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Abstract 

Background Disease resilience is the ability of an animal to maintain productive performance under disease condi‑
tions and is an important selection target. In pig breeding programs, disease resilience must be evaluated on selec‑
tion candidates without exposing them to disease. To identify potential genetic indicators for disease resilience 
that can be measured on selection candidates, we focused on the blood transcriptome of 1594 young healthy pigs 
with subsequent records on disease resilience. Transcriptome data were obtained by 3’mRNA sequencing and geno‑
type data were from a 650 K genotyping array.

Results Heritabilities of the expression of 16,545 genes were estimated, of which 5665 genes showed significant esti‑
mates of heritability (p < 0.05), ranging from 0.05 to 0.90, with or without accounting for white blood cell composition. 
Genes with heritable expression levels were spread across chromosomes, but were enriched in the swine leukocyte 
antigen region (average estimate > 0.2). The correlation of heritability estimates with the corresponding estimates 
obtained for genes expressed in human blood was weak but a sizable number of genes with heritable expression lev‑
els overlapped. Genes with heritable expression levels were significantly enriched for biological processes such as cell 
activation, immune system process, stress response, and leukocyte activation, and were involved in various disease 
annotations such as RNA virus infection, including SARS‑Cov2, as well as liver disease, and inflammation. To estimate 
genetic correlations with disease resilience, 3205 genotyped pigs, including the 1594 pigs with transcriptome data, 
were evaluated for disease resilience following their exposure to a natural polymicrobial disease challenge. Significant 
genetic correlations (p < 0.05) were observed with all resilience phenotypes, although few exceeded expected false 
discovery rates. Enrichment analysis of genes ranked by estimates of genetic correlations with resilience phenotypes 
revealed significance for biological processes such as regulation of cytokines, including interleukins and interferons, 
and chaperone mediated protein folding.

Conclusions These results suggest that expression levels in the blood of young healthy pigs for genes in biological 
pathways related to immunity and endoplasmic reticulum stress have potential to be used as genetic indicator traits 
to select for disease resilience.
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Background
Disease resilience broadly refers to the ability of an 
individual to maintain intrinsic and biological func-
tions against the external pathogenic environment. It is 
widely accepted that there is a large range of individual 
variation for disease resilience, supporting its value as 
an important trait to improve productivity in farm ani-
mals. However, it is difficult to predict the intrinsic dis-
ease resilience of individuals without exposure to disease, 
which is the challenge for improving disease resilience 
using nucleus breeding herds that require a high level of 
biosecurity. Biomarkers of resilience that can be obtained 
from blood collected at the nucleus herd level can help 
overcome this limitation.

Gene expression in blood has been quantified to 
understand the dynamic aspects of an organism, such 
as health status, response to infection, and biological 
processes related to various phenotypes of interest. Sev-
eral previous studies in humans have revealed a sizable 
number of genes with heritable levels of expression in 
blood [1–3], and the relationships of heritability of gene 
expression with physical properties of the gene, such 
as their genomic location and gene length, have been 
reported [1, 3]. Moreover, mean heritability was found to 
be higher for genes related to immune system pathways 
[3]. In pigs, expression quantitative trait loci (eQTL) for 
genes expressed in the blood of healthy young pigs were 
identified using an expression genome-wide association 
study (eGWAS) [4], while immune response parameters 
in blood measured after vaccination against Mycoplasma 
hyopneumoniae showed moderate to high heritabilities 
[5]. These findings suggest that the immune capacity, 
as characterized by transcriptomes and immune traits 
in the blood of healthy young individuals, can be under 
genetic control. However, genetic prediction of disease 
resilience of individuals based on such measures has not 
been investigated in either humans or pigs.

We have previously reported on the use of a natural 
polymicrobial disease challenge study in pigs to investi-
gate the use of natural antibody levels [6], the transcrip-
tome [7], and the proteome [8] in the blood of visually 
healthy weaner pigs as indicators for resilience to dis-
ease. Interestingly, the blood transcriptome study, which 
was at the phenotypic level, showed that visually healthy 
nursery pigs with higher levels of expression of immune 
and stress response-related genes were less resilient after 
exposure to the polymicrobial pathogens in this natural 
disease challenge model [7]. Based on this evidence, we 
hypothesized that gene expression in blood could be a 
potential genetic indicator to predict disease resilience in 
pigs. We focused on gene expression in blood collected 
from young pigs after weaning and investigated not 
only the heritability of gene expression but also genetic 

correlations with disease resilience, which is represented 
by performance and clinical phenotypes measured on the 
pigs under the polymicrobial disease challenge. We used 
individual-level data for genotypes, gene expression, and 
resilience phenotypes for genetic analysis of transcrip-
tome data and investigated the genetic architecture of 
gene expression-related disease resilience in pigs.

Methods
Study design
In total, 3205 pigs in 50 batches from the Natural Dis-
ease Challenge Model (NDCM) were used in the current 
study [9, 10]. Population-scale blood transcriptome data 
were generated from 1594 pigs in 37 batches. Briefly, in 
the NDCM, a batch consisting of 60 or 75 healthy weaned 
barrows (Yorkshire x Landrace) was moved to an experi-
mental facility after weaning (~ 21 days of age) and accli-
mated for three weeks in a biosecure quarantine nursery 
(qNur) with a high level of biosecurity. Then, they were 
exposed to a natural polymicrobial disease challenge 
at a nearby challenge nursery (cNur) (3 to 4 weeks) and 
finisher (Fin) (up to slaughter), which were designed to 
mimic a commercial farm with high disease pressure. 
Pigs received no vaccinations, except for a PCV2 vaccine 
(Circoflex, Boehringer Ingelheim, St. Joseph MO), which 
was administered at entry into qNur. Strategic medica-
tions were used for about half of the batches to balance 
disease challenge levels with animal welfare.

Performance and disease resilience phenotypes
To evaluate disease resilience, performance and clini-
cal phenotypes, including subjective health scores, the 
number of individual therapeutic treatments, mortality, 
growth rate, feed efficiency, and carcass traits, were col-
lected in the qNur, cNur, and Fin phases, and across the 
cNUR and FIN (All), on all 3205 pigs, including the 1594 
pigs with gene expression data, as previously described 
[7, 9, 10]. Abbreviations of traits are represented by the 
combinations of information on phase (qNur, cNur, Fin, 
and All) and trait names.

Health scores (HS) were recorded on a 1 to 5 scale 
for each pig at four-time-points (qNurHS1, qNurHS2, 
NurHS, and FinHS), and converted into binary vari-
ables (0/1; 1 = pigs in perfect health; 0 = others) for 
the variance component analyses. For the treatment 
rate traits (TRT; NurTRT, FinTRT, and AllTRT), the 
numbers of individual therapeutic treatments were 
adjusted for the number of days during which a pig was 
present in each respective phase. Mortality (MOR) was 
recorded as 0 for pigs that survived and 1 for pigs that 
died during each challenge period (cNurMOR, cFin-
MOR, and AllMOR). The binary trait MT was defined 
by MOR combined with TRT (pigs that died versus 
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pigs that survived without treatment) for each phase 
(cNurMT, FinMT, and AllMT) and was coded as 0 for 
pigs that survived and had no individual therapeutic 
treatment, 1 for pigs that died, and as missing for all 
other pigs. Average daily gain (ADG) was computed 
for each phase (qNurADG, cNurADG, and FinADG) to 
evaluate growth rate. Regarding feed efficiency meas-
urements, average daily feed intake (ADFI), average 
daily feeding duration (ADFD), feed conversion ratio 
(FCR), and residual feed intake (RFI) were recorded in 
the finisher. ADFD is the average feeding time (dura-
tion) of daily records during the finishing period. RFI 
was computed by adjusting ADFI for average body 
weight, ADG in the finisher, and ultrasound backfat 
thickness, as described by [11]. LYLD was % lean meat, 
which was estimated using Destron backfat and mus-
cle depth measurements taken at the slaughter plant, 
using the prediction equation derived in [12]. The car-
cass traits, i.e. carcass weight (CWT), dressing propor-
tion (DRS), lean yield (LYLD), carcass backfat (CBF), 
and carcass loin depth (CLD) were recorded at a com-
mercial slaughter facility.

All animals were genotyped with the 650  k Affyme-
trix Axiom Porcine Genotyping Array by Delta Genom-
ics (Edmonton AB, Canada). Raw Affymetrix single 
nucleotide polymorphism (SNP) data were processed 
by Delta Genomics, separately for each group of the 
seven consecutive batches, with the Axiom Analysis 
Suite, using all default settings. The 435,172 SNPs and 
genotypes that passed quality control (minor allele fre-
quency > 0.05, SNP call rate > 0.90, and individual call 
rate > 0.90) for all seven groups of the seven consecu-
tive batches, on 3139 pigs, were used for analysis, as 
described by Cheng et al. [10].

Blood RNA extraction and white blood cell count 
measurement
Blood samples were collected in the qNUR at ~ 27  days 
of age, using Tempus Blood RNA tubes (Thermo Fisher 
Scientific, USA) and then stored at -80 ℃ until RNA 
extraction. The RNAs were isolated using the Preserved 
Blood RNA purification kit I (Norgen, Canada) accord-
ing to the manufacturer’s instructions. The RNA integrity 
number (RIN) of each extracted RNA was assessed by 
the 2100 Bioanalyzer (Agilent Technologies, USA) using 
the Eukaryote total RNA 6000 Nano kit. White blood 
cell (WBC) differentials were quantified on whole blood 
samples in K2 ethylenediaminetetraacetic acid (EDTA) 
tubes (Thermo Fisher Scientific, USA) taken at the same 
time, using the flow cytometry-based hematology ana-
lyzer (ADVIA®2120i Hematology System, Siemens 

Healthineers, Germany) according to the manufacturer’s 
instructions [13].

3’ mRNA sequencing with globin blocking
RNA-seq libraries were generated from ~ 500 ng of total 
RNA, using the QuantSeq 3’ mRNA-Seq Library Prep 
kit FWD for Illumina with the RNA Removal Solution-
Globin Block, Sus scrofa, according to the manufac-
turer’s protocol (Lexogen, Austria), as described by [7]. 
The constructed QuantSeq libraries were multiplexed 
using mRNA from up to 96 samples and sequenced in 
two batches. The first batch of samples was sequenced on 
the Illumina HiSeq 3000 Sequencing system (Illumina, 
USA), using single-end 50 bp sequencing to increase the 
sequencing depth [7]. The second batch was sequenced 
on the Illumina NovaSeq 6000 Sequencing system (Illu-
mina, USA), using single-end 100  bp sequencing. Each 
library was sequenced on two lanes and the sequence 
reads obtained from the two lanes were combined.

RNA‑seq read processing and gene expression 
normalization
The raw QuantSeq reads were first processed using the 
BBDuk software (https:// jgi. doe. gov/ data- and- tools/ 
bbtoo ls/ bb- tools- user- guide/ bbduk- guide/) to trim the 
adapter sequences, poly-A tails, and low-quality bases, 
and to filter out reads shorter than 20 bp after trimming. 
Read quality before and after trimming was assessed 
using the FASTQC 0.11.5 software [14]. Then, trimmed 
reads were mapped to the Sus scrofa reference genome 
sequence (SSC11.1; Ensembl, http:// www. ensem bl. org/) 
using the STAR 2.5.3a software [15]. To overcome the 
high sensitivity of 3’mRNA sequencing to 3’end gene 
annotation, the optimized method described by [7] was 
used.

Reads that mapped to the globin genes HBA and HBB 
and to genes that had a zero-count in more than 80% of 
the samples were filtered out. The remaining read counts 
were normalized across the 1594 samples by the trimmed 
mean of M values (TMM) using the EdgeR package in R 
[16]. Then, a log2 transformation was applied to the nor-
malized counts plus 1 to obtain scaled expression values 
for further analyses.

Variance component analyses of gene expression
Variance components were estimated by restricted 
maximum likelihood (REML) using ASReml 4.0 [17]. 
The genomic relationship matrix, G , was created as 
described by [10] by combining relationship matri-
ces that were created separately for each of the seven 
companies based on method 1 of VanRaden [18], using 
the preGSf90 software [19], with relationships between 

https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbduk-guide/
http://www.ensembl.org/
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companies set to zero. This allowed estimation of 
pooled within-company variance components, which 
are more relevant for closed breeding programs. The 
following general models with (WI) or without (WO) 
accounting for WBC composition were used in single-
trait analyses to estimate variance components:

where yijklm is the expression level; Batchi is a fixed batch 
effect ( i = 1, …, 50); Enrichj is the effect of provision of 
non-edible enrichment toys to some pens in qNur as part 
of another research project; Penk is the random effect of 
pen by batch in qNur, with the vector Pen ∼ N (0, Iσ 2

P ) , 
where σ2P is the pen variance; Litterijkl is the random litter 
environmental effect, with the vector Litter ∼ N (0, Iσ 2

L
) , 

where σ2L is the litter variance; Ageijklm is the covariate of 
age when the pig entered qNUR; RINijklm is the covariate 
of RIN;COMPijklm represents the covariates of the log2 
of the proportion of each of the six WBC types (lympho-
cytes, neutrophils, monocytes, basophils, eosinophils, 
and large unstained cells), which were fitted only in the 
WI model to adjust gene expression by cell composition; 
uijklm is the random additive genetic effect, with the vec-
tor u ∼ N (0,Gσ 2

A) , where G is the genomic relationship 
matrix and σ2A is the additive genetic variance; and eijklm is 
the residual effect, with the vector e ∼ N (0, Iσ 2

e ) , where 
σ
2
e is the residual variance.
Correlation analyses of estimates of heritability and 

litter effects obtained from the WO and WI mod-
els were conducted using the R software. To iden-
tify genomic regions with more highly heritable gene 
expression levels, average heritability estimates of genes 
in non-overlapping windows of 0.5  Mb were investi-
gated. Estimates of heritability and common environ-
mental effects of gene expression in human blood [1] 
were used in a comparative analysis between pigs and 
humans.

Genetic correlations of gene expression with performance 
and clinical disease traits
Gene expression data on genes with nominally signifi-
cant (p < 0.05) heritability estimates based on models 
with or without cell composition were used to estimate 
genetic correlations with the 26 performance and clini-
cal disease traits, with the latter collected on all 3205 
animals. The survivor dataset described in [10] was 
used for these purposes, i.e. including data on pigs that 
survived until slaughter for traits other than mortality. 

yijklm =Batchi + Enrichj + Penk

+ Litterijkl + Ageijklm + RINijklm

+
(

COMPijklm

)

+ uijklm + eijklm,

Genetic correlations between gene expression and 
resilience phenotypes were estimated using bivariate 
models in ASReml 4.0 [17], with the model described 
above for gene expression and models described in [10] 
for the performance and disease resilience data.

Functional enrichment analyses
The genes with heritability estimates higher than 0.02 
for expression level were functionally annotated with 
gene ontology (GO) biological processes (BP), pathways, 
and disease annotation terms using the Multi Ontology 
Enrichment Tool (MOET) provided by the Pig Portal 
within the Rat Genome Database [20]. Gene set enrich-
ment analyses (GSEA) for genetic correlation estimates 
were conducted using the GSEA_4.0.3 software [21], 
with gene sets based on GO biological processes (c5.
bp.v7.1.symbols.gmt). For this purpose, gene symbols 
were converted from pigs to humans based on orthology 
information, and BP with 10 or fewer genes or with 500 
or more genes in the dataset were filtered out.

The GSEA analyses were conducted separately for each 
analyzed performance and resilience phenotype using a 
gene list that was ranked by the genetic correlation esti-
mates from the bivariate analyses, with the following 
standard options: number of permutations = 1000; col-
lapse/remap to gene symbol = no_collapse; enrichment 
statistics = weighted. In total, 170 BP terms were signifi-
cantly enriched for at least one trait (FDR < 0.05), and 
summarized by removing redundant GO terms based on 
the REVIGO tools [22]. Although many of these 170 BP 
were significant for only one of the 26 evaluated traits, 
their level of significance with all 26 traits was used to 
cluster them using the pheatmap package in R [23]. This 
clustering was based on the signed significance level 
(-log10(FDR)) of the enrichment of each of the GO terms 
with each evaluated trait, where the sign was based on 
whether an increase in expression of core genes in the 
GO term was associated with a favorable ( +) or unfa-
vorable (−) change in the trait based on the estimates of 
the genetic correlations. Adding the sign to the signifi-
cance level allowed BP terms to be clustered based on the 
direction of the genetic correlation of gene expression 
with the evaluated traits.

Results
Heritability and litter effects for gene expression levels 
in blood of young healthy pigs
Heritabilities of the expression level of 16,545 genes were 
estimated using the WI and WO models. Figure 1 shows 
the distributions of heritability estimates for the WI 
and WO models, which were both skewed to the right. 
Mean heritability was slightly lower for the WI than for 
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the WO model (0.068 ± 0.001 versus 0.072 ± 0.001), as 
was the number of significantly heritable genes (p < 0.05) 
(4994 and 5515 for the WI and WO models, respectively, 
corresponding to 30 and 33% of all genes). Heritability 
estimates from the two models were highly correlated 
(r = 0.99). The top three heritable genes were GPNMB, 
FAM178B, and MYL4, with average heritability estimates 
based on the WI and WO models of 0.90, 0.89, and 0.89, 
respectively.

The proportions of variance in gene expression that 
was explained by litter effects (c2) were estimated to be 
quite small, as indicated by the distribution of the esti-
mates in Fig.  2. Average estimates were 0.022 ± 0.0002 
and 0.023 ± 0.0003 for the WI and WO model, respec-
tively, but estimates from the two models were highly 
correlated (r = 0.98). There were only 19 genes with 
an expression that was moderately affected by litter 
(c2 ≥ 0.2) for at least one model and most of these are 
mitochondrial genes (ND1, ND2, ND5, COX2, ATP8, and 

10 tRNA genes), along with genes on Sus scrofa (SSC) 
chromosome 5 (XLOC_016362), 12 (CCL5), 15 (ENS-
SSCG00000034554), and X (ENSSSCG00000035520).

Considering the sum of the estimates of heritability and 
litter effects, the expression of some genes had very low 
residual environmental variance estimates (Fig.  3a), pri-
marily because of high heritability estimates, with the top 
20 genes shown in Fig. 3b. Interestingly, eight genes (7 on 
the mitochondrial genome and 1 on SSCX) had large lit-
ter effects and also sizeable heritability estimates.

Genome characterization of transcriptome heritability
To identify trends depending on the physical proper-
ties of the genes, we investigated the relationship of the 
estimates of heritability of gene expression with gene 
position, average expression level, and gene length. 
The estimates of heritability of the level of gene expres-
sion showed weak but significant correlations with gene 

Fig. 1 Distribution, significance, and comparison of estimates of heritability of expression levels for 16,545 genes based on models with (WI) 
or without (WO) adjustment for cell composition. Estimates were highly correlated between the two models. The dark gray bars in the histograms 
indicate the significant genes
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length (r = 0.10, p < 0.001) and average expression levels 
(r = 0.24, p < 0.001) (See Additional file 1: Fig. S1).

Figure  4 shows that genes with heritable expression 
levels were located across all SSC chromosomes and the 
mitochondrial genome. As expected, average heritabil-
ity estimates for 0.5-Mb windows were more variable for 
windows with a small number of genes (See Additional 
file  2: Fig. S2). Therefore, only results for windows that 
contained at least five genes were plotted in Fig. 5. Win-
dows for which at least 80% of genes had significantly 
heritable expression levels (p < 0.05) were considered 
heritable regions (54 windows). For six windows, all 
genes were significantly heritable, with an average herit-
ability estimate higher than 0.2: at 11 Mb on SSC2; at 97 
and 103 Mb on SSC4; at 128.5 Mb on SSC6; at 24.5 Mb 
on SSC7; and at 7 Mb on SSC18 (Fig. 5) (See Additional 
file 2: Fig. S2).

Interestingly, one of these windows overlapped with 
the swine leukocyte antigen (SLA) complex (at 22.5 and 
24.5 Mb on SSC7). Figure 6 shows estimates of heritabil-
ity of the expression of genes located in the SLA complex. 
Note that not all genes in this region are SLA genes but 
the 10 class I SLA genes and the 12 class II SLA genes 
all had significantly heritable expression levels (p < 0.05). 
Among them, SLA-5 showed the highest heritability esti-
mate (0.76).

Comparison with heritability of blood gene expression 
in human
To compare heritabilities of gene expression lev-
els between humans and pigs, we integrated human 
orthologous genes (n = 8605) and their twin-based 
estimates of heritability in the blood transcriptome 
of humans [1]. Figure  7 shows that the estimates of 

Fig. 2 Distribution, significance, and comparison of estimates of the proportion of variance in expression levels for 16,545 genes explained by litter 
effects in models with (WI) or without (WO) adjustment for cell composition. None of the estimates were significant but they were highly correlated 
between the two models
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Fig. 3 Distribution (a) and the top 20 genes (b) based on the sum of estimates of heritability and litter effects for the level of expression of 16,545 
genes. The sum of estimates represents the highest values among the models with or without adjustment for cell composition

Fig. 4 Manhattan plot of estimates of heritability of the level of expression of 16,545 genes by location across the genome and the mitochondrial 
(MT) genome and their level of significance. For each gene, the highest estimate from models with (WI) and without (WO) adjustment for cell 
composition was plotted. Genes located on scaffolds were excluded

Fig. 5 Manhattan plot of average estimates of heritability of the level of expression of genes in non‑overlapping windows of 0.5 Mb 
across the genome and on the mitochondrial (MT) genome. Genes located on scaffolds were excluded. Each dot and triangle indicate a window 
that contained at least 5 or 10 expressed genes, respectively. Red and blue colors indicate windows for which, respectively, all or at least 80% 
of genes had expression levels that were significantly heritable (p < 0.05)
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heritability of gene expression levels in humans and 
pigs were positively but weakly correlated (r = 0.16, 
p < 0.001), while the estimates of the proportion of 
variance explained by common environmental effects 

(i.e. litter effects in our results) were not significantly 
correlated (r = 0.007, p = 0.49). In spite of these weak 
relationships, some genes had an expression level that 
was highly heritable for both pigs and humans, includ-
ing CHI3L1 (0.75 in humans and 0.57 in pigs) and 

Fig. 6 Manhattan plot of estimates of heritability of the expression of genes located in the swine leukocyte antigen complex region 
on chromosome 7. Red and blue dots indicate class I and II genes, respectively

Fig. 7 Comparison of estimates of heritability (a) and the variance explained by common environment effects (b) for the level of expression 
of comparable genes in the blood of pigs and humans
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CLU (0.54 in both species). In addition, the expression 
of ND1 had sizeable common environmental effects 
for both species (0.16 and 0.50 for humans and pigs, 
respectively).

Functional annotation of genes with heritable levels 
of expression
The level of expression of 1675 genes had heritability 
estimates of 0.2 or more (See Additional file 3: Fig. S3). 
The 1365 genes that had annotated functions among 
these were investigated for enrichment of GO terms, 
and we identified 104 significantly (FDR < 0.05) enriched 
GO biological processes, as illustrated in Fig.  8, with 
their representative terms based on semantic similar-
ity, as determined by the REVIGO algorithm [20]. The 
biological processes of cell activation, immune system 
process, response to stress, leukocyte activation, and 
regulation of immune system process showed the most 
significant enrichments (FDR < 1.0 ×  10–7). Metabolic 
processes such as protoporphyrinogen IX, hydrogen 
peroxide, phosphorus, and reactive oxygen species were 
also enriched among the more heritable genes. Figure 8 
also shows pathways that were significantly enriched 
among the more heritable genes, which included the 
porphyrin and heme metabolism-related pathways and 
the translation-related pathway (See Additional file  3: 
Fig. S3).

Figure  9 shows infectious disease-related terms that 
were most significantly enriched among the more her-
itable genes (FDR < 1.0 ×  10–8). Interestingly, the more 
heritable genes were enriched for RNA virus infections, 
including SARS-CoV2, implying possible genetic differ-
ences in host immunity against COVID-19 disease. Simi-
lar to the enriched GO biological processes, immune and 
inflammation-related disease terms were significantly 
enriched among the more heritable genes (FDR < 0.01). 
Figure  9 also shows that the more heritable genes were 
associated with a wide range of diseases, including liver 
disease, pathological signs, musculoskeletal disease, 
hemic and lymphatic disease, and respiratory system 
disease.

Genetic correlations of gene expression with performance 
and clinical disease traits
In total, 5665 genes with nominally significant (p < 0.05) 
heritability estimates based on models with or without 
cell composition were investigated for further analy-
sis of genetic correlations of their expression levels 
with 26 performance and clinical disease traits that 
were collected in qNur, cNur, and Fin. Figure 10 shows 
the numbers of genes with an expression level that had 
nominally significant (p < 0.05) genetic correlations 
with each performance and clinical disease phenotype. 
However, genes that showed significant genetic corre-
lation estimates with an FDR < 0.20 were limited to the 

Fig. 8 Functional enrichment analysis of genes with heritability estimates of expression higher than 0.2 for gene ontology biological processes 
and pathways based on the pig portal within the rat genome database. Significant biological process terms (FDR < 0.05; n = 104) were grouped 
based on semantic similarity by REVIGO, which yielded 14 over‑represented terms
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Fig. 9 Top 20 disease annotation terms of the pig portal within the rat genome database that were significantly enriched for genes with heritability 
estimates of expression greater than 0.2

Fig. 10 The number of genes with a level of expression that was significantly genetically correlated with performance and clinical disease 
traits for models with (WI) or without (WO) adjustment for cell composition. The numbers in the bars indicate the number of significant genes 
with an FDR < 0.20 based on the WO and/or WI models



Page 11 of 17Lim et al. Genetics Selection Evolution           (2023) 55:90  

feed efficiency traits ADFD (n = 1), FCR (n = 1), and RFI 
(n = 3), and to the carcass traits carcass weight (CWT, 
n = 2), DRS (n = 27), LYLD (n = 98), CBF (n = 122), and 
CLD (n = 4). Genes with expression levels that had highly 
significant genetic correlation estimates (> 0.65) were 
XLOC_005262 with FCR, PER3 and BATF2 with RFI, 
XLOC_001578, ENSSSCG00000004415, XLOC_021659, 
and GORASP2 with LYLD, and XLOC_001578, ENS-
SSCG00000004415, and XLOC_021659 with CBF.

Gene set enrichment analysis of genetic correlations 
across genes and phenotypes
Although there were sizable numbers of genes with sig-
nificant genetic correlation estimates (FDR < 0.20) for 
carcass traits, the statistical power to estimate genetic 
correlations at the individual gene level was limited 
for most traits. Thus, to determine whether the level of 
expression of genes that are associated with certain bio-
logical processes exhibited directional genetic correlation 
estimates with certain performance and disease resilience 
traits, GSEA were conducted. For this purpose, for each 
recorded phenotype, the 5665 genes were ranked based 
on the signed p-value of their genetic correlation estimate 
with the trait, with the sign of the p-value representing 
that of the corresponding genetic correlation estimate, 
such that the genes were ranked from those that had 
the most significant positive to those with the most sig-
nificant negative genetic correlation estimate. Figure  11 

shows the GSEA results for 170 GO biological processes 
that were significantly (FDR < 0.05) enriched for at least 
one performance or clinical disease phenotype. Hier-
archical clustering of the BP based on the signed sig-
nificance (− log10(FDR)) of their enrichment, identified 
seven clusters, of which five were related to innate and/or 
adaptive immunity.

These enriched immune-related clusters generally 
showed an unfavorable relationship with HS, TRT, and 
ADFD, which indicates that the higher expression of 
genes annotated for BP in these clusters tended to show 
unfavorable genetic correlations with these phenotypes. 
In contrast, these clusters generally showed a favorable 
relationship with RFI, CWT, and CLD. The cluster at the 
bottom of the heatmap of Fig. 11 consists of cytokine pro-
duction and defense response, which are involved in both 
innate and adaptive immunity and showed similar rela-
tionships with HS, TRT, ADFD, RFI, CWT, and CLD as 
described for the immune-related clusters. The clusters 
of innate immunity and inflammation showed stronger 
enrichment for TRT recorded in cNur than for the other 
traits, while more terms in the clusters of adaptive immu-
nity appeared significant for ADFD, which was measured 
in the finisher. The innate immunity cluster that contains 
interferon-related terms showed significant enrichments 
for ADG in qNur as well. The term of positive regula-
tion of neuron differentiation in the adaptive immunity 
cluster showed unfavorable genetic correlations with 

Fig. 11 Biological processes (n = 170) that were significantly enriched (FDR < 0.05) among the genes ranked by p‑values and directions 
of the genetic correlation estimates with at least one performance or clinical disease phenotype. Color intensity represents the significance 
(− log10(FDR)) of the enrichment and green/red color indicates that an increase in the expression of core genes in that biological process had 
favorable/unfavorable genetic correlations with the trait
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mortality in the finisher for both the WO and WI models. 
The adaptive immunity cluster with interleukin 8 produc-
tion and leukocyte proliferation showed clear favorable 
genetic relationships with CLD.

Various non-immune functions were enriched for 
ADFD, including the porphyrin containing compound 
metabolic process, cellular response to toxic substance, 
the pigmentation biosynthetic process, the hydrogen 
peroxide catabolic process, mitochondrial membrane 
organization, and positive regulation of ATPase activity. 
Moreover, TRT across the challenge nursery and finisher 
was favorably related to regulation of alcohol biosyn-
thetic process, chaperone mediated protein folding, and 
DNA templated transcription termination.

Discussion
The objective of this study was to investigate the blood 
transcriptome of young healthy pigs as a source of poten-
tial genetic indicators for disease resilience. To be useful 
for genetic improvement, indicator traits must be herita-
ble and have a sizeable genetic correlation with the target 
trait(s), i.e. disease resilience in this case. To our knowl-
edge, this represents the largest quantitative genetic 
analysis of gene expression in livestock in terms of the 
number of animals with RNAseq data. It is also the first 
study to comprehensively investigate the use of blood 
transcriptome data on healthy animals as genetic indica-
tors for disease resilience.

Heritability and common environmental effects of gene 
expression
Expression of 16,545 genes was detected in blood sam-
ples of the analysed population of young and visually 
healthy pigs, of which 5665 genes showed significantly 
heritable expression levels (p < 0.05), supporting their 
potential usefulness as genetic indicators for selection 
in pigs. Estimates of heritability from the models with 
(WI) and without (WO) correction for cell composition 
were highly correlated (r = 0.99). The most significant 
heritability estimates were detected for the WO model 
(n = 5515) but the expression of 150 genes was significant 
for the WI model but not for the WO model (Fig. 1), sug-
gesting the utility of the adjustment for the cell composi-
tion in the genetic analysis of blood transcriptome data, 
at least for these genes.

Genes such as GPNMB, FAM178b, and MYL4 showed 
the highest heritability estimates (around 0.9) (Fig.  3b). 
The expression of these genes also showed genetic cor-
relations with resilience phenotypes such as CLD and 
ADFD. Previous studies in humans have identified rela-
tionships of these three genes with familial diseases such 
as Alzheimer’s disease [24], bipolar disorder [25], and 

atrial cardiomyopathy [26], respectively. Therefore, the 
high heritability of the level of expression of these genes 
in early life and their genetic correlations with disease 
resilience phenotypes suggest that genetic factors could 
play a role in determining the risk of pigs developing 
these or related health problems.

Compared to estimates of heritability, the propor-
tions of variance in gene expression that were explained 
by common environmental (litter) effects were lim-
ited, except for several mitochondrial genes and several 
genes on the sex chromosomes (Fig.  2). The limited lit-
ter effects on autosomal genes reflects the nature of 
gene expression at a given stage (~ 1 week after weaning 
and ~ 40 days of age) when passive immunity transmitted 
from the sow decreases and active immunity of the pig-
let itself increases. This is supported by the higher herit-
ability estimates and smaller litter effects for levels of IgM 
compared to IgG natural antibodies in blood taken at the 
same time on these pigs, as described by [6]. The IgG but 
not the IgM isotype can be transmitted from the mother 
to the fetus via the placenta in humans [27] and through 
the colostrum in cattle [28] and pigs [29]. However, one 
autosomal gene, i.e. chemokine (C–C motif ) ligand 5 
(CCL5) had an expression level that was sizably affected 
by litter effects (estimates of 0.20 and 0.19 based on the 
WO and WI models, respectively). Previous reports have 
shown that maternal immune activation during preg-
nancy can increase the mRNA expression level of Ccl5 in 
the embryonic brain in mice [30, 31], supporting a signif-
icant litter effect for CCL5 observed here in young pigs. 
The expression of CCL5 was also heritable, with esti-
mates of 0.17 and 0.21 based on the WO and WI models, 
respectively, and had significant favorable genetic corre-
lation estimates with LYLD and CBF.

The larger common litter effects that were observed 
for multiple genes on the mitochondrial genome and sex 
chromosomes reflect that mitochondrial DNA and the 
single copies of the X and Y chromosomes that males 
carry originated from a single parent, while the model of 
analysis assumes bi-parental inheritance of gene expres-
sion levels. Thus, at least part of the observed litter 
effects for these genes may reflect genetic effects of (cis-)
eQTL on the mitochondrial genome or sex chromosomes 
that were not picked up by the bi-parental genetic effect 
assumed in the analysis model. Interestingly, the expres-
sion of mitochondrial genes such as ND1, ND2, and 
ATP8 also had sizeable estimates of heritability (Fig. 3b). 
This implies that at least some of the eQTL for mitochon-
drial genes are autosomal, which is supported by previ-
ous eQTL studies for mitochondrial genes in humans 
[32] and pigs [33]. Note that some of the litter effects that 
were observed for autosomal genes could also be caused 
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by eQTL that are located on mitochondrial DNA and sex 
chromosomes.

Genomic and functional characterization of transcriptome 
heritability
Studies on blood in humans have reported enrichment 
of genes with heritable levels of gene expression in gene-
poor regions of the genome [1] and positive correlations 
of estimates of heritability for a gene with its length and 
its level of expression [3]. We also observed positive rela-
tionships of gene length and the level of gene expression 
with estimates of heritability (See Additional file  1: Fig. 
S1) but their magnitude was small in our data. In addi-
tion, in our results for pigs, genes with heritable levels of 
expression were spread across the chromosomes (Fig. 4) 
and the number of expressed genes in a 0.5-Mb window 
was not significantly associated with the average herit-
ability of the levels of expression of genes in the window 
(See Additional file 2: Fig. S2). Therefore, we focused on 
0.5-Mb windows with at least five expressed genes to 
identify heritable gene regions (Fig. 5). The window with 
the highest average heritability (0.29) was at 24.5–25 Mb 
on SSC7. This window contains the SLA class II genes 
(Figs.  5 and 6), i.e. HLA-DRA, SLA-DRB1, SLA-DQA1, 
SLA-DQB1, and HLA-DOB, which all had significant 
(p < 0.001) estimates of heritability. These genes show 
a high level of homology to human leukocyte antigen 
(HLA) class II genes [34]. In humans, the levels of expres-
sion of HLA-DRA and HLA-DOB in blood were also sig-
nificantly heritable (p < 0.01) [1].

Heritability estimates of the level of expression in blood 
of orthologous genes between pigs and humans showed 
a weak positive correlation (Fig.  7), possibly because of 
species differences and differences in blood sampling 
times and conditions. Previous studies on humans were 
conducted on the blood from healthy adult individuals [1, 
3], while we focused on the blood from healthy young or 
juvenile pigs. However, the positive relationship between 
estimates of heritability of orthologous genes and the siz-
able number of genes (n = 1125) that had significant her-
itability estimates for expression level (p < 0.05) for both 
pigs and humans implies some similarities in the genetics 
of gene expression in blood between pigs and humans.

Genes with heritable levels of gene expression (esti-
mates higher than 0.2) were enriched for various 
immune-related biological processes based on GO terms 
such as cell activation, immune system process, response 
to stress, and leukocyte activation (Fig.  8). This likely 
reflects that the piglets were developing their own active 
immunity, in a natural process associated with aging 
and possibly in response to several common stressors 
that they experienced, including weaning, transporta-
tion, mixing, and new feed ingredients. Interestingly, the 

infectious disease-related annotations provided by the 
Rat Genome database showed the highest enrichment for 
genes with heritable levels of gene expression (Fig. 9). The 
heritable expression levels in the blood of young healthy 
pigs for genes related to immunity and disease infection 
implies that host genetics can contribute to variation in 
disease resilience in pigs. The heritable expression of dis-
ease-related genes in pigs can also have implications for 
the use of the pig as a biomedical model for humans [35, 
36]. The highly significant enrichment of genes that were 
annotated for COVID-19 among the genes with herit-
able expression levels support previous studies on the 
role of host genetics on the susceptibility of humans to 
COVID-19 infections using GWAS and candidate gene 
approaches [37].

Genetic correlations of the blood transcriptome 
with disease resilience
Using a subset of the data used here, Lim et  al. [7] 
described phenotypic associations of the level of gene 
expression in the blood of young healthy pigs with the 
subsequent resilience of these pigs to disease. Here, we 
further investigated the genetic basis of these associa-
tions, by estimating genetic correlations of gene expres-
sion levels with performance and disease resilience traits, 
focusing on 5665 genes with heritable expression levels 
(p < 0.05).

Estimating the genetic correlation between gene 
expression levels and phenotypes, as in our study, is con-
sidered the “gold standard” for identifying genes with a 
level of expression that is genetically correlated with 
a target phenotype [38]. As a proxy, Gusev et  al. [38] 
used so-called transcriptome-wide association stud-
ies (TWAS) to identify such genes. In TWAS, a training 
dataset with gene expression and whole-genome SNP 
genotype data is used to develop genomic predictions for 
the expression of each gene, which are then used to pre-
dict the level of expression of genes across the genome 
in a dataset consisting of individuals that have SNP geno-
types and phenotypes for the target trait. The resulting 
genomic predictions of gene expression are then cor-
related with the target phenotype. Significant correla-
tions are expected to be the result of genetic effects that 
affect both the level of gene expression and the target 
phenotype. However, they are not directly comparable to 
genetic correlations, which quantify correlations between 
true genetic values for pairs of traits. In the present study, 
we used a large dataset with SNP genotypes and target 
phenotypes, of which a subset also had gene expres-
sion data. For such a data structure, direct estimation of 
genetic correlations using phenotypes for multiple traits 
on relatives is well accepted to be the gold standard to 
quantify genetic correlations between traits [39].
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Significant genetic correlations (p < 0.05) of the level of 
expression for some genes were observed for each per-
formance and resilience phenotype investigated (Fig. 10) 
but the number of genes with low false discovery rates 
was limited for most traits. To overcome the limited 
power of the estimation of genetic correlations for indi-
vidual genes, we used GSEA to combine evidence of 
directional genetic correlations of the level of expres-
sion of genes that are associated with certain biological 
processes (Fig.  11). In general, the directions of enrich-
ments were similar for the GSEA results based on genetic 
correlations estimated using the WO and WI models for 
gene expression, but the magnitude of significance levels 
was lower for the WI model, except for genetic correla-
tions with ADFD and CLD, implying that cell composi-
tion affects the transcriptome data in blood and can 
also impact the genetics of disease resilience. The level 
of expression of genes involved in biological processes 
related to innate and adaptive immunity showed unfa-
vorable genetic correlations with resilience phenotypes 
measured in the challenge nursery and finisher, except 
for RFI (Fig.  11). In other words, under the circum-
stances inherent to this trial, visually healthy piglets with 
higher levels of expression of immunity-related genes in 
blood may be less resilient genetically when exposed to 
major pathogens. A similar relationship was identified 
at the phenotypic level by Lim et al. [7]. Corresponding 
to the general sequence of immune response, biologi-
cal processes related to innate immunity showed strong 
enrichment for genetic correlations with resilience traits 
during the challenge nursery, especially for TRT, MT, and 
growth rate, while biological processes related to adap-
tive immunity were more significant for genetic correla-
tions with feed intake related traits in the finisher, such 
as ADFI and ADFD. The cytokine-related terms across 
innate and adaptive immunity, including interleukins (1 
and 8) and interferons (type I and type II), indicated the 
usefulness of their expression levels as genetic indicators 
of disease resilience. An inflammatory response is gener-
ally triggered to remove foreign substances or pathogens 
that invade from outside, but excessive inflammation 
can harm health, accelerate aging, and cause damage to 
organs [40]. Hence, the higher expression levels of innate 
immunity-related genes observed in the blood of some 
visually healthy piglets may be due to their susceptibil-
ity to common stressors after weaning and may induce 
excessive activation of inflammation response and clinic 
symptoms when they are exposed to pathogens.

Interestingly, our GSEA results showed an enrich-
ment of genes associated with several interferon related 
biological processes among genes with negative genetic 
correlations with growth rate in the quarantine nursery, 
i.e. prior to the exposure of pigs to pathogens, which may 

reflect another biological mechanism that may be associ-
ated with genetics of disease resilience. Hodes et al. [41] 
reported that susceptibility to social stress was related 
to individual differences in cytokine profiles in blood, 
supporting a possible relationship between blood gene 
expression pattern in these young pigs following weaning 
and their future disease resilience. They [41] suggested 
that the P62 protein suppressed inflammation, but in our 
data the level of expression of its coding gene, SQSTM1, 
had a very low heritability estimate (< 0.03 from both 
models). Nevertheless, genes involved in the inhibition 
of excessive inflammation could be a good start point for 
further studies that target disease resilience.

The biological process of the positive regulator of neu-
ron differentiation was enriched for favorable genetic 
correlations with mortality in the finisher (Fig. 11). Sev-
eral common infectious diseases in swine are associated 
with central nervous disorders, such as Glässer’s disease 
and Aujezsky’s disease [42]. Glasserella paresis infection 
was confirmed to be present in the NDCM. This suggests 
that the expression level of genes associated with the 
neural system as a response to non-infectious stressors in 
young healthy pigs could be a target for evaluating their 
resilience to infectious disease in the future.

Interestingly, the higher expression of genes associ-
ated with the biological process of chaperone mediated 
protein folding was genetically associated with lower 
treatment rates across the challenge nursery and fin-
isher periods (Fig. 11). The expression of HSPH1, one of 
the core genes in this enriched gene set, had significant 
genetic correlations with AllTRT (rg = -0.62 ± 0.30 and 
-0.66 ± 0.29 for the WO and WI modes, respectively). 
Several previous studies have reported that the expres-
sion of HSPH1 was altered during infection with por-
cine reproductive and respiratory syndrome virus [43, 
44] and with porcine circovirus type 2 [45], supporting 
the genetic association of HSPH1 expression in healthy 
young pigs with lower health treatment rates in the cur-
rent study.

The expression of genes involved in the regulation of 
adaptive immune response showed enrichment among 
genes with favorable genetic correlations with CLD 
(Fig.  11). Among the core enriched genes for the regu-
lation of adaptive immune response, three genes, i.e. 
ANXA1, CD1D, and IL10, showed significant genetic cor-
relations with CLD for both the WO and WI models for 
gene expression. A favorable phenotypic association of 
the level of annexins A1 coded by the ANXA1 gene with 
resistance to respiratory disease was reported in weaned 
beef calves by [46]. Annexin A1 has an anti-inflammatory 
activity by inducing macrophages to secrete the anti-
inflammatory cytokine IL-10 [47]. These results suggest 
that a higher expression of ANXA1 and IL10 in the blood 
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of young healthy pigs may be associated with a reduc-
tion of the deleterious effects of inflammatory responses 
when exposed to infectious disease, helping to maintain 
the ability to produce lean meat towards market age.

Our finding that certain GO terms were enriched 
among the genes with a level of expression that had larger 
(positive or negative) genetic correlations with perfor-
mance and disease resilience traits, suggests that the 
blood transcriptome of young healthy pigs can be used 
to predict breeding values for these traits. Several meth-
ods to incorporate intermediate -omics traits in genomic 
prediction of breeding values for traits of interest have 
recently been developed [48, 49]. These methods are 
being applied to these data in ongoing studies.

Conclusions
In a previous study, we identified phenotypic associa-
tions between the blood transcriptome of healthy young 
pigs and their subsequent disease resilience [7]. Here, a 
larger population-scale transcriptome and phenotype 
dataset was generated and we focused on the genetic 
analysis of the blood transcriptome and its genetic cor-
relations with subsequent resilience phenotypes. We 
identified genes with heritable expression levels in blood 
of young and visually healthy pigs. These genes were 
spread across the genome but the SLA region was iden-
tified as one of the genomic regions where the heritable 
genes were clustered. The genes with a heritable expres-
sion were enriched for various disease-related terms. In 
addition, we detected genetic correlations of the blood 
transcriptome of visually healthy weaned piglets with 
disease resilience, represented by clinical and perfor-
mance traits under a natural polymicrobial disease chal-
lenge. Gene set enrichment analyses suggested that the 
expression levels of genes related to innate and adaptive 
immunity in the blood of visually healthy weaned piglets 
are genetically correlated with disease resilience. Taken 
together, this study supports the possible use of the blood 
transcriptome of healthy weaned piglets as a genetic indi-
cator to select for disease resilience in pigs, although fur-
ther research is needed to confirm these associations and 
crystalize the salient features of the blood transcriptome 
of young healthy pigs.
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