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Abstract 

Background Cohorts of individuals that have been genotyped and phenotyped for genomic selection programs 
offer the opportunity to better understand genetic variation associated with complex traits. Here, we performed 
an association study for traits related to body size and muscular development in intensively selected beef cattle. We 
leveraged multiple trait information to refine and interpret the significant associations.

Results After a multiple‑step genotype imputation to the sequence‑level for 14,762 Belgian Blue beef (BBB) cows, 
we performed a genome‑wide association study (GWAS) for 11 traits related to muscular development and body size. 
The 37 identified genome‑wide significant quantitative trait loci (QTL) could be condensed in 11 unique QTL regions 
based on their position. Evidence for pleiotropic effects was found in most of these regions (e.g., correlated associa‑
tion signals, overlap between credible sets (CS) of candidate variants). Thus, we applied a multiple‑trait approach 
to combine information from different traits to refine the CS. In several QTL regions, we identified strong candidate 
genes known to be related to growth and height in other species such as LCORL-NCAPG or CCND2. For some of these 
genes, relevant candidate variants were identified in the CS, including three new missense variants in EZH2, PAPPA2 
and ADAM12, possibly two additional coding variants in LCORL, and candidate regulatory variants linked to CCND2 
and ARMC12. Strikingly, four other QTL regions associated with dimension or muscular development traits were 
related to five (recessive) deleterious coding variants previously identified.

Conclusions Our study further supports that a set of common genes controls body size across mammalian spe‑
cies. In particular, we added new genes to the list of those associated with height in both humans and cattle. We 
also identified new strong candidate causal variants in some of these genes, strengthening the evidence of their 
causality. Several breed‑specific recessive deleterious variants were identified in our QTL regions, probably as a result 
of the extreme selection for muscular development in BBB cattle.
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Background
Reference populations that are built to implement 
genomic selection [1] in livestock species are valuable 
resources to understand the genetic basis for variation 
in complex traits. The size of these cohorts of genotyped 
and phenotyped individuals is increasing over the years, 
while genomic selection is applied to more and more live-
stock species and breeds, e.g. [2, 3]. Although data collec-
tion focuses mainly on traits of agronomic importance, 
these phenotypes might also help to study complex traits 
of interest for other applications. For instance, these pop-
ulations can be used to study traits related to health such 
as fertility (in particular, in the context of artificial repro-
ductive technologies that are massively used in livestock), 
or to fundamental biological processes such as meiotic 
recombination, e.g. [4, 5]. Traits recorded in multiple 
species allow to understand to what extent the genetic 
architecture of complex traits is conserved across species 
or how it evolves, e.g. [6]. A typical example would be the 
study of stature in mammals, where results obtained in 
humans, dog, cattle and horse have already been com-
pared, revealing that genome-wide association signals are 
enriched in genes associated in other species, e.g. [6–8]. 
Indeed, association studies and scans for signatures of 
selection identified genes associated with height in mul-
tiple species such as IGF1, PLAG1 or LCORL-NACPG 
[7, 9–13]. Similarly, variations in the myostatin (MSTN) 
gene that affect muscular development have been identi-
fied in several species including cattle, sheep, dog, horse, 
pig and humans [11, 12, 14–16]. Interestingly, livestock 
provides information on these complex traits in popula-
tions under intensive selection and with reduced effective 
population size.

The Belgian Blue beef (BBB) cattle breed represents 
an example of a breed intensively selected for muscular 
development. As a result, a loss-of-function mutation in 
the MSTN gene causing the double muscling phenotype 
[14] has been fixed through selection [14, 17]. However, 
additional genetic variation for muscular development is 
still available within the breed and has been exploited to 
further increase this trait [17]. In addition, several reces-
sive deleterious variants under balancing selection were 
segregating in the population at high frequency before 
the implementation of genetic tests, including a 2-bp 
deletion in the open reading frame of the MRC2 gene [18] 
and a splice-site variant in the RNF11 gene [19]. For these 
loss-of-function (LoF) variants, heterozygote advan-
tage resulted from the favorable effect of these alleles on 
selected traits such as muscular development or stature. 
Similarly, an R844Q missense variant in the WWP1 gene 
presented evidence for both a recessive deleterious effect 
and a favorable effect on muscular development [20]. 
Indeed, significantly fewer homozygotes than expected 

were observed in the population in spite of a relatively 
high frequency, indicating selection against homozy-
gotes and a recessive effect. In the last years, a genomic 
selection program has been implemented in BBB cattle, 
with the genotyping of individuals having started in 2016 
[21]. The reference population is phenotyped mainly for a 
set of linear classification traits, related to body size and 
muscular development, that are routinely recorded on 
adult females [21]. This population represents an exam-
ple of a cattle breed that is intensively selected for mus-
cular development, and for body size to a lesser extent.

Genome-wide association studies (GWAS) are one of 
the main tools to decipher the architecture of complex 
traits. Genomic selection reference populations (consist-
ing in individuals with both genotypes and phenotypes) 
offer the opportunity to apply such scans in livestock spe-
cies, but the marker density is often too low to capture 
well all causal variants and to perform the fine-mapping. 
Therefore, genotype imputation to the sequence level 
thanks to a reference panel of sequenced individuals [22, 
23] is a recommended practice. Such sequence-based 
GWAS have already been successfully implemented in 
cattle [8, 24–26]. In addition to sequence-based level 
approaches, multiple traits association methods [27, 28] 
might be useful to improve the fine-mapping resolution 
since subsets of recorded traits are often genetically cor-
related and affected by shared pleiotropic variants.

In this study, we performed such a sequence-based 
GWAS in BBB cattle for linear classification traits related 
to body size and muscular development. Multiple-traits 
information was leveraged to refine the set of candidate 
variants and to interpret the relation between associa-
tions for different quantitative trait loci (QTL) mapping 
to the same genomic region. For several of the identi-
fied QTL, we found genes that are associated to stature 
in other species among the candidate genes, providing 
further support for the presence of common genes reg-
ulating body size in mammals. For several of them, we 
identified coding variants as strong candidates that give 
stronger evidence of the causality of these genes. Besides 
these QTL, others were associated to five (recessive) del-
eterious variants that have favorable effects in the hete-
rozygous state on traits related to muscular development.

Methods
The analytical framework applied in our study, including 
the main steps described below, is summarized in Addi-
tional file 1: Fig. S1.

Data
The “mapping population” of our study consisted in a set 
of 14,762 cows having both genotypes and phenotypes. 
These cows were genotyped on six different versions of 



Page 3 of 17Gualdrón Duarte et al. Genetics Selection Evolution           (2023) 55:83  

Illumina BovineLD Genotyping BeadChips used by the 
EuroGenomics consortium [from 9983 to 20,502 single 
nucleotide polymorphisms (SNPs)], on EuroG MD Geno-
typing arrays (three versions with 51,809 to 57,979 SNPs), 
or on the Illumina BovineSNP50 DNA Analysis Bead-
Chips (two versions, with 54,001 and 54,609 SNPs). Lin-
ear classification scores (assessed visually by a technician) 
for 10 traits including length, pelvis length, height, chest 
width, pelvis width, rib shape, rump, top muscling, shoul-
der muscling and buttock muscling (side and rear view) 
were available for 14,476 cows. In addition, height was 
measured at withers for 12,904 cows. These phenotypes 
were first pre-corrected for age effects with a quadratic 
regression and then corrected for the fixed effects from 
the genetic evaluation including a contemporary group 
effect (defined as a herd by date effect) and a correction 
for body condition score. Details on the phenotypes and 
the genetic evaluation are available on the website from 
the herd-book [29] and from the Walloon breeders asso-
ciation [30], and descriptive statistics are provided in 
Additional file  2: Table  S1. In addition to the mapping 
population, other individuals were available as reference 
panel for genotype imputation. First, a set of 717 artificial 
insemination (AI) bulls was genotyped on the BovineHD 
DNA Analysis Kit. Among these, 658 were also geno-
typed on the Illumina BovineLD genotyping array. In 
addition, 199 animals, including 66 AI bulls, were geno-
typed on both Illumina BovineLD and BovineSNP50 gen-
otyping arrays. Next, 9502 individuals without phenotype 
were genotyped on EuroG MD genotyping arrays. The 
number of individuals genotyped on the different arrays 
is described in Additional file 2: Table S2. Finally, whole-
genome sequence data were available for 230 bulls at an 
average coverage depth of 35×, ranging from 11× to 68×.

Read mapping and variant calling procedure
The sequencing data came from two distinct experi-
ments. For a first group of 50 bulls previously described 
in Charlier et  al. [20], DNA was extracted from sperm 
using standard procedures. PCR-free libraries were 
sequenced at the CNAG in Barcelona on an Illumina 
HiSeq 2000 with a paired-end protocol (2 × 100  bp), 
each sample being sequenced on multiple lanes. For the 
180 remaining bulls, DNA was extracted from blood or 
sperm and paired-end sequencing (2 × 150  bp) was per-
formed on an Illumina NovaSeq 6000 sequencer. Reads 
were aligned to the ARS-UCD1.2 (BosTau9) bovine 
genome assembly [31] with the BWA-MEM v0.7.5a soft-
ware [32], sorted with Sambamba v0.6.6 [33] and PCR 
duplicates were marked with Picard Tools v2.7.1 [34]. 
BAM files were recalibrated using the GATK4 v4.1.7.0 
software [31], using a list of 110,270,194 known variants 
provided as a resource by the 1000 Bull Genomes project 

[35, 36], and including variants from the run 7 of the pro-
ject, as known polymorphic sites. Recalibrated BAM files 
from samples sequenced on different lanes at the CNAG 
were then merged per bull. Individual variant calling 
was performed with HaplotypeCaller (GATK4 v4.1.7.0) 
and the joint genotyping of all the genomic variant call 
format (GVCF) files was subsequently done with Geno-
typeGVCFs (GATK4 v4.1.7.0) in 5-Mb windows. Qual-
ity scores from the resulting VCF were then recalibrated 
using the variant quality score recalibration (VQSR) pro-
cedure with the VariantRecalibrator command (GATK4 
v4.1.7.0) as recommended by the Broad Institute [37]. A 
set of 1,213,314 SNPs from all bovine commercial geno-
typing arrays available on the SNPchiMp v.3 server [38] 
was used as truth set, and the ~ 110  M SNPs provided 
by the 1000 Bull Genome (see above) project as known 
set. This procedure defines quality thresholds that would 
result in the conservation of different fractions of the 
truth set (e.g., 90, 95, 97.5%). Variants with a quality score 
below the 97.5 threshold, with a minor allele frequency 
(MAF) < 0.01, and multi-allelic sites were filtered out, 
resulting in a set of 12,830,339 SNPs and 2,502,613 indels.

Marker selection and genotype imputation
Genotype imputation from low marker density (LMD) 
to the sequence level was performed in successive steps 
[39], using medium marker density (MMD) and high 
marker density (HMD) levels as intermediate steps. The 
LMD level consisted in all cows from the mapping popu-
lations genotyped on Illumina BovineLD arrays (11,521 
cows). The reference population at the MMD level con-
sisted in (i) cows from the mapping population and other 
individuals genotyped on EuroG MD arrays (12,475 ani-
mals) or genotyped on both Illumina BovineLD and Illu-
mina Bovine50SNP arrays (467 individuals) and (ii) AI 
bulls genotyped simultaneously on Illumina BovineLD 
and Illumina BovineHD arrays (658 bulls). At the HMD 
level, the sequenced bulls or those genotyped on the Illu-
mina BovineHD arrays defined the reference population, 
corresponding to 890 unique individuals. At each level, 
we selected markers that were common to all involved 
panels (for individuals genotyped on two arrays, selected 
markers had to be present on at least one of them) and 
that were useful for the imputation procedure (shared 
either with the previous or with the next level). We fil-
tered out markers with a call rate lower than 0.95, with 
a MAF lower than 0.01, deviating from Hardy–Weinberg 
proportions (p < 0.001) or with more than 10 Mendelian 
inconsistencies (e.g., opposite homozygous genotypes 
in parent/offspring pairs), and individuals with a geno-
typing rate lower than 90%. As a result, we selected 
respectively 7525, 32,318 and 611,322 SNPs at the LMD, 
MMD and HMD levels. Beagle 4.1 [40] was first applied 
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to the whole-genome sequence (WGS) and HMD refer-
ence panels to improve genotype calls and impute spo-
radically missing genotypes. Target and reference panels 
were phased with ShapeIT4.2 [41] and Minimac4 [42] 
was applied to achieve the imputation in the target panel. 
After each intermediary imputation step, we discarded 
SNPs with a MAF < 0.02 in the imputed set, and those 
with a reported imputation accuracy lower than 0.80 (the 
imputation accuracy obtained from Minimac4). In addi-
tion, we removed SNPs not useful for the next imputation 
step (for instance, SNP shared between LMD and MMD 
arrays but absent from the HMD array; these are useful 
for the first imputation step but no longer in the sec-
ond step). As a result, we conserved 28,893 and 572,667 
SNPs at the MMD and HMD level for imputation to the 
next level. These additional cleaning steps were applied 
to keep only SNPs that were expected to be accurately 
imputed. After the last imputation step, the final VCF file 
contained 11,537,240 SNPs and indels with a MAF > 0.01.

Genome‑wide association study
Single-trait GWAS (ST-GWAS) were performed on each 
trait using the following linear mixed model (LMM) 
approach with GEMMA [43] to test the association with 
marker i:

where y is the vector of trait deviations, µ is the overall 
mean effect, g is a vector containing the random addi-
tive polygenic effects of the corresponding cows, βi is the 
additive effect of the tested SNP, xi is a vector containing 
the allele dosage for the corresponding cows at marker 
i , e is a vector of random error terms and Z is an inci-
dence matrix indicating which animal is associated with 
the phenotype. The covariance structure among the ran-
dom polygenic effects g is a function of the genomic rela-
tionship matrix G obtained from the 28,893 SNPs from 
the MMD level and constructed using the first method 
proposed by VanRaden [44]. The number of independ-
ent tests per genome-scan was estimated with the proce-
dure described in Druet et al. [17]. Briefly, we performed 
a genome-scan for association with height using a sim-
ple regression, providing us a distribution of uncorrected 
p-values. Then, we repeated genome-scans on 100,000 
random permutations of the phenotypes and recorded 
the best p-value for each scan, providing the distribution 
of the best p-values under H0 that allowed us to obtain 
corrected p-values for the first scan. Finally, the num-
ber of independent tests was estimated to be equal to 
500,900 (rounded to 500,000) based on the comparison 
of the uncorrected and corrected p-values and using the 
Sidak formula. As we repeated the association study for 
11 traits, we also estimated the number of independent 

y = 1µ+ Zg + xiβi + e,

traits using the meff function (method = Galwey) from 
the poolR R package [45] and obtained a value of 7. As 
a result, we set the significance threshold to 1.43e−8 
(−  log10P > 7.84) after applying a Bonferroni correction 
for 3,500,000 independent tests. In regions where a sig-
nificant QTL was detected, we also considered that other 
traits with significance levels below 1e−7 (−  log10P > 7) 
presented evidence for association with a QTL in the 
region.

The set of candidate causal variants, referred to as cred-
ible sets (CS), were defined with two approaches. First, an 
iterative Bayesian step-wise selection (IBSS) approach 
implemented in SuSiE [46, 47], relying on summary sta-
tistics obtained from the ST-GWAS and on the linkage 
disequilibrium (LD) pattern among SNPs, was applied to 
identify a CS of SNPs with a probability higher than 0.95 
of containing the causal variable (based on the individual 
posterior inclusion probabilities (PIP) from each SNP). 
This probability does not take into account the possibil-
ity that a causal variant is not included in the study (e.g., 
structural variants contributing to complex traits or vari-
ants excluded during the filtering process), or that some 
genotypes were incorrectly imputed. Note that the IBSS 
approach also provides multiple CS when several inde-
pendent effects are detected in the QTL region. In addi-
tion, LD-based CS were obtained by selecting all the 
SNPs in high LD with the lead variants (with the minimal 
LD level r² set to 0.90 or 0.80).

Comparison of associations across traits and multiple‑trait 
association studies
For each trait, we identified genome-wide significant 
associations and considered other significant associations 
within 1-Mb as part of the same QTL region (QTLR). 
When significant SNPs were identified for different traits 
less than 1 Mb apart, the QTLR were considered as a sin-
gle QTLR. To investigate whether associations for differ-
ent traits in the same QTLR resulted from a pleiotropic 
QTL or from closely linked QTL, we compared the SNP 
significance levels obtained for pairs of traits. To that end, 
we selected all the SNPs located within 1 Mb around the 
lead SNP and computed correlations among t-values or 
signed p-values (on a − log10 scale) to take into account 
the effect direction [48, 49]. Furthermore, we excluded 
SNPs that were non-significant (p > 0.05) for both traits, 
as effects are not expected to be shared for these unas-
sociated SNPs [49]. In addition, we studied overlap 
between CS obtained for all the traits presenting signifi-
cant association in the QTLR to find further evidence of 
pleiotropy.

As we found evidence that several associations were 
shared across multiple traits, we decided to run mul-
tiple-trait GWAS (MT-GWAS) with the multivariate 
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LMM approach implemented in GEMMA [50]. As rec-
ommended, we limited the number of phenotypes in 
the multivariate analyses. Therefore, we ran the model 
on two groups of six traits that were selected based on 
shared associations. The first group contained traits 
related mainly to body size (height, length, pelvis length, 
pelvis width, chest width, rib shape), whereas the second 
was more related to muscular development (shoulder 
and top muscling, side and rear-view of buttock mus-
cling, rump and chest width). This MT-GWAS was used 
to combine information from multiple traits to improve 
the fine-mapping by defining multiple-trait LD-based 
CS. The MT-GWAS information was considered for fine-
mapping when at least one of the six traits presented evi-
dence of association (−  log10P > 7). These correspond to 
association levels that would be genome-wide significant 
in a single-trait GWAS. When both MT-GWAS matched 
this condition, their CS were merged.

Annotation of associated variants
In each CS, we searched for candidate causal variants. 
In addition to the statistical evidence, we relied on the 
annotation of the variants in the CS obtained with Vari-
ant Effect Predictor (VEP) v95.0 [51] that provides also 
the predicted impact (from MODIFIER to HIGH) and 
the SIFT score for missense variants. PhastCons conser-
vation scores across 30 vertebrates [52] and GERP scores 
across 91 mammals [53] were used as conservation met-
rics. Furthermore, information available from the lit-
erature was considered for variants previously reported. 
Finally, we investigated whether SNPs in the CS over-
lapped with core and consensus segments called from 
ATAC-seq peaks in a recently released catalogue [54], or 
with CS of blood and liver cis-expression QTL (eQTL) 
reported in the same study. This eQTL study was selected 
as we had access to all the data. We also checked the 
overlap with eQTL from the cattle GTEx study [55]. To 
that end, we downloaded the tables from summary sta-
tistics and selected eQTL by application of a false-discov-
ery rate of 0.05 (using the script provided in the original 
study).

Conditional mapping
Subsequently, one candidate variant was selected per CS 
to perform a conditional mapping scan by fitting them 
as fixed effects in the LMM. For each QTLR, this condi-
tional mapping allows to determine how well the tested 
candidate causal variant captures the QTL signal and 
whether it captures the signal for different traits, provid-
ing eventually further evidence for causality and pleiot-
ropy. In addition, it allows to determine whether a single 
or multiple QTL affect the same trait in the QTLR. The 
conditional mapping was performed in 11 10-Mb regions 

centered around the lead variants and encompassing 
516,465 SNPs (see Additional file 2: Table S3). Using the 
same approach as before, we estimated that the number 
of independent tests was approximately equal to 6000. 
For each QTLR, the conditional analyses were performed 
only for traits presenting evidence for association in the 
first GWAS (−  log10P > 7), resulting in approximately 3.1 
independent traits per region on average. As a result, we 
set the significant threshold to 2.5e−6 (−  log10P > 5.6) to 
account for a total of approximately 20,000 independent 
tests. We repeated the same procedure if new significant 
QTL were detected in the QTLR.

Results
Identification of 11 QTL regions that affect multiple traits
Application of the ST-GWAS for 11 distinct traits 
resulted in the identification of 37 QTL (Fig.  1, and 
see Additional file  2: Table  S4). The most significant 
QTL (p < 1e−15) were located on Bos taurus auto-
somes (BTA) 5, 6 and 14 and mainly associated with 
traits such as height or body length (Fig.  2). Based 
on their position, the QTL could be organized in 11 
groups or QTLR (with a distance of less than 1  Mb 
between peaks). Most of the QTLR affected multiple 
traits (Fig.  1), with QTLR on BTA14 and BTA19 har-
boring significant associations with respectively eight 
and seven traits. In these QTLR, correlations between 

Fig. 1 Summary of identified QTL regions (QTLR).  QTLR are labelled 
according to the corresponding chromosome and the position 
(rounded in Mb). The maximum significance level for each trait 
per QTLR is indicated by the size and color intensity of the circles. 
Significant QTL are indicated with red outer circles, whereas dark 
purple outer circles are used for QTL reaching significance levels 
for a single genome scan
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association levels or t-values obtained for different 
traits were often higher than 0.70 (see Additional file 3: 
Table  S11). This is illustrated in Fig.  3 for the QTLR 
on BTA14 (see Additional file  1: Figs. S2–S9 for other 
traits). In general, effects for traits such as height or 
length were negatively correlated with effects estimated 
for muscular development traits. In addition, the cred-
ible sets (CS) of candidate variants identified for differ-
ent traits overlapped for several QTLR. For instance, 
the IBSS-CS (obtained with SuSiE) from all the traits 
presenting a significant association in a QTLR shared 
at least one variant for eight of the QTLR (out of nine 
QTLR associated to two or more traits—see Addi-
tional file  2: Table  S5). For three QTLR, the CS were 
even identical across all traits. Similar results were 
obtained when using LD-based CS (LDCS) obtained by 
selecting all SNPs with an r² > 0.80 with the lead vari-
ants (slightly fewer SNPs sharing with a threshold of 
r² > 0.90). Both approaches pointed to similar CS. For 
instance, LDCS (r² > 0.80) and IBSS-CS shared at least 
one common candidate variants for 34 out of 37 QTL, 
and the IBSS-CS was totally included in the LDCS for 
29 QTL (see Additional file 2: Table S6). Overall, there 
is strong evidence that several of the QTLR harbor 
pleiotropic variants and thus, we decided to combine 
multiple-trait information to define MT LD-based CS. 
This MT mapping was performed in two groups of six 
traits related either to body size or to muscular devel-
opment (see list in “Methods”). The resulting MT LD-
based CS are described in Table 1. The median number 
of SNPs included in these MT LD-based CS was equal 
to 11 (ranging from 1 to 116; mean = 30), and their 
span ranged from 1  bp to 1.7  Mb (median = 268  kb). 
Only one or two associated genes (i.e., genes with cod-
ing, intergenic or up/down stream variants in the CS) 
were generally found in these CS (only two regions with 
more than three associated genes). Full details on ST 

and MT CS for the 11 QTLR are provided in Additional 
file 3: Tables S12–S22.

Four QTLR are associated to recessive deleterious coding 
variants
Four of the QTLR were associated to recessive del-
eterious variants previously identified in BBB cattle (see 
Table  2), three of which cause genetic defects when in 
the homozygous state [18, 19, 56]. These variants were 
indeed present in the MT LD-based CS (Fig. 4; and see 
Additional file 1: Fig. S10), and the LoF variant in RNF11 
associated to dwarfism, the 2 bp-deletion in MRC2 asso-
ciated to the crooked-tail syndrome (CTS) and the mis-
sense variant in WWP1 reported in Charlier et  al. [20] 
were even the lead SNP in both MT-GWAS (see Addi-
tional file 2: Table S7). The variants in RNF11 and WWP1 
were also the lead variants in all but one of the ST GWAS. 
The variant in MRC2 was the lead SNP in three out of 
seven ST GWAS and was included in three ST-LD based 
CS when the LD threshold was set to r² ≥ 0.90 (six if the 
threshold was relaxed to r² ≥ 0.80). Remarkably, the three 
variants were always present in the IBSS-CS and the vari-
ants associated with dwarfism and the CTS had always a 
PIP > 0.95 (i.e., the CS contained thus only this variant). 
The statistical evidence supporting these candidate vari-
ants is thus strong. Finally, the variant in the  ATP2A1 
gene associated with congenital muscular dystrophy [56] 
presented an LD of r² = 0.88 with the lead SNP in both 
the ST GWAS for rump and the MT GWAS for muscu-
lar development traits (see Additional file  1: Fig. S10). 
It should be noted that this variant segregates now at 
low frequency in the population (f = 0.011) and achieves 
genome-wide significance only for one trait. Overall, the 
analysis of these previously identified variants shows that 
the MT LD-based approach is efficient and improves the 
resolution of the ST LD-based approach.

Fig. 2 Manhattan plot for association with height.  The horizontal line represents the significance level after correction for multiple testing
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Identification of three new missense variants in genes 
associated with growth disorders in other species
For three additional QTLR, the MT LD-based CS 
contained non-synonymous variants in genes that 
have been previously associated with human height 
or growth (see “Discussion” for more details). These 
include a I549M missense variant in EZH2 (QTLR on 
BTA4: Fig.  5), a P282T missense variant in PAPPA2 
(QTLR on BTA16; Fig. 5) and a A582V missense variant 
in ADAM12 (QTLR on BTA26; see Additional file  1: 
Fig. S11). Note that these genes have multiple tran-
scripts and thus the position of the amino acid change 
might vary (the genomic coordinates and alleles of the 
variants are available in Table  2). These three variants 
have strong statistical support (see Additional file  2: 
Table S7). The two first missense variants were indeed 

the lead SNP in the MT GWAS whereas the third was 
almost in perfect LD (r² = 0.998) with the lead SNP of 
the MT GWAS for muscular development traits (see 
Additional file  1: Fig. S11). In addition, each of these 
variants was also the lead SNP and present in both IBSS 
and LD-based CS for at least one ST GWAS.

In total, six coding variants were identified in the 11 
MT LD-CS associated with six QTLR (when using an 
LD threshold of r² ≥ 0.90). Using the proportion of var-
iants with a moderate or high predicted impact (mainly 
missense, splice site and frameshift variants and pre-
mature stop codons) in our data (0.34%) and the size of 
each CS, we estimated by random sampling  (108 repeti-
tions) that we expect only 1.1 such variants on average 
in our CS (see Additional file 2: Table S8 for details on 

Fig. 3 Scatterplots with association levels for different traits for the QTL region (QTLR) on BTA14.  The selected traits are those harboring 
a significant signal in the QTLR. Upper diagonal: scatterplots with p‑values on a negative log10 scale. The color represents the LD level with the lead 
SNP (from the trait with the strongest association). Lower diagonal: scatterplots with signed t‑values. The magenta circle denotes the lead variant
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the enrichment analysis). The enrichment of these vari-
ants in our CS was significant (p = 0.001) and the num-
ber of CS harboring at least one coding variant was also 
significantly higher than expected (p = 2.0e−6). The 
chance to have a coding variant as lead variant for five 
or more CS was even lower (p < 1e−8). If we define CS 
using a r² ≥ 0.80 LD threshold, five additional coding 
variants would be identified including the variant in 
ATP2A1 mentioned above and a frameshift variant in 
LCORL (a 2 bp deletion ACT>A at position 37,401,770) 
included in a long LD block with 73 variants spread 

over 2 Mb (see Additional file 1: Fig. S12). This would 
lead to a total of 11 coding variants located in eight dis-
tinct QTLR regions (MT LD-based CS containing then 
on average 73 variants). The number of observed coding 
variants and the number of CS harboring at least one 
coding variants would still be significant (p = 1.3e−4 
and 3.1e−6).

Evidence for regulatory variants among QTLR
For the QTLR without obvious candidate coding vari-
ants, we also investigated whether SNPs in the CS 

Table 1 LD‑based credible sets (CS) identified by multiple‑trait genome‑wide association study (MT‑GWAS) (r² > 0.90)

MT-GWAS1 MT-GWAS with traits related to height and body dimensions, MT-GWAS2 MT-GWAS with traits related to muscular development
* Genes present in CS from both MT-GWAS are indicated with a star (other are specific to a single MT-GWAS)
a The start and end of each QTL region can be found in Additional file 3: Tables S12–S22 and S24–S28 that provide the detailed CS

QTL‑region Number 
of SNPs in 
MT‑GWAS1

Number 
of SNPs in 
MT‑GWAS2

Number of 
SNPs in both 
CS

Span of CS in  bpa Number 
of genes

Genes present in CS

BTA3:95 Mb 2 2 2 1,733,382 2 SCP2*, RNF11*

BTA4:112 Mb 57 – 57 420,567 3 ENSBTAG00000052473, CUL1, EZH2

BTA5:106 Mb 6 – 6 6741 1 CCND2

BTA6:36 Mb 1 1 1 1 0

BTA14:76 Mb 116 116 116 266,423 1 WWP1*

BTA16:58 Mb 11 11 11 251,954 1 PAPPA2*

BTA18:2 Mb 86 86 86 268,177 11 ENSBTAG00000052687*, ENSBTAG00000053632*, 
ENSBTAG00000051242*, IL34*, FUK*, ST3GAL2*, 
DDX19A*, DDX19B*, AARS*, EXOSC6*, CLEC18C*

BTA19:49 Mb 5 5 5 1,649,747 3 CDC27*, MRC2*, KCNH6*

BTA23:10 Mb 6 – 6 30,728 1 ARMC12

BTA25:26 Mb – 20 20 647,161 18 ENSBTAG00000048352, ENSBTAG00000051451, 
NUPR1, GDPD3, YPEL3, FAM57B, C16orf92, SEZ6L2, 
ASPHD1, MVP, SPN, CD2BP2, TBC1D10B, MYLPF, 
SEPT1, ZNF48, ZNF771, DCTPP1

BTA26:45 Mb 4 14 18 474,978 2 ENSBTAG00000007010, ADAM12

Table 2 Annotation of candidate or lead variants for the 11 QTL regions

The frequency is reported for the alternate allele and SIFT scores are provided for missense variants

BTA Bos taurus chromosome, REF reference allele, ALT alternate reference

BTA Position REF ALT Frequency Gene Consequences SIFT score GERP score Phastcons

3 95,015,373 T C 0.050 RNF11 Splice site variant 0.862 0.976

4 112,030,024 T C 0.470 EZH2 Missense variant I549M 0.03 0.222 1

5 105,769,735 C T 0.700 CCND2 Regulatory (ATAC‑Seq, eQTL) − 4.2 0

6 36,226,849 A AT 0.050 Intergenic variant 0.078 –

14 76,227,910 C T 0.140 WWP1 Missense variant R844Q 0.00 0.530 1

16 57,725,284 C A 0.720 PAPPA2 Missense variant P282T 0.00 – 1

18 1,673,649 A AT 0.270 Regulatory (ATAC‑Seq) 0.149 –

19 47,095,175 CAG C 0.030 MRC2 Frameshift variant 0.504 0

23 9,716,619 G A 0.480 ARMC12 Regulatory (ATAC‑Seq, eQTL) − 0.678 –

25 25,933,247 G A 0.010 ATP2A1 Missense variant R559C 0.00 0.222 0.984

26 45,553,105 G A 0.590 ADAM12 Missense variant A582V 0.03 1.220 0.890
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overlapped with core and consensus segments from 
ATAC-seq peaks present in the catalogue from Yuan 
et  al. [54], with cis-eQTL reported in the same study 
or eQTL from the cattle GTEx study [55]. Contrary to 
the lead variant on BTA6, the CS variants on BTA5, 
consisting in six intronic variants from CCND2 (see 
Additional file  1: Fig. S13), fall in consensus ATAC-
seq peaks and even in the CS from an eQTL affecting 
CCND2 expression in liver [54] (the lead SNP matches 
both criteria, the alternate allele being associated with 
increased expression and higher height). Another SNP 
from the CS affects expression of TIGAR  in muscle 
(see Additional file  3: Table  S23) [55]. Interestingly, 
a SNP located at position 105,773,809 (A>G) and in 
LD with the lead SNP (r² = 0.89) was the lead variant 
detected from a meta-analysis involving 18 breeds [8] 
and subsequently identified as a significant trans eQTL 
across multiple genes and tissues [57]. On BTA18, the 
CS contained 86 variants associated with 12 genes 
(see Additional file  1: Fig. S14). Several of these vari-
ants were located in both consensus and core ATAC-
seq peaks. Finally, in the CS for the QTLR on BTA23 
containing only six SNPs (see Additional file  1: Fig. 
S15), four intergenic variants match core ATAC-seq 
peaks and are in the CS from a blood eQTL reducing 
ARMC12 expression levels [54]. The lead SNP located 
upstream from ARMC12 is the lead SNP of this eQTL, 
the alternate allele is associated with lower expression 
and lower height. The regulatory effect of this locus is 
confirmed in the cattle GTEx data [55]. Indeed, two 
variants, including the lead SNP, are associated with 

ARMC12 expression in blood, whereas two other vari-
ants regulate expression of FKBP5 in muscle (see Addi-
tional file 3: Table S23).

Stepwise conditional mapping: identification of multiple 
independent associations in CCND2 and LCORL and of an 
additional deleterious coding variant
For each QTLR, we selected variants to fit as covariates in 
a secondary mapping analysis. In QTLR with candidate 
coding variants, we chose these as they were excellent 
functional candidates and presented very strong statis-
tical significance (e.g., lead SNP in MT GWAS). For the 
other QTLR, we used the lead SNPs for subsequent anal-
ysis (Table 2). We performed the conditional mapping in 
10-Mb regions centered around the selected variants. As 
for the initial mapping, details of CS are available in Addi-
tional file 3: Tables S24–S28. For the six QTLR on BTA3, 
4, 14, 16, 18 and 26, no new significant associations were 
detected with the conditional mapping (Fig.  6, and see 
Additional file 1: Fig. S16, and Additional file 2: Table S9), 
indicating that the fitted variant captured the QTL signal 
for all associated traits. For many of the QTL or QTLR, 
the signal dropped strongly (see for instance examples on 
BTA3, 4, 14 or 26). However, for the two QTLR regions 
mainly associated with body dimension traits and located 
on BTA5 and 6, new significant associations with the 
same group of traits were detected (Fig. 6, and see Addi-
tional file 1: Fig. S17). These QTLR presented among the 
most significant associations in the first scan, and still 
harbor highly significant associations (p < 1e−7 and 1e−8, 
respectively). On BTA5, the exact same group of three 

Fig. 4 Regional association plot for the QTL region (QTLR) on BTA14.  The results correspond to the MT‑GWAS with traits related to body size. The 
colors represent the LD level with the lead variant and the symbols indicate the predicted impact of the variant (circle: modifier, diamond suit: low 
impact, up‑pointing triangle: moderate impact, square: high impact). The positions of the genes are in the lower track
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traits was associated (size, body length, pelvis length) 
and all the CS encompass a single SNP downstream of 
CCND2. On BTA6, the association was significant for 
size and body length. For the initial mapping, the lead 
SNP from the MT GWAS was an intergenic variant but 
the LCORL and NCAPG genes were located in the same 
region (see Additional file 1: Fig. S12). For the conditional 

mapping, the MT LD-based CS was particularly large, 
including several variants in NCAPG or LCORL embed-
ded in a long haplotype block (Fig. 6). Among these, the 
variant with the largest predicted impact was a missense 
variant Y551C in LCORL, presenting an r² = 0.95 with 
the lead SNP. The LD between the lead SNP from the pri-
mary and secondary associations were low, respectively 

Fig. 5 Regional association plot for the QTL regions (QTLR) with missense variants in EZH2 and PAPPA2.  The colors represent the LD level 
with the lead variant and the symbols indicate the predicted impact of the variant (circle: modifier, diamond suit: low impact, up‑pointing triangle: 
moderate impact, square:  high impact). The positions of the genes are in the lower track. Upper panel: results of the MT‑GWAS with traits related 
to body size on BTA4 and encompassing EZH2; lower panel: results of the MT‑GWAS with traits related to muscular development on BTA16 
and encompassing PAPPA2 



Page 11 of 17Gualdrón Duarte et al. Genetics Selection Evolution           (2023) 55:83  

r² = 0.16 and r² = 0.01 for QTLR on BTA5 and 6, indi-
cating independent associations. Thus, for both these 
QTLR, the conditional mapping identifies a second inde-
pendent QTL associated with the same set of traits and 
pointing to the same genes.

For the three last QTLR regions, significant associa-
tions were still present but at lower magnitude (p > 1e−7). 
These signals would not be significant for a whole-
genome scan but indicate that all the primary signal has 
not been fully captured by fitting our candidate vari-
ants. For the QTLR on BTA19, the most significant sig-
nals drop after inclusion of the LoF variant in MRC2 (see 
Additional file 1: Fig. S18). However, associations are sig-
nificant for body length and top muscling (−  log10P > 5.6) 
whereas there is still some evidence for association with 
size or rump (p < 1e−5). For body length and top mus-
cling, the CS contains a single SNP (respectively, an 
intronic variant in MAPT and an intergenic variant). 
These four associations point to four different regions, 
indicating a quite complex QTLR. On BTA23, the lead 
variant, associated with ARMC12, captured the signal 
for body length and pelvis length whereas for height, 
there was a signal for a second QTL (p = 2.4e−6) located 
at more than 2 Mb (see Additional file 1: Fig. S17). The 
lead SNP was an intronic variant in BOLA-DOB (the CS 
contained only one more SNP). It should be noted that, 
as for the HLA region in humans [58], this is a complex 
region with high nucleotide diversity levels and char-
acterized by the presence of copy number variations 

[59]. As a result, LD levels and imputation accuracy are 
reduced. Finally, for the QTLR on BTA25, there was no 
longer evidence for association with rump after inclusion 
of the variant in ATP2A1 in the model (see Additional 
file 1: Fig. S19). However, this variant did not capture the 
signal associated with muscular development of the but-
tock (side view) for which the association was still strong 
(p = 1.35e−7; see Additional file 1: Fig. S19). Thus, there is 
evidence for two linked QTL that affect two distinct traits 
in that QTLR. Two distinct and distant peaks achieved 
similar significance levels (see Additional file 1: Fig. S19; 
Additional file 3: Table S28), the CS for the first peak con-
sisted in a single intergenic variant whereas the second 
CS contained 15 SNPs (r² > 0.90). An R631W missense 
variant in ATP2A1 previously shown to negatively affect 
meat quality and muscular development [60] was in high 
LD (r² = 0.88) with the lead variant (see Additional file 1: 
Fig. S20) and represents thus the best candidate causative 
variant.

We repeated a conditional mapping by adding the lead 
variants for the secondary QTL on BTA5, 6, 23 and 25. 
For all tested traits and QTLR, we did not detect new 
significant associations after correction for multiple 
testing (see Additional file  2: Table  S10). The p-values 
were indeed higher than 1e−4, whereas the significance 
threshold was set to 2e−5 (considering ~ 2500 independ-
ent SNPs in the four tested QTLR).

Additional file 3: Tables S29 and S30 provide the effect 
sizes of candidate or lead variants for all traits and the 

Fig. 6 Regional association plot for the conditional mapping in the QTL regions (QTLR) on BTA4 and BTA6.  The left panels represent the initial 
GWAS whereas the right panels correspond to conditional GWAS in which the candidate variants are fitted as covariate. The colors represent the LD 
level with the lead variant. The positions of the genes are in the lower track. a GWAS for pelvis width on BTA4, and b GWAS for length on BTA6
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proportion of genetic variance they account for (esti-
mated in a model where all the variants are fitted simul-
taneously). Significant alleles account generally for 1 to 
2% of the genetic variance, and up to 5% for the variant 
on BTA6. Together the 15 variants capture around 20% 
of the genetic variance for traits related to height and 
length, and from 6 to 11% for muscular development 
traits. These values were in agreement with the relative 
reduction of polygenic variance when these variants 
were fitted in the model (see Additional file 3: Table S30). 
These values might however be overestimated and must 
be confirmed in an independent dataset.

Discussion
Identification of candidate causal coding variants 
for the majority of QTLR
In this study, we performed a sequenced-based asso-
ciation study for 11 traits related to muscular develop-
ment and body dimension in a cohort of ~ 15,000 BBB 
cattle cows. We identified 11 QTLR with genome-wide 
significant associations and most of them affected sev-
eral correlated traits. Several coding variants included 
in our CS represented strong candidate causal variants. 
Five of these correspond to deleterious variants specific 
to BBB that have been previously characterized [18–
20, 56, 60]. In addition, we found three new missense 
variants in PAPPA2, ADAM12 and EZH2, three genes 
related to growth disorders in different species includ-
ing humans. Indeed, the role of PAPPA2 on growth has 
been documented in multiple species, it is a regulator 
of IGF1 and is associated with short stature in humans 
[61, 62] and in mice [63, 64]. ADAM12 was identified 
as a susceptibility gene for the Kashin-Beck disease in 
humans, causing growth retardation [65]. In agreement, 
ADAM12-deficient zebrafish present growth retarda-
tion [66]. In humans, mutations in EZH2 cause the 
Weaver syndrome and increased height [67], tall stature 
[68] but also growth retardation and severe short stature 
[69]. Two of these coding variants were the lead variants 
in their respective MT-GWAS. Thus, they are strong 
candidates as they have strong statistical support, they 
change the protein sequence, and coding variants in the 
same genes are known to affect growth in other species. 
The three variants are predicted to be deleterious (SIFT 
score < 0.05) and have high PhastCons scores (> 0.88) and 
positive, although not extreme, GERP scores (from 0.22 
to 1.22). In addition, two independent signals on BTA6 
might be associated to a missense and a frameshift vari-
ant in LCORL, a gene associated with height in different 
cattle breeds [8] and several species [7, 11–13]. To our 
knowledge, these are the first coding variants in LCORL 
that are significantly associated with height reported 
in cattle. The Y551C missense variant in LCORL was 

predicted to be tolerated (SIFT score = 0.46) and was 
not conserved (0.00 PhastCon; − 2.37 GERP score). In 
both cases, the variants were included in a long haplo-
type block encompassing many variants making it more 
difficult to pinpoint the causal variant. In addition, the 
frameshift variant was not in very high LD with the lead 
SNP (r² = 0.84). The evidence for their causality is thus 
weaker, although they might affect the protein function 
of a strong candidate gene. Overall, the number of cod-
ing variants in our CS and the number of CS harboring 
at least one coding variant were significantly larger than 
expected by chance (see Additional file  2: Table  S8). 
These enrichments suggest that a fraction of these cod-
ing variants are causal, in particular if we consider that 
several of them were lead SNPs (which is even less likely 
by chance) and that they fall in genes previously associ-
ated with height. The number of QTL is too limited to 
make strong assumptions on the relative contribution 
of coding versus regulatory variants to genetic variation 
of complex traits. Our QTL represent only a fraction of 
the variants contributing to genetic variation, and corre-
spond only to the largest effects segregating in the BBB 
cattle population (see Additional file 3: Tables S29, S30). 
Nevertheless, contribution of coding variants should not 
be underestimated.

Evidence for association with regulatory variants
Beside these candidate coding variants, we found evi-
dence for regulatory variants in three QTLR on BTA5, 18 
and 23. CS from these three QTLR did overlap with the 
catalogue of regulatory regions identified by ATAC-SEQ 
by Yuan et al. [54]. For QTLR on BTA5 and 23, there was 
also association between the CS with cis-eQTL from a 
study conducted in blood and liver in Holstein [54] and 
evidence for regulatory effects in the cattle GTEx data-
set [55]. In addition, the BTA5 QTL CS contained a SNP 
that was previously proposed as a candidate variant for a 
stature QTL and that significantly affects expression as a 
trans-eQTL in multiple tissues [55]. This illustrates how 
such catalogues can help to better understand mecha-
nisms underlying identified QTL. Ideally, catalogues of 
eQTL obtained from experiments in the most relevant 
tissues from individuals from the same breed should be 
used. Such data was not available for the present study 
and future experiments might improve the annotation.

Candidate causal variants in genes that affect stature 
in multiple species and breeds
In 2011, Pryce et al. [6] concluded that genes associated 
with height in humans also control stature in cattle. In 
agreement, Bouwman et al. [8] demonstrated that genes 
associated with height in cattle GWAS were enriched 
in genes also reported in human GWAS for the same 
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trait. Raymond et  al. [70] identified such shared genes 
by comparing associations found in humans by Wood 
et al. [71] or by Yengo et al. [72] with those found in cat-
tle by Bouwman et al. [8]. In our study, several candidate 
variants were also associated to genes previously asso-
ciated with growth or height in cattle and in other spe-
cies. First, the most significant QTLR located on BTA6, 
included LCORL and NCPAG, that have been linked with 
height in cattle based both on association studies [8, 73] 
and signatures of selection [8, 13]. Similar findings have 
been reported in other species including humans, dog 
and horse [11, 12, 74]. In cattle, associations have been 
observed in several breeds [8]. Second, the region on 
BTA5 was among the most significant regions and the 
CS included only one gene, CCND2. This gene has also 
been previously associated with height in other cattle 
breeds [8, 75–77], and in other species such as humans 
[78, 79]. As in our study, the allele reported in humans 
by Stenthorsdottir et  al. [78] was regulatory (increasing 
both expression and height). For both QTLR on BTA5 
and 6, we identified two independent signals stressing the 
importance of these genes and strengthening the causal-
ity of CCND2 (it was twice the single gene present in the 
CS). Next, ADAM12 and PAPPA2 are both associated 
with growth disorders (see above) and have been identi-
fied as ‘shared’ genes by Raymond et  al. [70]. PAPPA, a 
paralog of PAPPA2, has also been listed by Pryce et  al. 
[6] as a gene affecting height in both humans and cattle, 
and was proposed as candidate gene for size in horse by 
Petersen et  al. [12]. Interestingly, the lead or candidate 
variants associated with CCND2, LCORL, ADAM12 and 
PAPPA2 are segregating in other breeds from the Run 
3.0 of 1000 Bull Genomes Project [80] indicating that 
these variants are relatively old (see Additional file  3: 
Table S31). Overall, these results confirm previous find-
ings, which indicate that a set of shared genes contribute 
to genetic variation of height in mammals. We strength-
ened the evidence that these genes are causal in cattle 
based on association results (e.g., lead variants, limited 
number of genes in the CS, multiple independent asso-
ciations for some genes) and by the identification of cod-
ing variants in PAPPA2 and ADAM12. Such candidate 
coding variants with strong statistical support (e.g., pre-
sent as lead SNP for at least one GWAS) were not pre-
viously reported among the associations in cattle. Thus, 
CCND2, LCORL, ADAM12 and PAPPA2 appear to be 
associated with height in multiple breeds or species. In 
addition, the four genes present multiple associations in 
the human GWAS catalogues [81]: respectively 80, 26, 14 
and 35 associations for LCORL, CCND2, ADAM12 and 
PAPPA2. Similarly, associations with LCORL and CCND2 
and height (or related traits) are also reported in the Ani-
mal QTLdb (release 51) [82]. From these elements, we 

can thus conclude that these genes play an important role 
in genetic variation for height in multiple species.

Candidate genes for other QTLR include genes associated 
with growth disorder and epigenetic regulation
For other QTLR, the candidate genes presented lim-
ited evidence for sharing across multiple species. For 
instance, EZH2 is not associated with height in the 
cited GWAS catalogue, whereas ARMC12 or the region 
on BTA18 encompassing genes such as IL34, COG4, 
FUK, ST3GAL2, DDX19A and DDX19B, present only 
associations in the largest cohort studies like those 
from Yengo et  al. [83] or from Kichaev et  al. [84]. In 
both studies, several genes are found in the associated 
genomic segments and the causal genes remain to be 
determined. Associations between height or muscu-
lar development and candidate genes from the three 
regions are also not reported in the Animal QTLdb 
(release 51) [82]. As mentioned above, EZH2 is never-
theless associated to growth disorders. Interestingly, 
ARMC12 increases the activity of EZH2 [85] making a 
connection between both candidate genes. We did not 
find evidence for interactions among the two identi-
fied variants (i.e., the effect of the variant in EZH2 is 
the same when estimated conditionally on the three 
possible genotypes at the ARMC12 variant). These 
genes are involved in the polycomp repressive complex 
2 (PRC2) that repress gene transcription during devel-
opment through methylation [86]. EZH2 encodes the 
histone methyltransferase of PRC2 [87, 88], whereas 
ARMC12 facilitates the formation and activity of PRC2 
[85]. These variants might thus play a role through epi-
genetic regulation. Unlike other identified genes, EZH2 
has not been reported in other GWAS for height. Inter-
estingly, the missense variant is breed specific. Thus, 
variants in this pathway seem to contribute less often to 
variation in height.

There was no obvious candidate gene in the CS on 
BTA18 but we found evidence that regulatory variants 
might underlie this QTLR. Interestingly, the ortholo-
gous region in humans harbors enhancers. Such regula-
tory variants could influence other genes that overlap 
the QTLR. Among these, COG4 is a potential candidate 
gene since it is the causal gene for the Saul-Wilson syn-
drome causing dwarfism and skeletal abnormalities in 
humans [89, 90], and is associated with reduced body 
length in zebrafish [91]. A mutant that affects skeleton 
and bone mineral density in mouse has been described in 
the Mouse Genome Informatics database [92]. Mutations 
in COG4 have been shown to disturb the Wnt signaling 
pathway that plays an important regulation role during 
embryonic development [91].
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Breed‑specific recessive deleterious variants are associated 
with height and muscular development traits
The four remaining QTLR were associated with five 
recessive deleterious variants previously identified in 
BBB cattle [18–20, 56, 60], including genetic defects [18, 
19, 56]. These variants also present a selective advantage, 
resulting in an heterozygote advantage for most of them 
[18–20, 56, 60]. They are breed specific (i.e., not observed 
in other breeds from the Run 3.0 of 1000 Bull Genomes 
Project [35]; see Additional file  3: Table  S31) and the 
associated genes, RNF11, WWP1, MRC2 and ATP2A1 
are not unambiguously associated to height in the GWAS 
catalogue or in the Animal QTLdb (release 51) [82]. The 
observation of five deleterious variants that have a nega-
tive impact on fitness but contribute to variation in height 
or muscular development is rather unique, even if other 
deleterious variants presenting a heterozygote advantage 
have been reported in other livestock species [93–95]. 
The reason why such variants are regularly observed in 
BBB remains to be determined. However, it is tempting 
to speculate that the past and ongoing intensive selection 
for muscular development might play a role. The breed 
has indeed been driven far from an optimal phenotype in 
terms of fitness; slight additional improvements of mus-
cular development might still be allowed but beyond a 
certain point selection could have negative consequences. 
For instance, as a result of the fixation of an 11-bp dele-
tion in MSTN, BBB individuals can be considered as 
knock-out for this gene, a member of the transforming 
growth factor β (TGFβ) superfamily [96]. Consequently, 
MSTN is no longer playing its role as a negative regula-
tor of skeletal muscle mass and such individuals present 
increased muscle mass (the so-called double-muscling 
phenotype) [96]. The genetic background where new 
mutations arise, and the potential impact of these new 
mutations might therefore be very different from those 
in other breeds that have functional MSTN alleles. This 
might impact the behavior of other members from the 
TGFβ family, and the consequences of their mutations. 
Interestingly, RNF11 and WWP1, that each harbor one of 
the recessive deleterious variants presenting a heterozy-
gote advantage, are such genes that regulate the TGFβ 
pathway [97], suggesting that other members of the fam-
ily might indeed be impacted. Further investigations are 
nevertheless required to understand how intensive selec-
tion increases the number of such deleterious variants 
with a heterozygote advantage.

Conclusions
We have performed a sequenced-based association 
study for traits related to muscular development and 
body dimensions in BBB cattle. We identified variants 

associated with height in genes that affect stature in 
multiple species and breeds, indicating a shared archi-
tecture among mammals. Some of these variants were 
old and present in several breeds. In addition, breed-
specific variants were also identified. In particular, sev-
eral recessive deleterious variants were significantly 
associated with height or muscular development. Their 
segregation in the breed might result from the extreme 
selection for muscular development. Overall, the BBB 
cattle represent an interesting model to study height 
and to identify new variants or new genes such as 
EZH2 that underlie this trait.
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