genotype-by-environment interactions can also occur due to so-called micro-GES. Micro-GES causes heritable varia-
tion in phenotypes and decreases uniformity. In this study, genetic variances of body weight (BW) and of micro-GES 
of BW and the impacts of purebred-crossbred differences and macro-environmental differences on micro-GES of BW 
were estimated. The dataset contained three subpopulations of slow-growing broiler chickens: purebred chickens 
(PB) reared in France, and crossbred chickens reared in France (FR) under the same conditions as PB or reared in Bur-
kina Faso (BF) under local conditions. The crossbred chickens were offspring of the same dam line and had PB as their 
sire line.

Results Estimates of heritability of BW and micro-GES of BW were 0.54 (SE of 0.02) and 0.06 (0.01), 0.67 (0.03) and 0.03 
(0.01), and 0.68 (0.04) and 0.02 (0.01) for the BF, FR, and PB subpopulations, respectively. Estimates of the genetic cor-
relations for BW between the three subpopulations were moderately positive (0.37 to 0.53) and those for micro-GES 
were weakly to moderately positive (0.01 to 0.44).

Conclusions The results show that the heritability of the micro-GES of BW varies with macro-environment, which 
indicates that responses to selection are expected to differ between macro-environments. The weak to moder-
ate positive genetic correlations between subpopulations indicate that both macro-environmental differences 
and purebred-crossbred differences can cause re-ranking of sires based on their estimated breeding values 
for micro-GES of BW. Thus, the sire that produces the most variable progeny in one macro-environment may not be 
the one that produces the most variable offspring in another. Similarly, the sire that produces the most variable 
purebred progeny may not produce the most variable crossbred progeny. The results highlight the need for inves-
tigating micro-GES for all subpopulations included in the selection scheme, to ensure optimal genetic gain in all 
subpopulations.
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Background
Livestock production systems with a pyramidal structure, 
such as poultry production, rear purebred animals in a 
bio-secure breeding nucleus at the top of the pyramid, 
while the crossbred production animals are reared under 
commercial conditions.

Performance often differs between purebred and cross-
bred chickens due to differences in their genotypes, 
which can give rise to purebred-crossbred correlations 
less than 1. Duenk et al. [1] reported genetic correlations 
of 0.64 to 0.96 between sires’ estimated breeding values 
(EBV) for body weight (BW) in purebred offspring ver-
sus crossbred offspring when the purebred and crossbred 
chickens are reared under the same conditions. Genetic 
correlations less than 1 indicate that re-ranking of sires 
occurs based on EBV for BW in their purebred offspring 
versus on EBV for BW in their crossbred offspring. 
Consequently, the sire with the best purebred offspring 
performance may not produce the best performing cross-
bred offspring, and this needs to be considered during 
selection.

The difference between the environmental conditions 
at different levels of the breeding pyramid can give rise 
to genotype-by-environment interactions (G×E) due to 
differences in macro-genetic environmental sensitivity 
(GES). Macro-GES refers to genetic differences in sen-
sitivity to definable environments, termed macro-envi-
ronments [2]. Similar to purebred-crossbred correlations 
being less than 1, macro-GES can cause the genetic cor-
relation between performance in different macro-envi-
ronments to be less than 1 [3]. In poultry production, 
differences in management and biosecurity between the 
nucleus and production environments are macro-envi-
ronmental differences, which can give rise to macro-GES. 
Genetic correlations for BW of purebred chickens reared 
under commercial conditions versus bio-secure condi-
tions have been reported to range from 0.48 to 0.54 [4]. 
Similar to purebred-crossbred correlations less than 1, 
this can affect selection outcomes, as the ranking of sires’ 
EBV differs between the selection environment and the 
macro-environments where the offspring are reared.

The structure of the breeding pyramid for chickens 
implies that both macro-GES and purebred-crossbred 
differences likely influence traits. Duijvesteijn et al. [5] 
investigated this by estimating genetic correlations for 
BW of purebred versus crossbred broilers reared in 
France under the same conditions, and for these two 
subpopulations versus a subpopulation of crossbred 
broilers reared in Burkina Faso under local commer-
cial conditions. The estimate of the purebred-crossbred 
correlation was considerably higher (0.67) when pure-
bred and crossbred chickens were reared in the same 
macro-environment, (i.e., France) compared to when 

the crossbreds were reared in Burkina Faso (0.39). In 
addition, the estimate of the genetic correlation for 
crossbreds reared in France versus in Burkina Faso was 
also higher (0.63) than the purebred-crossbred cor-
relation for BW of purebred chickens reared in France 
versus crossbred chickens reared in Burkina Faso [5]. 
These results show that purebred-crossbred differences 
and macro-GES can amplify the effects of each other 
when they occur simultaneously, and datasets with spe-
cific structures are required to separate the effects of 
each on genetic correlations.

Within the macro-environment of the different tiers of 
the breeding pyramid, differences in sensitivity to indi-
vidual environments (micro-environments) can cause 
heritable variability of phenotypes [2, 6], which is known 
as micro-GES. Changing micro-GES through selection 
can alter the uniformity of production [7, 8] and reducing 
micro-GES can be beneficial for the population by reduc-
ing the sensitivity to transient environmental distur-
bances in general [9]. Furthermore, reducing micro-GES 
can be profitable for traits with an intermediate optimum 
[10] or for traits for which processing phenotypes outside 
a set range can reduce profits, such as for BW in poultry 
[9, 11]. For purebred broilers, Mulder et al. [11] reported 
heritabilities of 0.03 to 0.05 and genetic coefficients of 
variation from 0.35 to 0.57 for the variability of BW, i.e., 
the micro-GES of BW, showing that selection on micro-
GES should be possible for BW in chickens. Due to the 
influence of micro-GES on production uniformity, it is 
relevant to consider micro-GES not only within but also 
between the different tiers of the breeding pyramid.

Micro-GES of a trait can be influenced by purebred-
crossbred differences and by differences in macro-
environments. Mulder et  al. [12] reported a genetic 
correlation of micro-GES of eggshell colour of 0.70 
between purebred and crossbred chickens reared in dif-
ferent macro-environments. This shows that the sires’ 
ranking based on EBV for micro-GES of eggshell col-
our differed when based on phenotypes of purebred 
chickens reared in one macro-environment versus on 
phenotypes of crossbred progeny reared in another 
macro-environment.

The study by Mulder et  al. [12] was not designed to 
evaluate the effects of macro-environments on micro-
GES separately  from that of purebred-crossbred dif-
ferences. For chicken breeding programs, it is relevant 
to estimate the impacts of macro-environments and 
purebred-crossbred differences on micro-GES of BW 
separately and together, similar to the study of BW by 
Duijvesteijn et  al. [5]. Such a study will provide infor-
mation on differences that can be expected in ranking 
of purebred sires based on EBV for micro-GES of BW 
for purebred and crossbred offspring, with or without 
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macro-environmental differences, and shed light on 
which of the two has the largest impact on micro-GES.

The aims of this study were to (1) estimate micro-GES 
for BW in purebred and crossbred broiler chickens, (2) 
determine whether micro-GES of BW exhibit macro-GES 
when phenotypes are measured in distinct macro-envi-
ronments, and (3) determine if the genetic correlation of 
micro-GES of BW measured in purebred and crossbred 
boiler chickens is less than 1 with or without macro-envi-
ronmental differences.

Methods
Data
Live BW records were collected as part of Hendrix 
Genetics’ Sustainable Access to Poultry Parent Stock to 
Africa (SAPPSA) project [13]. In the SAPPSA project, a 
recurrent testing scheme was implemented to improve 
performance in crossbred dual-purpose chicken under 
African conditions via selection of pure line males based 
on crossbred performance. One pure line included in 
this project is the S-line of the SASSO breeding program 
used to produce slow-growing broilers and dual-purpose 
chickens as part of Hendrix Genetics [14]. The S-line is 
a red-feathered dwarf line used in the C position in the 
crossing scheme, with the aim to improve egg produc-
tion while maintaining body weight and improving body 
conformation.

The dataset contained live BW records from crossbred 
female progeny from a cross with the S-line as sire line 
and a single dam line (dam information was sparse). The 
crossbreds were hatched in France and reared in either 
Burkina Faso (BF) or France (FR). The BF subpopulation 
experienced open housing, locally supplied feed, and high 
temperatures, while the FR subpopulation experienced 
closed housing, label rouge certified feed, and milder 
temperatures. The dataset also contained purebred (PB) 
female offspring from the purebred S-line reared under 
the same conditions as the FR crossbred females but in 
a different barn. Thus, differences between the FR cross-
breds and the purebred chickens were the result of both 
macro-environmental differences and purebred-cross-
bred differences, although the latter are expected to be 
the primary cause because of the similar management 
environments. To produce the progeny, sires were mated 
to either 10 or 18 dams, depending on flock. Dam infor-
mation was not available on all of the birds. The BF were 
hatched in 2019–2022, the FR were hatched in 2019–
2021, and the PB were hatched in 2017–2021. For BF and 
FR, all birds were recorded for BW in the same year as 
they were hatched. For PB, 1554 chickens that hatched in 
2021 were recorded in 2022, while the remaining chick-
ens were recorded for BW in the same year as they were 
hatched.

Data editing
Location, year, generation, and date of recording were 
concatenated to form contemporary groups (CG), and 
phenotypes deviating by more than 3 SD (calculated 
within CG) from the phenotypic mean of their CG were 
removed. Records from sires with less than five offspring 
and CG with offspring from less than five different sires 
were excluded. Age at measurement was limited to 40 
to 55 days. For animals with repeated records meas-
ured between 40 and 55 days of age the last record was 
kept. The final dataset contained records on progeny of 
369 sires, 31 of which were represented in all three sub-
populations. Summary statistics of the final dataset are in 
Table 1.

A pedigree of the S-line sires dating three generations 
back from animals with records (containing 1474 ani-
mals) was used to construct the numerator relationship 
matrix used for analysis.

Statistical analyses
A multivariate model was fitted to estimate the variance 
components of BW and of micro-GES of BW. This model 
treated the phenotype from each subpopulation as differ-
ent traits and included a double hierarchical generalised 
linear model (DHGLM) on BW from each subpopulation.

A DHGLM consists of two interdependent parts, a mean 
part and a dispersion part, fitted as a bivariate model for 
a single measured trait. The mean part uses the measured 
phenotype as response variable, while the dispersion part 
uses a calculated phenotype based on the residuals (or 

Table 1 Summary statistics for crossbred chickens reared in 
Burkina Faso (BF) or France (FR), and purebred (PB) chickens

Subpopulation BF FR PB

Records (n) 10,734 6937 3987

Sires with recorded progeny (n) 235 149 215

Contemporary groups (n) 8 3 6

Recording years (year) 2020–22 2020–21 2018–21

Recorded progeny/sire (n)

 Mean 45.68 46.56 18.54

 Range 19–59 26–57 5–38

Records/contemporary group (n)

 Mean 1342 2312 665

 Range 15–3793 1786–3218 429–787

Sires per contemporary group (n)

 Mean 60.75 74.67 35.83

 Range 13–82 74–75 34–41

Body weight (g)

 Mean 573.0 660.4 639.6

 SD 119.6 87.9 117.4

 Range 270–1015 395–923 350–1030
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dispersion) of the measured phenotypes (see Eq. (5)) [15]. 
Thus, the multivariate model for BW and micro-GES of 
BW in the three subpopulations included six traits and 
allowed for the simultaneous estimation of all variance 
components, including covariances between subpopula-
tions. The multivariate model was fitted as a sire model, 
because dam information was too sparse to construct a full 
pedigree on all birds and DHGLM fitted on the individual 
level require repeated measures on all animals to obtain 
accurate estimates [16].

The model was:

where yj is the vector of the measured phenotypes (BW) 
for the mean part of the DHGLM for subpopulation 
j (j ∈ BF , FR,PB) , and yd j is the vector of the calculated 
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where Wj and Wdj are weights for the residual variances 
for yj and yd j , respectively, for subpopulation j , with:

where ŷd j  is the vector of predicted dispersion pheno-
types in subpopulation j and hj the vector of the diagonal 
elements of the hat-matrix of yj (ŷj = Hjyj) , also known 
as the leverage [17]. Because the weights already contain 
the reciprocal of the residual variance per observation, 
σ
2
∈j

 and σ2
∈dj

 are expected to be equal to 1. However esti-
mating these variances allows for more flexibility in the 
model [16]. The residual variances ( σ2esj and σ2esdj ) were 
then calculated as:

where nj is the number of records for subpopulation j.
The phenotypes used to estimate micro-

GES (yd j) were based on the squared residuals of yj , calcu-
lated as:

where ês2ji is the squared estimated residual of observa-
tion i for subpopulation j and hj i is the leverage of obser-
vation i for subpopulation j [15].

The multivariate model was fitted using the DMU soft-
ware package [18],with the following algorithm:

1. Initialize the model by running a univariate model on 
yBF , yFR , and  yPB with homogeneous residual vari-
ances.

2. Calculate ydBF , ydFR , and  ydPB using Eq.  (5) and 
WdBF, WdFR , and WdPB using Eq.  (2) based on ̂esBF , 
̂esFR , ̂esPB , hBF , hFR , and hPB , as estimated in step 1.

3. Run a univariate generalized linear mixed model with 
a log-link function on ydBF , ydFR , and ydPB.

4. Calculate WBF , WFR , and WPB using Eq.  (1) based 
on ŷdBF , ŷdFR , and ŷdPB , as estimated in step 3.

5. Run the multivariate model.
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6. Update the ydBF , ydFR,  ydPB , WdBF,  WdFR , WdPB , 
WBF , WFR , and WPB based on ̂esBF , ̂esFR , ̂esPB , hBF , 
hFR , hPB , ŷdBF , ŷdFR , and ŷdPB , as estimated in step 
5.

Iterate steps 5 and 6 until convergence, which is con-
sidered to occur when the difference between estimated 
(co-)variances from run t and run t − 1 is lower than 
 10−6.

Post‑analysis corrections and heritabilities
As the model was implemented as a sire model, the addi-
tive genetic sire variance (σ 2

s ) was estimated rather than 
the additive genetic variance (σ 2

a ) . The additive genetic 
sire variance is only ¼ σ 2

a  and the remaining ¾ σ 2
a  is 

included in the residual variance. For the observed phe-
notype for subpopulation j , the additive genetic was 
computed as:

and the heritability of the observed phenotype for sub-
population  j (h2j ) was calculated as:

For the dispersion part of the models, computation of the 
additive genetic variance had to consider the fact that ¾ of 
the additive genetic variance was included in the residual 
variance of the mean part of the model, thus contributing 
to the calculated dispersion phenotype, and was calculated 
for subpopulation j following Madsen et al. [19] as:

and the heritability of the dispersion of subpopulation j 
on the log-scale (h2jd ) was calculated as:

As the model used a log-link function to fit the disper-
sion, the estimated variances of the mean and dispersion 
were on different scales. Mulder et al. [11] showed how to 
convert the estimated additive genetic variance of the dis-
persion from the log-scale to the scale of measurement. 
However, the additive genetic variance of the dispersion on 
the measurement scale is typically very large compared to 
the additive genetic variance of the direct genetic effects, 
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because the dispersion part of the DHGLM estimates the 
genetic variance of the squared residuals of the observed 
phenotype. In this study, BW was measured in g and the 
calculated dispersion phenotype then had the units of g2 . 
Consequently, the unit of the additive genetic variance 
of the dispersion phenotypes on the measurement scale 
was g4 . To improve the comparison between the addi-
tive genetic variance of BW (g2)  and the additive genetic 
variance of micro-GES of BW  (g4), the additive genetic 
standard deviation on the measurement scale ( g2,), was 
reported as:

The heritability on the scale of measurement (h2
∗

d ) was 
calculated following Mulder et al. [20]:
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The genetic coefficient of variation of the disper-
sion (GCVd)  was calculated as a measure of the size of 
the possible selection response relative to the current 
residual variance [11]. The genetic coefficient of variation 
for the dispersion for subpopulation j was calculated fol-
lowing Mulder et al. [11] as:

The EBV were converted from the sire effect to the ani-
mal effect level by:

for the observed phenotypes of the model, while the EBV 
of the dispersion phenotypes (i.e., micro-GES) were cor-
rected as described in Madsen et al. [19]:

To facilitate comparison across subpopulations, EBV 
were standardised by dividing them by the genetic standard 
deviation of the trait within the subpopulation:

Results
Additive genetic variances and heritabilities
Estimates of heritability for BW were high for all sub-
populations (Table 2). Different levels of genetic variance 
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Table 2 Additive genetic variance and heritabilities (standard 
errors) in crossbred chicken reared in Burkina Faso (BF) or France 
(FR) and purebred (PB) chickens reared in France

σ 2
a  , σ 2

e  and h2 = additive genetic variance, residual variance and heritability, 
respectively, of BW. σ 2

ad
 , σ 2

ed
 and h2

d
 = additive genetic variance, residual variance 

and heritability, respectively, of micro-GES of BW on the log-scale. σ ∗
ad

 , h2
∗

d
 and 

GCVd = additive genetic SD, heritability and genetic coefficient of variation of 
micro-GES of BW on the measurement scale

Subpopulation BF FR PB

σ 2
a

2321 (271) 2637 (356) 3226 (464)

σ 2
ad

1.02 (0.28) 0.67 (0.39) 0.57 (0.41)

σ ∗
ad

1561 (111) 917 (122) 1042 (229)

σ 2
e

1942 (211) 1279 (274) 1526 (366)

σ 2
ed

1.93 (0.05) 1.87 (0.04) 1.80 (0.06)

h
2 0.54 (0.06) 0.67 (0.08) 0.68 (0.08)

h
2

d
0.32 (0.06) 0.26 (0.11) 0.23 (0.13)

h
2
∗

d
0.06 (0.01) 0.03 (0.01) 0.02 (0.01)

GCV 0.08 (0.00) 0.08 (0.01) 0.09 (0.01)

GCVd 0.80 (0.08) 0.72 (0.15) 0.68 (0.19)

Table 3 Estimates of genetic correlations between body weight (BW) and micro-genetic environmental sensitivity (GES) of BW in 
crossbred chickens reared in Burkina Faso (BF) or France (FR) and purebred (PB) chickens reared in France

Subpopulation BF FR PB

BW Micro‑GES BW Micro‑GES BW

BF Micro-GES − 0.14 (0.10)

FR BW 0.43 (0.11) 0.20 (0.15)

Micro-GES 0.11 (0.21) 0.44 (0.24) 0.65 (0.13)

PB BW 0.37 (0.11) 0.15 (0.14) 0.53 (0.12) 0.49 (0.20)

Micro-GES 0.22 (0.25) 0.27 (0.28) 0.29 (0.28) 0.01 (0.40) − 0.14 (0.21)
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were observed between the three subpopulations, with 
the BF and FR subpopulations having, respectively, 28 
and 18% less additive genetic variance than the PB sub-
population. The FR and PB subpopulations had similar 
heritabilities, while BF had 21 and 19% lower heritability 
than PB and FR, respectively.

Non-zero genetic variances of the dispersion were 
estimated for the BF and FR subpopulations. Heritabil-
ity estimates of micro-GES of BW on the log-scale were 
moderate for all three subpopulations, but for the PB 
subpopulation it was not significantly different from zero. 
On the log- and measurement scale, heritability esti-
mates for the dispersion were low but significant for all 
subpopulations.

Estimates of heritability and of the genetic coefficient 
of variation of the dispersion of BW were 1.1 to 2.5 times 
larger for the BF than for the FR and PB subpopula-
tions and at most 1.1 times larger for the FR than the PB 
subpopulation.

Genetic correlations within and across subpopulations
Three types of genetic correlations were estimated.

The first type was the genetic correlation between BW 
and micro-GES of BW within subpopulation. For these 
genetic correlations, positive estimates indicate that 
greater BW was associated with greater micro-GES. Esti-
mates of the genetic correlation between BW and micro-
GES of BW in the BF and PB subpopulations were weakly 

Fig. 1 Ranking of the standardised EBV of the five sires with the most uniform distribution of offspring among the three subpopulations. 
a–c Standardised EBV for body weight. d–f Standardised EBV of micro-genetic environmental sensitivity (GES) of body weight. a, d Comparison 
between the crossbred in Burkina Faso (BF) and France (FR). b, e Comparison between FR and the purebred (PB). c, f Comparison between BF 
and PB
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negative, while it was moderately positive for the FR sub-
population (Table 3).

The second type was the genetic correlation for BW 
or micro-GES of BW between subpopulations. These 
correlations indicate the degree of re-ranking of EBV 
across subpopulations, with estimates of 1 and − 1 
indicating no re-ranking and complete inversion of the 
ranking, respectively. All genetic correlations for BW 
between the different subpopulations were estimated 
to be moderately positive. The estimate of the genetic 
correlation for micro-GES of BW between subpopula-
tions was moderately positive between the BF and FR 
and between the BF and PB subpopulations, but low 
between the FR and PB subpopulations. The genetic 
correlation between micro-GES across subpopulations 
had large SE.

The third type was the genetic correlation between 
BW in one subpopulation and micro-GES of BW in 
another subpopulation. Estimates of these genetic cor-
relations were weakly to moderately positive with large 
SE.

Ranking of EBV across subpopulations
The EBV of the five sires with the least variation in the 
numbers of offspring across the three subpopulations are 
shown in Fig. 1.

Ranking of sires changed between subpopulations for 
both BW and micro-GES of BW. For the EBV of BW, re-
ranking was more common when the EBV were based 
on records from the BF subpopulation compared to EBV 
based on records from the PB subpopulation, with four 
out of five sires ranking differently. The sire with the 
highest EBV for BW (sire 1, black circle) was the same for 
all three subpopulations.

For the EBV of micro-GES of BW, four out of five sires 
changed rank when the EBV were based on records from 
the PB subpopulation compared to EBV based on records 
from either of the crossbred subpopulations. Sire 2 (red 
triangle) had the same rank (third) for micro-GES for all 
three subpopulations.

Discussion
Micro‑GES of BW within subpopulations
Significant micro-GES was found for BW in the current 
study, with the heritability estimates in line with those 
previously reported for micro-GES of BW in broiler 
chickens. Mulder et  al. [11] reported heritability esti-
mates on the measurement scale ranging from 0.034 to 
0.047 for the dispersion for BW for female broilers of a 
purebred dam line analysed using a two-step variability 
approach, as well as estimates of the genetic coefficient 
of variation of micro-GES ranging from 0.44 to 0.57, 

which were considerably smaller than those estimated 
in the current study. Differences in heritability estimates 
between the current study and that of Mulder et al. [11] 
are unlikely to be caused by the difference in methods. 
While DHGLM have been found to result in greater 
accuracy of the EBV for micro-GES compared to a two-
step variability model, the estimated variance compo-
nents are generally similar when the two types of models 
are applied to the same dataset [21]. This indicates that 
the observed differences in estimates of variance com-
ponents and heritabilities between the current study and 
that of Mulder et al. [11] may be largely due to differences 
in genetics and macro-environments. The records in 
the study by Mulder et  al. [11] were obtained on chick-
ens reared in both floor housing and cage housing, while 
the chickens in the current study were all reared in floor 
housing. Furthermore, while both studies used data 
provided by Hendrix Genetics, the birds were reared at 
different facilities with different management. Thus, it 
is possible that macro-environmental differences can 
explain some of the differences between the two studies, 
since it is shown here that micro-GES of BW depends 
on the macro-environment. However, it is still likely that 
differences in genetics contribute substantially to the dif-
ferences in micro-GES of BW between the current study 
and that of Mulder et al. [11]. The S-line in the SAPPSA 
project is a slow-growing broiler line and PB had an aver-
age BW of 640 g (SD 117, Table 1) at 40–55 days of age. 
The female offspring of the dam line analysed by Mulder 
et al. [11] had an average BW of 2048 g (SD 217) at 43–53 
days of age, which indicates that it was a faster growing 
broiler chicken line than the S-line. Estimates of the her-
itability of BW were also considerably different between 
the current study and that of Mulder et al. [11], suggest-
ing that BW is a line-specific trait. It is therefore reasona-
ble to expect micro-GES of BW to be line-specific as well.

Micro‑GES of BW across subpopulations
The results presented here show that sensitivity to micro-
environments can be impacted by both macro-environ-
mental and purebred-crossbred differences. There were 
considerable differences in estimates of both heritability 
and of the genetic coefficient of variation of micro-GES 
between BF and the other two subpopulations, with 
larger variances and higher heritabilities of micro-GES 
for BW in the BF subpopulation. The differences in her-
itability and variance estimates between the BF and PB 
subpopulations could be the result of both macro-envi-
ronmental and purebred-crossbred differences. How-
ever, as the differences were generally larger between 
the BF and FR than between the FR and PB subpopula-
tions, it is possible that macro-environmental differences 
were the primary cause of the observed differences in 
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heritability and variances of micro-GES. Estimates of the 
heritability of micro-GES of BW in the FR and PB sub-
populations were similar, further supporting the hypoth-
esis that macro-environmental differences had a greater 
impact on micro-GES than purebred-crossbred differ-
ences. In a previous study on micro-GES of eggshell 
colour, minor differences in heritabilities of micro-GES 
were found between single-caged purebred chickens and 
family-caged crossbred chickens [12]. The minor differ-
ences in estimates of heritability of micro-GES of egg-
shell colour observed by Mulder et  al. [12] were caused 
by both purebred-crossbred differences and macro-
environmental differences due to the use of individual 
cages for the purebred chickens and family cages for 
the crossbred chickens. This suggests that the combina-
tion of purebred-crossbred differences and minor differ-
ences in housing does not cause substantial differences in 
scale of micro-GES in chicken. Thus, the scale differences 
observed in the current study are likely caused primar-
ily by the large macro-environmental differences between 
countries.

Estimates of the genetic correlations for micro-GES 
of BW between the different subpopulations were low 
to moderate, suggesting that re-ranking of sires based 
on their EBV for micro-GES of BW across the subpop-
ulations were expected, as shown in Fig. 1d–f. The esti-
mated genetic correlation reported here were lower than 
the estimate of 0.70 (SE 0.19) reported by Mulder et  al. 
[12] between eggshell colour in purebred laying hens 
reared in individual cages and crossbreds reared in fam-
ily cages. In the current study, the macro-environmental 
differences were a combination of different management 
strategies and different climates between the facilities 
in Burkina Faso and France. Thus, the difference in esti-
mates of genetic correlations between the current study 
and the study by Mulder et al. [12] could be due to larger 
differences between macro-environments in the current 
study. Alternatively, micro-GES of BW could be more 
responsive to purebred-crossbred and/or macro-envi-
ronmental differences than micro-GES of eggshell colour. 
Both macro-environmental differences and purebred-
crossbred differences, individually and combined, caused 
the re-ranking of EBV for micro-GES of BW observed in 
Fig.  1d–f, as shown by the moderately positive genetic 
correlation estimates between all subpopulations. 
The lowest genetic correlation estimate was observed 
between the BF and PB subpopulations, which indicates 
that purebred-crossbred and macro-environmental dif-
ferences can amplify each other, thus causing more re-
ranking of EBV than each effect individually.

While re-ranking based on EBV is expected to occur 
across all subpopulations, the genetic correlation esti-
mates for micro-GES between different subpopulations 

were associated with relatively large SE (SE > 0.2), which 
means that the expected amount of re-ranking of EBV is 
uncertain. Mulder et al. [12] also reported relatively large 
SE for the estimate of the genetic correlation for micro-
GES of eggshell colour between purebred and crossbred 
laying hens. Both the estimate and the SE of the esti-
mate of the genetic correlations, and the accuracy of that 
estimate, for the same trait in different subpopulations 
depends on the genetic connectivity between the sub-
populations, among other factors. In the current study, 
66 sires had offspring in both the BF and FR subpopula-
tions, 65 sires had offspring in both the PB and FR sub-
populations, and 103 had offspring in both the BF and 
PB subpopulations. In the study by Mulder et al. [12], 71 
sires had records for both purebred and crossbred lay-
ing hens. It is likely that the number of shared sires that 
are needed to obtain accurate estimates of genetic cor-
relations for micro-GES between different subpopula-
tions has to be larger. In a simulation study, Madsen 
et al. [22] estimated genetic correlations between a trait 
and the dispersion of another trait and reported SE of 
approximately 0.01 when the number of shared sires 
between the two traits was 200 (each sire had 100 off-
spring with a record for each trait). They did not examine 
the genetic correlation between micro-GES for different 
traits. Nevertheless, based on this, it is possible that the 
SE of genetic correlation estimates may be reduced as 
more records are collected in the SAPPSA project. Con-
sequently, in the future, it may be possible to assess the 
amount of re-ranking of EBV more accurately.

Opportunities for selection on micro‑GES
A recurrent question regarding micro-GES is how much 
selection response is possible. To address this, Formoso-
Rafferty et  al. [7] conducted a selection experiment in 
which divergent lines of mice with high or low micro-
GES of birth weight were successfully established. The 
population of mice had an initial heritability of disper-
sion of 0.008 and an initial genetic coefficient of variation 
of micro-GES of 0.22, respectively [7], both lower than 
observed in this study. However, the estimated variance 
of dispersion was only significantly different from zero 
for the BF and FR subpopulations. Thus, there is rea-
son to believe that increasing uniformity of BW through 
selection could be obtained in the BF and FR subpopula-
tions but not in the PB subpopulation.

It is important to note that selection experiments 
investigating micro-GES generally establish divergent 
lines through single-trait selection on micro-GES. Sin-
gle-trait selection is not commonly practised in most 
breeding schemes. Instead, breeding animals are gener-
ally selected using selection indices for which traits are 
assigned weights depending on their relative importance 
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for the breeding program. In a simulation study, Mulder 
et  al. [10] showed that simultaneous improvement of 
the mean and micro-GES of a trait using index selection 
with a weight of 1 for the trait and − 1 for micro-GES of 
the trait in a sib testing scheme requires a heritability of 
dispersion of at least 0.02. Mulder et al. [10] also found 
that the selection differential for micro-GES decreased 
from − 0.118 to − 0.001 when the ratio between the addi-
tive genetic variance of micro-GES on the log-scale and 
the direct additive genetic variance of the trait decreased 
from 1 to 0.02. Our estimate of the heritability of disper-
sion was significantly higher than 0.02 in the BF and FR 
subpopulations, while the ratio of the additive genetic 
variance of micro-GES of BW to additive genetic vari-
ance of BW was estimated to be ≤ 0.0004. Based on these 
results, it is therefore uncertain that index selection on 
BW and micro-GES of BW would result in significant 
improvement in micro-GES of BW in the BF and FR 
subpopulations.

Impacts of full‑sibs on sire DHGLMs
The multi-trait DHGLM used to analyse BW and micro-
GES of BW in the current study was implemented on a 
sire level, in part, because BW was not repeatedly meas-
ured on all birds and repeated records are necessary 
for accurate estimation of micro-GES using a DHGLM 
on the animal level [16], but also because no dam pedi-
gree was available. The use of a sire model could have 
impacted the results because sire models assume that 
offspring are half-sibs, i.e., they have a genetic relation-
ship of 0.25, and therefore that all genetic resemblance 
with a sire progeny group is due to the sire. Under this 
assumption, the estimated additive genetic sire vari-
ance is then ¼ of the additive genetic variance [3]. The 
assumption that all genetic resemblance between a sire’s 
progeny is due to the sire does not hold in datasets that 
include a mix of full- and half-sibs, because in such data 
the genetic relationships among a sire’s progeny group 
deviates from 0.25. To assess the impact of having a mix 
of full- and half-sibs, we conducted an additional small 
simulation study (see Additional file 1—simulation study 
with Tables S1 and S2) that showed that the sire variance 
of both the mean value of the trait and of micro-GES 
was overestimated when data contained both full- and 
half-sibs, but that it was accurately estimated when data 
contained only half-sibs. The estimate of the additive 
genetic variance of the mean on the animal level was less 
biased when the relationship within sire progeny groups 
was used in the conversion from sire-level to animal-
level variances instead of the assumed 0.25 relationship, 
although this did not completely remove the bias of the 
estimated sire variance of micro-GES. It is not possible 

to say how much the estimates of the additive genetic 
variances in the real data are biased, since we could not 
calculate the actual relationship among the progeny of 
each sire from the available data. Thus, the estimates pre-
sented here remain the best estimates available.

Conclusions
This study examined micro-GES of BW in three sub-
populations of chicken. One subpopulation consisted of 
purebred females of a slow-growing broiler line reared 
in France. Two subpopulations consisted of crossbred 
female chicken with the same slow-growing broiler as 
sire line, reared either in France or Burkina Faso. The 
results show that micro-GES existed in the crossbred 
chicken reared in Burkina Faso with low heritabilities 
and high genetic coefficients of variation. Based on these 
results, it should be possible to increase the uniformity 
of BW in the examined subpopulations by selecting for 
reduced micro-GES in the purebred line used as sire line 
for the crossbred subpopulations. The results also show 
that micro-GES of BW exhibited both heterogeneity 
of variances and re-ranking of EBV due to macro-envi-
ronmental differences and due to purebred-crossbred 
interactions. These findings highlight the need for inves-
tigating micro-GES in all subpopulations included in a 
selection program.
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