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Abstract 

Background Automatic and continuous recording of vaginal temperature  (TV) using wearable sensors causes mini-
mal disruptions to animal behavior and can generate data that enable the evaluation of temporal body temperature 
variation under heat stress (HS) conditions. However, the genetic basis of  TV in lactating sows from a longitudinal per-
spective is still unknown. The objectives of this study were to define statistical models and estimate genetic param-
eters for  TV in lactating sows using random regression models, and identify genomic regions and candidate genes 
associated with HS indicators derived from automatically-recorded  TV.

Results Heritability estimates for  TV ranged from 0.14 to 0.20 over time (throughout the day and measurement 
period) and from 0.09 to 0.18 along environmental gradients (EG, − 3.5 to 2.2, which correspond to dew point values 
from 14.87 to 28.19 ˚C). Repeatability estimates of  TV over time and along EG ranged from 0.57 to 0.66 and from 0.54 
to 0.77, respectively.  TV measured from 12h00 to 16h00 had moderately high estimates of heritability (0.20) 
and repeatability (0.64), indicating that this period might be the most suitable for recording  TV for genetic selection 
purposes. Significant genotype-by-environment interactions (GxE) were observed and the moderately high estimates 
of genetic correlations between pairs of extreme EG indicate potential re-ranking of selection candidates across EG. 
Two important genomic regions on chromosomes 10 (59.370–59.998 Mb) and16 (21.548–21.966 Mb) were identified. 
These regions harbor the genes CDC123, CAMK1d, SEC61A2, and NUDT5 that are associated with immunity, protein 
transport, and energy metabolism. Across the four time-periods, respectively 12, 13, 16, and 10 associated genomic 
regions across 14 chromosomes were identified for  TV. For the three EG classes, respectively 18, 15, and 14 associated 
genomic windows were identified for  TV, respectively. Each time-period and EG class had uniquely enriched genes 
with identified specific biological functions, including regulation of the nervous system, metabolism and hormone 
production.

Conclusions TV is a heritable trait with substantial additive genetic variation and represents a promising indicator 
trait to select pigs for improved heat tolerance. Moderate GxE for  TV exist, indicating potential re-ranking of selec-
tion candidates across EG.  TV is a highly polygenic trait regulated by a complex interplay of physiological, cellular 
and behavioral mechanisms.
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Background
Heat stress (HS), which occurs when an individual cannot 
dissipate body heat adequately to maintain thermal equi-
librium under hot conditions, is a common problem in 
livestock production [1]. It compromises animal welfare 
and causes significant economic losses in animal produc-
tion, reproductive performance, and animal health [2–4]. 
Furthermore, intensive genetic selection for a limited 
number of performance traits, such as litter size and milk 
yield (through litter weight at weaning), has contributed 
to increased metabolic heat production in modern sows 
and may have led to their greater sensitivity to environ-
mental conditions [5]. Global warming further aggravates 
these effects and highlights the need for selecting more 
climatic resilient animals. Over the past decades, numer-
ous studies have investigated the underlying mechanisms 
of the response to HS in various species [6–11]. Dozens 
of genes and quantitative trait loci (QTL) associated with 
response to HS have been identified [12, 13].

Measurements of core body temperature have been 
widely used and are considered reliable indicators for 
HS in livestock [14]. Unlike other core body tempera-
ture indicators (e.g., rectal temperature), automatically-
measured vaginal temperature  (TV) reduces disruptions 
in animal behavior, captures diurnal changes in body 
temperature, and allows continuous data to be recorded 
[15, 16]. A sensitive HS indicator that is not affected by 
disturbances from animal behaviors can play an impor-
tant role in breeding programs, especially for lactating 
animals that are more heat-sensitive due to greater meta-
bolic heat production compared to non-lactating sows 
[17]. However, little is known about the genetics of con-
tinuously-monitored  TV (i.e., longitudinal data) as a HS 
indicator in lactating sows.

Random regression models (RRM) have been used 
in breeding to investigate longitudinal data, as they can 
provide more precise results over time and across envi-
ronmental gradients (EG) than other methods [18, 19]. 
Legendre orthogonal polynomials (LEG) are common 
functions that are used to model the fixed and random 
trajectories for longitudinal traits. However, B-spline 
functions (BS) can provide a similar fit to the data with-
out having implausible estimates at the extremes of the 
trajectory curves that often result when fitting high-order 
polynomials [20]. However, fitting too many BS param-
eters can result in convergence problems and high com-
putational requirements.

Gene expression data from broiler small intestine tissue 
and caenorhabditis elegans has been shown to exhibit a 
temporal dynamic profile during HS conditions [21, 22], 
since some genes have a greater role in specific regula-
tory functions and stages of HS response or recovery. 
This suggests that the effects of HS-related genes may 

vary with time or with environmental conditions. In 
addition, Oliveira et al. [23] showed that, when longitu-
dinal traits are analyzed in dairy cattle (e.g., milk produc-
tion and somatic cell score), differential sets of candidate 
genes are identified for different lactation stages.

Intra-vaginal sensors [24] enable automatic record-
ing of Tv, which enables evaluation of the genetics of 
response to HS in lactating sows from a longitudinal 
perspective, and to identify genomic regions, candidate 
genes, biological processes, and metabolic pathways 
associated with this trait. Such analyses could contrib-
ute to understanding potential changes in the biological 
mechanisms that underlie functions involved in coping 
with HS and to optimize genetic progress for climatic 
resilience. Worldwide breeding programs are conducted 
on farms with considerably different environmental con-
ditions and management choices [25], and can provide 
data to investigate the presence of significant genotype-
by-environment interactions (GxE) for heat tolerance 
in lactating sows. Therefore, the main objectives of this 
study were to: (1) define statistical models and esti-
mate genetic parameters for automatically-recorded 
Tv in lactating sows at different time points throughout 
the day and along EG; (2) assess potential GxE interac-
tions for heat tolerance of lactating sows; and (3) identify 
genomic regions and biological processes that contribute 
to response to HS in maternal-line lactating sows from a 
longitudinal perspective.

Methods
Animals and datasets
All datasets used in this study were collected on a com-
mercial farm in Maple Hill, NC, USA (34.70738° N, 
77.73653° W) as previously described by Johnson et  al. 
[24]. Sows were provided ad  libitum access to feed and 
water. The  TV of 1381 sows from the studied popula-
tion, which included 1645 lactating sows (parities 2 to 
7; Landrace × Large White cross), was automatically 
measured every 10  min for 5 consecutive days between 
days 8 to 20 of lactation, as previously described [24]. 
In total, 932,681  TV records were obtained. First parity 
sows were not included in this study because the farm 
where the experiment was conducted had only second 
and later parity sows (a common practice in some regions 
in North America). The ambient temperature  (Ta) and 
relative humidity (RH) of each room were recorded 
every five min [24], from which dew points were calcu-
lated using the Magnus–Tetens equation. Dew point is a 
thermal index that takes both temperature and humidity 
into account, and was chosen as environmental indicator 
due to its ability to accurately represent heat stress con-
ditions, as previously demonstrated [30]. Outliers with 
environmental and  TV records that deviated by more 
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than 3.5 standard deviation (SD) from the mean were dis-
carded.  TV records below 37 °C were also deleted.

In total, 1639 sows (including all sows with phenotypic 
records) were genotyped using the PorcineSNP50K Bead 
Chip (50,703 SNPs; Illumina, San Diego, CA, USA). For 
quality control (QC) of the genotype data, single nucleo-
tide polymorphisms (SNPs) with a minor allele frequency 
(MAF) higher than 0.01, or that had an extreme differ-
ence between observed and expected heterozygous fre-
quencies less than 0.15, and SNPs and samples with a call 
rate greater than 0.90 were kept for further analyses. The 
QC was implemented using the BLUPF90 + family soft-
ware [26] and 49,547 SNPs and 1639 animals remained 
for further analyses. A schematic representation of all 
analyses performed in the study is shown in Additional 
file 1: Fig. S1.

Statistical models to estimate genetic parameters 
across time
Twelve single-trait RRM models were evaluated, with 
random regressions fitted as time-derived covariates 
using LEG (linear, quadratic, and cubic) and BS (linear, 
quadratic, and cubic with 5, 6, or 7 knots). The general 
formulation of the RRM used for the estimation of vari-
ance components and genome-wide association study 
(GWAS) is:

where yijklmn is the n th  TV observation, recorded at the 
j th time point of animal i from the k th parity, at location 
l , and date of measurement m ; Park is the fixed effect of 
the k th parity of animal i ; Locl is the fixed effect of the 
l th location (e.g., barn and room within barn) of animal 
i ; Datem is the fixed effect of the m th measurement date 
of animal i ; γir is the r th fixed regression coefficient spe-
cific for the time trajectory; αir and ρir are the r th ran-
dom regression coefficients that describe the trajectory 
of the additive genetic effects and permanent environ-
mental effects of animal i , which were assumed to follow 
α ∼ N

(
0,Gσ2a

)
 and ρ ∼ N(0, Iσ2pe) , respectively, where 

G is the genomic relationship matrix built according to 
VanRaden’s Method 1 [27]; φr(tij) is the covariate of the 
regression function with time using LEG or BS; tij is the 
j th time point at which  TV was measured throughout 
the day (24 h) for animal i ; and R is the order of the LEG 
or BS for the fixed regression effects, genetic additive 
random effects, and permanent environmental effects. 

yijklmn = Park + Locl + Datem +

R∑

r=1

γirφr
(
tij
)

+

R∑

r=1

αirφr
(
tij
)
+

R∑

r=1

ρirφr
(
tij
)
+ eijklmn,

The same polynomial order was fitted for the additive 
genetic and permanent environmental effects, as previ-
ously suggested [28]. The random residual effect ( eijklmnr ) 
was assumed to be distributed homogeneous or hetero-
geneous throughout the day. For the latter, residual vari-
ance (RV) was modelled considering six periods of 4  h 
(00h00–04h00, 04h00–08h00, 08h00–12h00, 12h00–
16h00, 16h00–20h00, 20h00–24h00)].

The LEG were obtained as proposed by Kirkpatrick et al. 
[29] and the first three polynomial orders were evaluated. 
B-spline functions [20] with equally-spaced knots (n = 5, 6, 
or 7) and degrees (linear—L, quadratic—Q, cubic—C) for 
the additive genetic and permanent environmental effects 
were evaluated. The RRM models using BS are referred to 
as ‘BSX Ka Kpe’, where X = L, Q, or C, that is, the degree of 
each polynomial segment, and Ka and Kpe are the numbers 
of random regression coefficients for the additive genetic 
and permanent environmental effects, respectively. The 
RRM models using LEG are referred to as ‘LEG X’, where X 
is the Legendre orthogonal polynomial order for the addi-
tive genetic and permanent environmental effects. Thus, 
model BSQ88 consists of a quadratic B-spline function 
with eight random regression coefficients for the additive 
genetic and permanent environmental effects, and model 
LEG4 fits additive genetic and permanent environmental 
regressions based on fourth-order Legendre orthogonal 
polynomials. The (co)variances components and genetic 
parameters for  TV over 24 h were estimated based on the 
best model (lowest Bayesian information criterion—BIC 
and highest accuracy of genomic predictions) using the 
AIREML algorithm implemented in the BLUPF90 + pro-
gram [26].

Statistical models to estimate genetic parameters 
across environmental gradients
A reaction norm model (RNM) was implemented using 
the BLUPF90 + program [26] to evaluate GxE interactions, 
with EG derived by standardizing the dew point as: stand-
ardized dew point = (actual dew point – mean dew point)/
standard deviation of dew point. The mean and standard 
deviation of dew point was 23.052 °C and 2.335 °C, respec-
tively. The statistical model used can be described as:

where yijklmno is the o th observation for  TV for animal i ; α 
is the intercept; Park is the fixed effect of the k th parity of 
animal i ; Locl is the fixed effect of the l th location (e.g., 
barn and room within barn) of animal i ; Hourm is the 
fixed effect of the m th measurement hour for animal i . β 
is the fixed regression coefficient on EG, ϕ1k is the EG 

yijklmno = α1+ Park + Locl +Hourm + βϕ1k

+a0i1+ a1iϕ1k + p0i1+ p1iϕ1k + eijklmno,
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vector value k , a0l and a1l are the random regression 
coefficients for the intercept and slope of the additive 
genetic effect of individual i , p0i and p1i are the random 
regression coefficients for the intercept and slope of the 
random permanent environmental effect of individual i , 
and eijklmno the residual effect, which was assumed dis-
tributed homogeneous or heterogeneous throughout the 
HS period, as described above. The following assump-
tions were made for the additive genetic effects: [
a0
a1

]
∼ N(0,G⊗ Kab) and 

[
p0
p1

]
∼ N(0, I⊗ Kcd) , and 

Kab and Kcd are both 2 × 2 (co)variance matrices for the 

intercept and slope effects, with Kab =

[
σ
2
0 σ01

σ10 σ
2
1

]
 , where 

σ
2
0 is the additive genetic variance for the intercept term, 

σ
2
1 is the additive genetic variance for the slope term, σ10 

and σ01 are the covariances between the two aforemen-

tioned effects, and Kcd =

[
σ
2
p0 σp0p1

σp1p0 σ
2
p1

]
 , where σ2p0 is the 

permanent environmental variance for the intercept 
term, σ2p1 is the permanent environmental variance for 
the slope term, σp1p0 and σp0p1 are the covariances 
between the two aforementioned effects.

Genetic and environmental (co)variance matrices for 
each time point were defined and calculated as in Oliveira 
et al. [19]. A one-tailed t-test was performed to determine 
if there was significant GxE interactions, indicated by the 
variance of the RNM slope significantly differing from 
zero. After obtaining (co)variance components, estimates 
of heritability and repeatability for  TV over time were cal-
culated based on the following equations:

where h2i  , ri , σ̂
2
ai

 , σ̂ 2
pei

 , σ̂ 2
ei

 are the estimates of heritability, 
repeatability, additive genetic variance (VAG), perma-
nent environmental variance (VPE), and RV for the i th 
time point. The estimate of heritability for  EGi was calcu-
lated as follows [31], h2i =

σ̂
2
ui∑

σ̂2ni
+σ̂2e

 , where σ̂2ui is the esti-

mate of the additive genetic variance, which was 
computed as σ̂

2
ui
= σ̂

2
a0
+ 2σ̂a0a1 θ̂i + σ̂

2
a1
(θ̂i)

2
 , and the 

denominator is the estimate of the phenotypic variance, 
with 

∑
σ̂
2
ni
=

∑
σ̂
2
n0

+ 2σ̂n0n1 θ̂i + σ̂
2
n1
(θ̂i)

2
 , where n refers 

to the random effects fitted for  TV. For the model fitted 
with heterogenous residual variances, the component σ̂2e 
was calculated as σ̂2ei = exp(d0 + d1θ̂i) . The estimate of 
the genetic correlation between  EGi and i

′

(r
ii
′ ) was 

h2i =
σ̂ 2
ai

σ̂ 2
ai
+ σ̂ 2

pei
+ σ̂ 2

ei

,

ri =
σ̂ 2
ai
+ σ̂ 2

pei

σ̂ 2
ai
+ σ̂ 2

pei
+ σ̂ 2

ei

,

calculated as: r
ii
′ =

σ̂u
ii
′√

σ̂2ui
σ̂2u

i
′

 , where σ̂u
ii
′ is the estimate of 

the covariance of additive genetic effects between  EGi 
and i

′

 , which was computed as 
σ̂u

ii
′ = σ̂

2
a0
+ σ̂a0a1 θ̂i + σ̂a0a1 θ̂i

′ + σ̂
2
a1
θ̂iθ̂i

′.

Comparison of models
The BIC [32] was used to choose the best models, with 
models with a lower BIC value providing a better fit of 
the data. The BIC for a model with k estimated param-
eters and n observations was calculated as:

where −2logL is the restricted maximum log likelihood 
value of the model. In addition, fivefold cross-validation 
was used to compare prediction accuracies of the RRM 
using LEG and BS functions (LEG4 and BSQ88) [33]. 
For this purpose, the population was randomly allo-
cated to five groups. For a given fold, one group was in 
turn assigned with missing phenotypic values and used 
as a validation dataset, and the other four groups were 
used as the training dataset. Genomic estimated breed-
ing values (GEBV) for the full dataset were calculated for 
all animals considering the phenotypes from all sows in 
all groups. The Pearson correlations between GEBV for 
each time point for sows from the validation dataset and 
the corresponding GEBV for sows from the full dataset 
were calculated. The obtained average prediction accura-
cies across time points were used to select the best model 
for further analyses.

Genome‑wide association studies
Genome-wide association studies were implemented 
with a sliding window of 10 consecutive SNPs to map 
genomic regions that are associated with  TV, using the 
postGSf90 software [26]. The same models used to esti-
mate the variance components were implemented for the 
GWAS. Four HS time-periods throughout the day were 
used to investigate the genomic regions that are asso-
ciated with  TV at each of these time-periods: (a) from 
23h00h to 06h30, which represents the period when 
 TV starts to decrease together with  Ta and with rela-
tively more thermally comfortable conditions; (b) from 
06h30 to 09h30, which represents the period when  TV 
is maintained at thermoneutral levels because the envi-
ronment is not too hot for the sows; (c) from 09h30 to 
18h30, which represents the period when  TV increases 
with increasing  Ta; and (d) from 18h30 to 23h00,which 
represents the period  TV is maintained at a relatively 
high level because the environment is usually above 
thermoneutral conditions. Furthermore, three classes 
of EG were defined to investigate the genomic regions 

BIC = −2logL+ ln(n)k,
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that are associated with  TV under different EG condi-
tions. The following three EG classes were defined based 
on standardized Dew Point units: no to mild HS: −  3.5 
to 1.5; moderate HS: − 1.5 to 0.5; and severe HS: 0.5 to 
2.5. The GEBV for Tv for an animal was obtained by sum-
ming its GEBV at different time points or for different EG 
classes. For instance, the GEBV for animal i for the four 
HS time-periods, GEBV1i , GEBV2i , GEBV3i , GEBV4i, 
was computed by summing the GEBV at each time 
point (10-min interval) from 23h00 to 06h30, 06h30 to 
09h30, 09h30 to 18h30, 18h30 to 23h00, respectively, as: 
GEBV1i = GEBVi2305 + GEBVi2315 + · · · +GEBVi0635,

The SNP effects for each time-period were calculated 
for  TV using the postGSf90 program [26] as:

where ûm is the vector of the estimated SNP effects for 
m th HS time-period; D is a diagonal matrix of the weights 
for the variances of SNP effects ( D = I for GBLUP), Z is a 
matrix relating the genotype (gene content) at each SNP 
to the individual, and GEBVm is the vector of the esti-
mated GEBV for m th HS time-period, which includes the 
GEBV for all animals. The genetic variance explained by 
SNP k ( ̂σ 2

u,k ) was estimated as:

where pk is the observed allele frequency for the first 
allele of SNP k , and û2k is the square of the estimated 
effect of SNP k . The percentage of the total additive 
genetic variance explained by the i th 10-SNP moving 
window was calculated as:

where âi is the genetic variance explained by the i th win-
dow that consists of 10 consecutive SNPs; σ̂ 2

a  is the total 
additive genetic variance; zj is the gene content vector 
of the j th SNP for all individuals, and ûj is marker effect 
of the j th SNP within the i th region. The same method 
was used to obtain the genomic window variance for the 
EG classes. Genomic windows that explained more than 
0.25% of the genetic variance were considered as relevant 
genomic regions [34]. To avoid double-counting of SNP 
effects, only non-overlapping genomic windows were 

GEBV2i = GEBVi0645 + GEBVi0655 + · · · + GEBVi0935,

GEBV3i = GEBVi0945 + GEBVi0955 + · · · + GEBVi1835,

GEBV4i = GEBVi1845 + GEBVi1855 + · · · + GEBVi2255.

ûm = DZ
′
[ZDZ

′
]
−1

GEBVm,

σ̂ 2
u,k = û2k2pk(1− pk),

Var(âi)

σ̂ 2
a

× 100% =

Var

(∑
10

j=1
zjûj

)

σ̂ 2
a

× 100%,

kept for further analyses, as suggested by Fragomeni et al. 
[35].

Functional genomic analyses
The genes within the relevant genomic regions were 
annotated based on the latest pig reference genome 
Sscrofa 11.1 assembly (http:// useast. ensem bl. org/ Sus_ 
scrofa/ Info/ Index). Gene Ontology (GO) [36] and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [37] 
enrichment analyses for candidate genes were carried 
out via the “clusterProfiler” package of R with a cutoff 
P-value < 0.05 and a false discovery rate (FDR) < 0.20 [38].

Results
The number of records and the average Tv for each time 
point and each EG are presented in Fig.  1. Each time 
point included more than 6000 records. The  TV had a 
circadian rhythm and remained relatively constant from 
06h30 to 09h00 and from 18h30 to 23h00. The number 
of records was lower for the extreme EG. The average 
 TV showed a distinct pattern along the EG scale, which 
is based on standardized dew point values. Initially,  TV 
increased significantly at low dew point values. This 
increase slowed down as the EG value approached 1.7. 
Beyond this point, the  TV’s increase became sharp once 
again (Fig. 1b).

Statistical model comparisons
Table  1 summarizes the results of the model compari-
sons based on the logarithm of the likelihood (Log L) and 
BIC. The number of parameters ranged from 21 to 111 
across the models evaluated. The largest number of knots 
that converged when fitting quadratic BS was 7. For the 
BS models, BIC decreased as the number of knots and 
order of the function increased. The BSQ88 model out-
performed (lowest BIC) all other models (Table  1). The 
patterns of the accuracy of genomic prediction over time 
are shown in Additional file 2: Fig. S2 and the accuracy 
for  TV were 0.72 and 0.13 with models LEG4 and BSQ88, 
respectively (see Additional file 2: Fig. S2). These results 
indicate that BSQ88 might have overfitted the data. Thus, 
LEG4 was used for further analyses.

Variance components and genetic parameters
Figure 2 shows estimates of variance components, herit-
ability, and repeatability for  TV throughout the day and 
along the EG when fitting heterogeneous and homoge-
neous RV for lactating sows under HS conditions. The 
model with heterogeneous RV had lower BIC values than 
those considering homogeneous RV, which implied bet-
ter goodness of fit. Estimates of VAG, VPE, heritability, 
and repeatability for  TV obtained by the models that fit 
heterogeneous versus homogeneous RV had similar 

http://useast.ensembl.org/Sus_scrofa/Info/Index
http://useast.ensembl.org/Sus_scrofa/Info/Index
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trends and values. Estimates of heritability (from 0.14 to 
0.20) and repeatability (from 0.57 to 0.66) for  TV fluctu-
ated over time, with slightly different trends. Heritability 
estimates for  TV increased from 0.09 along the EG scale, 
with the highest estimate (0.18) at a standardized dew 
point of 1.2 (25℃), after which it stabilized. Repeatability 
estimates of  TV ranged from 0.54 to 0.77 along the EG.

The trajectories of the estimates of genetic correla-
tions for  TV over time and along the EG are shown in 
Fig. 3a and b, respectively. Over time, the genetic corre-
lation estimates ranged from 0.77 to 1.00, and were low-
est for Tv between 09h00–12h00 and 01h00–04h00, and 
between 04h00–08h00 and 18h00–24h00. For the EG, 
genetic correlation estimates were positive and moder-
ate to high, ranging from 0.45 to 1.00 (mean correlation: 
0.75 ± 0.31) with the lowest estimate observed between 
the most divergent EG values. The variance of the slope 
for Tv (0.017) in the RNM model was significantly differ-
ent from zero using a one-tailed t-test (P < 0.05). The esti-
mate of the genetic correlation between the intercept and 
the slope for  TV was 0.33.

Association analyses
As mentioned above, LEG4 was used for the association 
analyses. In total, 12, 13, 16, and 10 relevant 10-SNP win-
dows across more than 10 Sus scrofa chromosomes (SSC) 
were identified for  TV across the four time-periods 1, 2, 
3, and 4, respectively (Table 2). The total additive genetic 
variance explained by all relevant genomic windows for 
the four HS time-periods was 16.9%. Based on the candi-
date genes identified, four and one KEGG pathways were 
significantly enriched for the HS time-periods 3 and 4, 
respectively (see Additional file 3: Tables S1 and S2). For 
the GO analyses, 12, 21, and 13 terms were significantly 
enriched for HS time-periods 1, 3 and 4, respectively (see 
Additional file 3: Table S3). The results from the KEGG 
and GO analyses indicate that development (embryonic 
skeletal system development), neural system (gluta-
matergic synapse), and cardiac disease related pathways 
(hypertrophic cardiomyopathy, dilated cardiomyopathy) 
were the most enriched pathways based on the candidate 
genes identified.

Fig. 1 Number of records and average vaginal temperature throughout the day and along environmental gradients. a Number of records (green 
bars) and average vaginal temperature  (TV) (red dots) for time points (every 10 min) throughout the day and b number of records (green bars) 
and average  TV (red dots) along environmental gradients based on dew point values

Table 1 Number of model parameters (N), knot position, log 
likelihood (Log L), Bayesian information criterion (BIC) for random 
regression models fitted to longitudinal Tv data using B-splines 
functions or Legendre orthogonal polynomials

NC: the analyses did not converge
a in italics is indicated the best model based on BIC
b time points of the day (in minutes) where the knots were placed
c Legendre orthogonal polynomial of order X (with X = 2, 3, or 4) for the additive 
genetic and permanent environmental effects

Modela N Knot  positionb Log L BIC

B-spline (Linear)

BSL55 31 5, 363, 721, 1079, 1435 − 419,827 840,079

BSL66 43 5, 291, 577, 863, 1149, 1435 − 397,465 795,520

BSL77 57 5, 243, 481, 719, 957, 1195, 1435 − 387,717 776,218

B-spline (Quadratic)

BSQ66 43 5, 363, 721, 1079, 1435 − 392,435 785,460

BSQ77 57 5, 291, 577, 863, 1149, 1435 − 386,227 773,237

BSQ88 73 5, 243, 481, 719, 957, 1195, 1435 − 384,591 770,186

B-spline (Cubic)

BSC77 57 5, 363, 721, 1079, 1435 − 389,409 779,602

BSC88 73 5, 291, 577, 863, 1149, 1435 − 385,532 772,006

BSC99 91 5, 243, 481, 719, 957, 1195, 1435 NC NC

Legendre orthogonal  polynomialsc

LEG2 7 − 581,803 1,163,702

LEG3 13 − 440,933 882,045

LEG4 21 − 430,771 861,831
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Fig. 2 (a left column) Additive genetic variance, permanent environmental variance, residual variance, heritability, and repeatability along the time 
trajectory throughout the day and (b right column) continuous environmental gradient for vaginal temperature of lactating sows based on random 
regression model analyses. Red dot points (●) represent models considering heterogeneous residual variance and green triangles (▲) represent 
models considering homogeneous residual variance
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Eighteen, 15, and 14 10-SNP windows were identified 
for  TV for the three EG classes (mild HS: − 3.5 to 1.5; 
moderate HS: −  1.5 to 0.5; and severe HS: 0.5 to 2.5, 
respectively) (Table  3). The total additive genetic vari-
ance explained by all the relevant genomic windows for 
the three EG classes was 16.3%. No significant KEGG 
pathway and, respectively, 30, 23, and 58 GO terms (see 
Additional file  3: Table  S4) were significantly enriched 
based on the candidate genes (see Additional file  3: 
Table S5) identified for the three EG classes. Enriched 
GO terms were mainly associated with development 
(e.g., skeletal system development), energy metabolism 
(e.g., fatty acid biosynthesis processes), and hormone 
regulation (e.g., regulation of secretion).

Two important genomic regions were identified to 
be associated with Tv across all HS time-periods and 
all EG classes, on SSC10 (59.370–59.998  Mb) and 
SSC16 (21.548–21.966  Mb). Candidate genes within 
these regions are involved in immunity (CDC123 and 
CAMK1d), protein transport (SEC61A2), and energy 
metabolism (NUDT5) functions. The overlapping and 
unique candidate genes regulating  TV across the four 
HS time-periods and the three EG classes are presented 
in a Venn diagram in Fig.  4. HS time-stage 3 had the 
most uniquely enriched genes (18), while HS time-stage 
2 had the least number of uniquely enriched genes (7). 
One, 16, 21, and 7 significant KEGG pathways were 
detected based on the uniquely enriched genes for the 
four respective HS time-periods (Table  4). Further-
more, EG classes 1, 2, and 3 had 20, 1, and 9 uniquely 
enriched genes, respectively. Twenty-nine genes were 
shared by all three EG classes. Three, five, and three 
significant KEGG pathways were detected based on 
the uniquely enriched genes for EG classes 1, 2, and 3, 
respectively (Table 5).

Discussion
Climate change threatens worldwide livestock produc-
tion and causes substantial economic and animal welfare 
issues. Understanding the genetic basis of an animal’s HS 
response, including identification of novel indicator traits 
such as  TV, is paramount for designing effective strate-
gies for breeding more resilient and productive pigs. In 
this study, genetic parameters and GWAS analyses were 
conducted for  TV that was automatically measured every 
10  min in Landrace × Large White lactating sows under 
HS conditions. The datasets of automatically-measured 
 TV and within-barn environmental measurements pro-
vided an opportunity to explore the genetic basis of lon-
gitudinal variability in Tv during lactation.

Comparison of models
The order of the BS had a greater impact on estimates 
of variance components than the number of knots. The 
genetic parameter estimates followed similar trends for 
all cubic BS models. Lower BIC values for models with 
a larger number of parameters have been reported previ-
ously (e.g., [20, 39, 40]). Although LEG models had larger 
BIC values than BS models, the computing times of the 
LEG models were much shorter. The lower accuracy of 
genomic prediction obtained with the RRM model using 
BS indicated that BS models may overfit the data, and 
based on the cross-validation analyses the LEG models 
were considered to be better.

Estimates of genetic parameters and variance components
To our knowledge, this study presents the first estimates 
of heritability and variance components for  TV over time 
and along EG under HS conditions in lactating sows. 
The use of longitudinal automatically-measured  TV is 

Fig. 3 Estimates of genetic correlations (Cor) for vaginal temperature in lactating sows under heat stress between a pairs of time points (each 
10 min) throughout the day (range: 0.76–1) and b pairs of environmental gradients (standardized dew point) (range: 0.44–1)
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Table 2 Relevant genomic regions identified for the four heat stress (HS) time-periods

Time‑perioda Chromosome bp positions % of variance 
explained

Positional candidate genes

HS time-period 1 10:59,369,633:59,776,918 0.66 CAMK1D, RNU6ATAC39P, CDC123, NUDT5, SEC61A2, KATNAL1, 
USPL1, ALOX5AP, EFTUD2, HIGD1B, GJC1, ADAM11, DBF4B, 
CCDC43, MEIOC, FZD2, GPATCH8, ITGA2B, FAM171A2, GRN, 
SLC25A39, RUNDC3A, SLC4A1, HOXB4, MIR10A, HOXB5, HOXB6, 
HOXB7, HOXB8, HOXB9, MIR196A1, HOXB13, TTLL6, CALCOCO2, 
ATP5MC1, UBE2Z, SNF8, GIP, IGF2BP1, PISD, PRR14L, DEPDC5, 
YWHAH, SLC5A1, SLC5A4, RANBP3L, SLC1A3, U6, MYLK2, FOXS1, 
DUSP15, TTLL9, PDRG1, XKR7, CCM2L, HCK, TM9SF4, PLAGL2, 
POFUT1, KIF3B, ASXL1, MIR148A, SDK1, SNORA70

(TV: 39.741 ± 0.724 DP: 22.080 ± 2.060 Total explained vari-
ance: 4.086%)

16:21,601,170:21,965,767 0.45

12:18,499,751:18,974,836 0.379

17:35,507,357:36,063,488 0.349

3:3,029,529:3,257,462 0.317

18:46,374,852:46,983,072 0.293

12:24,812,751:25,420,666 0.284

11:7,020,997:7,540,141 0.280

17:67,332,252:67,844,392 0.279

17:65,356,677:65,763,082 0.275

14:48,306,021:48,731,419 0.274

6:134,063,309:134,266,656 0.253

HS time-period 2 16:21,601,170:21,965,767 0.490 CAMK1D, CDC123, NUDT5, SEC61A2, RNU6ATAC39P, KATNAL1, 
USPL1, ALOX5AP, PSMB3, PCGF2, CISD3, MLLT6, SRCIN1, 
ARHGAP23, GPR179, MRPL45, EPOP, ADAM11, GJC1, SLC25A39, 
RUNDC3A, SLC4A1, DBF4B, MEIOC, FZD2, ITGA2B, FAM171A2, 
EFTUD2, HIGD1B, U6, GPATCH8, PISD, PRR14L, DEPDC5, YWHAH, 
SLC5A1, SLC5A4, RANBP3L, SLC1A3, MYLK2, FOXS1, DUSP15, 
TTLL9, PDRG1, XKR7, CCM2L, HCK, TM9SF4, PLAGL2, POFUT1, 
KIF3B, ASXL1, MIR148A, SDK1, CEBPG, PEPD, CHST8, KCTD15, 
CALCR, GNGT1, CDK6, SAMD9, HEPACAM2, VPS50, ssc-mir-489

(TV: 39.134 ± 0.620 DP: 22.844 ± 2.084 Total explained vari-
ance: 4.840%)

10:59,369,633:59,776,918 0.481

3:3,029,529:3,257,462 0.414

14:48,306,021:48,731,419 0.394

18:46,374,852:46,983,072 0.383

12:18,499,751:18,974,836 0.380

6:43,090,860:43,731,895 0.359

11:7,020,997:7,540,141 0.318

17:65,356,677:65,763,082 0.292

17:67,332,252:67,844,392 0.289

12:23,350,211:23,791,623 0.279

17:35,507,357:36,063,488 0.271

16:21,601,170:21,965,767 0.490

HS time-period 3 16:21,548,342:21,840,246 0.364 CAMK1D, CDC123, NUDT5, SEC61A2, DHTKD1, UPF2, RNU-
6ATAC39P, KATNAL1, USPL1, ALOX5AP, PIP4K2B, PSMB3, PCGF2, 
CISD3, MLLT6, SRCIN1, ARHGAP23, SOCS7, GPR179, MRPL45, 
EPOP, ADAM11, GJC1, SLC25A39, RUNDC3A, SLC4A1, DBF4B, 
CCDC43, MEIOC, FZD2, ITGA2B, FAM171A2, GRN, EFTUD2, 
HIGD1B, U6, GPATCH8, PISD, PRR14L, DEPDC5, YWHAH, SLC5A1, 
SLC5A4, NADK2, RANBP3L, MIR148A, SDK1, ZFAT, WNT10B, WNT1, 
CACNB3, DDX23, RND1, CCDC65, FKBP11, DDN, C12orf75, CCNT1, 
TEX49, ADCY6, PRKAG1, RHEBL1, DHH, ARF3, CEBPG, PEPD, CHST8, 
KCTD15, GRID2, FSTL5

(TV: 39.771 ± 0.729 DP: 23.843 ± 2.478 Total explained vari-
ance: 4.793%)

17:67,332,252:67,844,392 0.353

8:144,423,490:145,098,780 0.351

18:46,374,852:46,983,072 0.327

6:43,097,060:43,829,382 0.319

8:125,810,305:126,470,348 0.314

3:3,029,529:3,257,462 0.301

5:14,539,752:15,115,540 0.294

11:7,020,997:7,540,141 0.290

8:49,296,088:50,537,893 0.282

10:59,507,616:59,997,776 0.282

12:18,499,751:18,974,836 0.276

14:48,306,021:48,731,419 0.272

4:7,002,305:7,146,525 0.265

14:119,028,054:119,983,210 0.252

12:23,321,216:2,3760,296 0.251

HS time-period 4 10:59,507,616:59,997,776 0.398 CAMK1D, RNU6ATAC39P, CDC123, NUDT5, SEC61A2, DHTKD1, 
UPF2, EFTUD2, HIGD1B, GJC1, ADAM11, DBF4B, CCDC43, 
MEIOC, U6, FZD2, GPATCH8, ITGA2B, FAM171A2, GRN, SLC25A39, 
RUNDC3A, SLC4A1, NADK2, RANBP3L, MYLK2, FOXS1, DUSP15, 
TTLL9, PDRG1, XKR7, CCM2L, HCK, TM9SF4, PLAGL2, POFUT1, 
KIF3B, ASXL1, NT5C3A, FKBP9, RP9, KBTBD2, AVL9, PDE1C, INCENP, 
BEST1, RAB3IL1, FADS3, U1, ZFAT, GRID2

(TV: 40.125 ± 0.687 DP: 23.226 ± 1.996 Total explained vari-
ance: 3.141%)

3:64,224,248:65,386,969 0.374

4:7,002,305:7,146,525 0.335

17:67,332,252:67,844,392 0.328

17:35,507,357:36,063,488 0.310

18:40,471,432:40,882,202 0.304

16:21,548,342:21,840,246 0.291

2:9,425,931:9,613,380 0.273

8:125,810,305:126,470,348 0.265

12:18,499,751:18,974,836 0.263

HS: heat stress
a Time-period: mean ± standard deviation of vaginal temperature (Tv), dew point (DP) and total explained variance for each stage; 1: from 23h00 to 06h30, 2: from 
06h30 to 09h30, 3: from 09h30 to 18h30, and 4: from 18h30 to 23h00
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expected to yield more accurate estimates. Estimates of 
variance components along the EG scale were generally 
larger than those across time periods, while the heritabil-
ity estimates across periods were higher. The moderate 
level of the average heritability estimate for  TV obtained 
with the RRM with LEG (0.18) indicates that  TV can be 
included in selection indexes as a heat tolerance indica-
tor. Another measure of internal temperature, rectal tem-
perature has been reported to have similar heritability 
estimates in lactating Holstein cows (0.17 [41] and 0.15 to 
0.31 [42]). In those studies, the temperature was collected 
only once a day, which did not allow changes in heritabil-
ity estimates and genetic variances throughout the day or 
with climatic conditions to be evaluated. Nevertheless, 
further studies are needed to evaluate the genetic cor-
relations between  TV and other economically important 
traits (e.g., weaning weight) in pigs. If  TV can only be 
measured during a short time-window, the time-period 
from 1200 to 1600 h is recommended because it had the 
highest average heritability (0.20) and repeatability (0.64).

Trends in heritability estimates across time and across 
EG were similar to trends in average Tv (Fig. 1). A sub-
stantial increase in average  TV was observed after the 1.7 
value for EG (dew point: 27 Celsius degree), which sug-
gests that animals may experience severe HS above this 
dew point and may not be able to maintain body temper-
ature homeostasis, thus needing cooling devices to main-
tain animal welfare. Trends in heritability estimates along 
the EG indicated that genetics has an increasing role in 
controlling  TV as the dew point increases. Thus, greater 
selection response to  TV is expected in a hotter environ-
ment due to the greater genetic variation, likely because 
more physiological and behavioral processes are involved 
in body temperature regulation under severe HS condi-
tions [43]. Previous studies reported that heritability esti-
mates for rectal temperature under HS conditions ranged 
from 0.11 to 0.36 in many species, which is in line with 
our results [41, 44, 45]. Also, the high VPE and repeat-
ability estimates for Tv at the extremes of the EG scale 
indicate that relatively constant and accurate records 
could be obtained under extreme or mild HS conditions 
(Fig. 2b).

The variance for the slope for  TV from the RNM mod-
els was significantly different from zero, which indicates 
that GxE interactions exist when lactating sows are kept 
under HS conditions. The estimate of the genetic corre-
lation being lowest (0.47) between extreme EG also sup-
ports the existence of GxE interactions and implies that 
animals will be ranked differently along the EG scale 
(Fig. 3b). Heat resilient individuals that can maintain per-
formance levels under HS contribute to a greater profit-
ability under HS conditions [46]. Cooling devices (i.e., 
sprinkler systems and evaporative cooling system) and 

changes in animal behavior (i.e., reduced feed intake, 
reduced milk production, and laying down for longer 
times) can also mitigate the negative effects of HS and 
improve the animals’ actual performance by reducing 
air temperature [2] or metabolic heat production [47]. 
Future research on the genetics of longitudinal Tv should 
consider larger datasets with greater environmental vari-
ability and different populations.

GWAS
Understanding the genetic mechanisms that underlie 
changes in  TV of lactating sows under HS is important to 
alleviate adverse effects from HS and to select heat stress 
resilient animals. This is the first study to report GWAS 
results for continuously-recorded  TV in lactating sows 
under HS conditions, mainly because obtaining relevant 
data is difficult. In this study, we performed a GWAS 
to investigate the dynamic regulatory functions of HS-
linked genomic regions, genes, and QTL. Automatically-
measured body temperature data and environmental 
records capture more variation and allow a more accu-
rate detection of genomic regions as compared to tradi-
tional reaction norm models based on performance traits 
and data from public weather stations.

Multiple genomic regions on different chromosomes 
but with relatively small contributions to the total addi-
tive genetic variation of  TV were identified across the 
different measurement periods, indicating that  TV is a 
highly polygenic trait (Tables 2 and 3). Previous reports 
have indicated that rectal temperature, which is strongly 
genetically correlated with  TV in dairy cattle, sows, and 
sheep (r ≥ 0.8), is also a highly polygenic trait [15, 48–50]. 
Our results showed that some effects of the identified 
genomic regions were consistent throughout the entire 
HS period, while most genes or genomic regions asso-
ciated with  TV regulation are involved in different HS 
time-periods and EG classes. This suggests that genetic 
regulation of  TV is complex and influenced by both com-
mon and unique genomic regions. Regulation of  TV 
can also be affected by farm management (i.e., cooling 
device), environmental conditions (i.e., good ventilation), 
and animal physiological state [16, 43].

Six genes were identified for  TV under HS conditions: 
CAMK1D, RNU6ATAC39P, CDC123, NUDT5, SEC61A2, 
and RANBP3L, many of which have previously been 
reported to be related to HS. The genes CAMK1D and 
CDC123 are mainly related to immunity. Heat stress can 
result in intestinal and systematic inflammation and thus 
in suppressing the innate immune function and increas-
ing the animals’ susceptibility to diseases [51]. Many 
studies have also demonstrated that HS has detrimental 
effects on immunity and negatively affects health in cattle 
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Table 3 Relevant genomic regions identified for three environmental gradient (EG) classes

Environmental gradient (EG)  classa Position Explained 
variance (%)

Genes

EG class 1 18:46,374,852:46,983,072 0.656 CAMK1D, CDC123, NUDT5, SEC61A2, RNU6ATAC39P, IGF2BP1, 
HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXB7, HOXB9, 
HOXB13, TTLL6, CALCOCO2, ATP5MC1, UBE2Z, SNF8, GIP, MIR196A1, 
MIR10A, KCNH8, PISD, PRR14L, DEPDC5, YWHAH, SLC5A1, SLC5A4, 
U6, CDH10, RANBP3L, MYLK2, FOXS1, DUSP15, TTLL9, PDRG1, XKR7, 
CCM2L, HCK, TM9SF4, PLAGL2, POFUT1, KIF3B, ASXL1, NT5C3A, 
FKBP9, RP9, KBTBD2, AVL9, PDE1C, MIR148A, INCENP, BEST1, RAB3IL1, 
FADS3, ZFAT, BCAR3, FNBP1L

(TV: 39.535 ± 0.734 DP: 18.217 ± 1.176 Total explained variance: 
5.688%)

14:142,203,506:142,387,878 0.490

16:11,509,437:12,226,132 0.447

17:67,332,252:67,844,392 0.414

7:127,981,346:128,414,726 0.380

2: 9,425,931: 9,613,380 0.379

12:24,782,254:25,386,252 0.349

4:123,450,469:123,692,404 0.318

13: 5,982,176: 6,582,320 0.317

17:35,507,357:36,063,488 0.293

16:21,577,390:21,860,428 0.284

4: 7,002,305: 7,146,525 0.280

10:59,377,853:59,815,833 0.279

14:48,306,021:48,731,419 0.275

18:40,475,973:40,910,375 0.274

17:65,356,677:65,763,082 0.253

EG class 2 10:59,377,853:59,815,833 0.481 SMOC2, CAMK1D, CDC123, NUDT5, SEC61A2, RNU6ATAC39P, 
IGF2BP1, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8, HOXB9, HOXB13, 
TTLL6, CALCOCO2, ATP5MC1, UBE2Z, SNF8, GIP, MIR196A1, MIR10A, 
PTPN11, RPL6, HECTD4, TRAFD1, NAA25, ERP29, TMEM116, 
MAPKAPK5, ALDH2, BICDL1, RAB35, GCN1, RPLP0, PXN, U6, MSI1, 
COX6A1, GATC, SRSF9, DYNLL1, COQ5, RNF10, POP5, MLEC, ACADS, 
SPPL3, HNF1A, C12orf43, OASL, C12orf76, ANKRD13A, GIT2, GLTP, 
SIRT4, PLA2G1B, PISD, PRR14L, DEPDC5, YWHAH, SLC5A1, SLC5A4, 
U4, CABP1, UNC119B, CDH10, RANBP3L, NT5C3A, FKBP9, RP9, 
KBTBD2, AVL9, PDE1C, MIR148A, INCENP, BEST1, RAB3IL1, FADS3, 
SDK1, CEBPG, PEPD, CHST8, KCTD15, GRID2, FSTL5

(TV: 39.687 ± 0.743DP: 22.403 ± 1.283Total explained variance: 
5.476%)

18:46,374,852:46,983,072 0.430

14:142,174,006:142,343,216 0.360

16:21,577,390:21,860,428 0.342

12:24,812,751:25,420,666 0.326

17:65,356,677:65,763,082 0.320

8:125,810,305:126,470,348 0.300

17:67,332,252:67,844,392 0.291

2: 9,425,931: 9,613,380 0.282

16:11,509,437:12,226,132 0.276

6:43,097,060:43,829,382 0.269

18:40,471,432:40,882,202 0.266

7:127,981,346:128,414,726 0.264

14:48,306,021:48,731,419 0.259

1: 1,049,272: 1,334,349 0.256

3: 3,029,529: 3,257,462 0.252

14:39,171,016:41,112,851 0.252

8:49,296,088:50,537,893 0.250

EG class 3 10:59,377,853:59,815,833 0.402 CAMK1D, CDC123, NUDT5, SEC61A2, RNU6ATAC39P, KATNAL1, 
USPL1, ALOX5AP, IGF2BP1, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8, 
HOXB9, HOXB13, TTLL6, CALCOCO2, ATP5MC1, UBE2Z, SNF8, GIP, 
MIR196A1, MIR10A, PTPN11, RPL6, HECTD4, TRAFD1, NAA25, ERP29, 
TMEM116, MAPKAPK5, ALDH2, BICDL1, RAB35, GCN1, RPLP0, PXN, 
U6, MSI1, COX6A1, GATC, SRSF9, DYNLL1, COQ5, RNF10, POP5, 
MLEC, ACADS, SPPL3, HNF1A, C12orf43, OASL, C12orf76, ANKRD13A, 
GIT2, GLTP, SIRT4, PLA2G1B, U4, CABP1, UNC119B, CDH10, NADK2, 
RANBP3L, MIR148A, INCENP, BEST1, RAB3IL1, FADS3, SDK1, UTS2, 
TNFRSF9, CAMTA1, PARK7, ERRFI1, CEBPG, PEPD, CHST8, KCTD15, 
GRID2, FSTL5

(TV: 39.874 ± 0.765 DP: 25.310 ± 0.743 Total explained variance: 
5.101%)

18:46,374,852:46,983,072 0.395

14:142,174,006:142,343,216 0.339

8:125,810,305:126,470,348 0.322

8:49,296,088:50,537,893 0.321

17:65,356,677:65,763,082 0.321

16:21,548,342:21,840,246 0.308

6:43,097,060:43,829,382 0.297

17:67,385,528:67,932,872 0.288

2: 9,425,931: 9,613,380 0.278

11:7,020,997:7,540,141 0.275

3: 3,029,529: 3,257,462 0.274

16:11,509,437:12,226,132 0.268

12:24,812,751:25,420,666 0.254

8:144,423,490:145,098,780 0.254

6:68,449,792:68,823,162 0.253

14:39,171,016:41,112,851 0.252

a Environmental gradient: mean ± standard deviation of vaginal temperature (Tv), dew point (DP), and total explained variance for each environmental gradient 
(standardized Dew point) class (no to mild heat stress: − 3.5 to 1.5; moderate heat stress: − 1.5 to 0.5; severe heat stress: 0.5–2.5)



Page 12 of 19Wen et al. Genetics Selection Evolution           (2023) 55:95 

[52, 53], pigs [54, 55], sheep [56, 57], goats [58, 59], and 
poultry [60, 61]. Another study reported that SEC61A2 
was expressed during HS [62].

GWAS enrichment over time
The results for KEGG pathway enrichment were simi-
lar for the first two HS time-periods, and the enriched 
pathways were mainly related to the nervous system 
(i.e., glutamatergic synapse) and platelet activation. The 
pathways that were enriched for HS time-period 3 were 
mainly related to signaling (i.e., oxytocin signaling path-
way, mTOR signaling pathway, and hippo signaling path-
way), cardiac disease (i.e., hypertrophic cardiomyopathy, 
dilated cardiomyopathy), and hormone synthesis and reg-
ulation (i.e., aldosterone synthesis and secretion). Previ-
ous studies revealed that the cardiovascular system plays 
a key role in human thermoregulation because heat dis-
sipation is accompanied by cardiovascular adjustments, 
including increased cardiac output through a combina-
tion of elevations in heart rate and cardiac contractility 
and elevations in sympathetic activity for reduced blood 
flow and blood volume [63–65]. The cardiovascular sys-
tem can be negatively affected by HS [66]. Occurrences 
of cardiovascular and respiratory mortality have been 
shown to increase significantly under HS conditions, 
especially in tropical areas [67, 68]. Under HS conditions, 
animals can experience severe dehydration, which would 
activate the renin–angiotensin–aldosterone system to 

maintain fluid and electrolyte balance [69]. Previous 
studies in cattle have shown that aldosterone concentra-
tion declines substantially under HS [70]. In our study, 
the pathways that were enriched for the HS time-period 
4 were associated with various functions, including sign-
aling (i.e., calcium signaling pathway and oxytocin signal-
ing pathway), protein export, and platelet activation.

Many GO terms that were enriched for the four HS 
time-periods were related to development (i.e., embry-
onic skeletal system morphogenesis, embryonic skel-
etal system development), metabolic process (i.e., 
glucocorticoid metabolic process, carbohydrate meta-
bolic process), nervous system (i.e., dendrite develop-
ment, regulation of neuron projection development, 
and dendritic spine morphogenesis), and immunity 
(i.e., lymphocyte mediated immunity, natural killer cell 
mediated immunity, and leukocyte mediated immu-
nity). This suggests that a sow’s response to HS is a 
complex process that involves a series of nervous, phys-
iological, cellular, and molecular processes that can 
result in greater stress resilience, which is in line with 
previous studies [71, 72].

To identify which biological pathways play key and 
unique roles in response to HS and to better understand 
their functions, KEGG enrichment analyses of uniquely 
enriched genes were performed for each HS time-period. 
Although many similarities were found between the 
four HS time-periods, specific biologic functions were 

Fig. 4 Venn diagram of the count of candidate genes identified based on a heat stress (HS) time-periods and b environmental gradient class. The 
four potential HS time-periods throughout the day were defined as (1) from 23h00 to 06h30, representing when vaginal temperature  (TV) starts 
to decrease with decreased ambient temperature  (Ta) and with relatively more comfortable environmental conditions; (2) from 06h30 to 09h30, 
representing  TV maintained at a relatively low level when environment is not too hot for the sows; (3) from 09h30 to 18h30, representing the time 
in which  TV starts to increase with increasing  Ta; (4) from 18h30 to 23h00, representing  TV maintained at a relatively high level when  Ta is usually 
above thermoneutral conditions. Each two standardized Dew point units was considered as an environmental gradient class (no to mild HS: − 3.5 
to 1.5; moderate HS: − 1.5 to 0.5; severe HS: 0.5–2.5)
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Table 4 Significantly enriched (P < 0.05) KEGG pathways using uniquely enriched positional candidate genes for Tv for the four heat 
stress (HS) time-periods

Time‑perioda Term Number 
of unique 
 genesb

Total 
number of 
 genesc

P‑value FDR

HS time-period 1 ssc04137: Mitophagy—animal 17 64 0.047 0.195

(TV: 39.741 ± 0.724DP: 22.080 ± 2.060)

HS time-period 2 ssc04744: Phototransduction 7 68 0.006 0.012

(TV: 39.134 ± 0.620DP: 22.844 ± 2.084) ssc04727: GABAergic synapse 0.020 0.012

ssc05032: Morphine addiction 0.021 0.012

ssc04713: Circadian entrainment 0.022 0.012

ssc04724: Glutamatergic synapse 0.025 0.012

ssc04725: Cholinergic synapse 0.025 0.012

ssc04726: Serotonergic synapse 0.026 0.012

ssc04380: Osteoclast differentiation 0.028 0.012

ssc04728: Dopaminergic synapse 0.029 0.012

ssc04926: Relaxin signaling pathway 0.029 0.012

ssc04371: Apelin signaling pathway 0.031 0.012

ssc04723: Retrograde endocannabinoid signaling 0.033 0.012

ssc05034: Alcoholism 0.038 0.012

ssc04062: Chemokine signaling pathway 0.041 0.012

ssc05167: Kaposi sarcoma-associated herpesvirus infection 0.044 0.012

ssc05170: Human immunodeficiency virus 1 infection 0.049 0.012

HS time-period 3 ssc04916: Melanogenesis 18 70  < 0.001 0.014

(TV: 39.771 ± 0.729 DP: 23.843 ± 2.478) ssc04921: Oxytocin signaling pathway 0.001 0.016

ssc04934: Cushing syndrome 0.001 0.016

ssc04213: Longevity regulating pathway—multiple species 0.002 0.035

ssc05217: Basal cell carcinoma 0.003 0.035

ssc04211: Longevity regulating pathway 0.005 0.049

ssc05410: Hypertrophic cardiomyopathy 0.005 0.049

ssc05414: Dilated cardiomyopathy 0.006 0.049

ssc04371: Apelin signaling pathway 0.012 0.067

ssc04550: Signaling pathways regulating pluripotency of stem cells 0.013 0.067

ssc04261: Adrenergic signaling in cardiomyocytes 0.013 0.067

ssc05224: Breast cancer 0.013 0.067

ssc05226: Gastric cancer 0.014 0.067

ssc04150: mTOR signaling pathway 0.015 0.067

ssc04390: Hippo signaling pathway 0.015 0.067

ssc05225: Hepatocellular carcinoma 0.016 0.068

ssc04310: Wnt signaling pathway 0.017 0.068

ssc05207: Chemical carcinogenesis—receptor activation 0.025 0.091

ssc05205: Proteoglycans in cancer 0.026 0.091

ssc04714: Thermogenesis 0.032 0.108

ssc04710: Circadian rhythm 0.042 0.136

HS time-period 4 ssc00240: Pyrimidine metabolism 11 51 0.018 0.006

(TV: 40.125 ± 0.687 DP: 23.226 ± 1.996) ssc04924: Renin secretion 0.023 0.006

ssc04742: Taste transduction 0.024 0.006

ssc01232: Nucleotide metabolism 0.027 0.006
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identified for each period. For HS time-period 1, only one 
significant pathway was identified, i.e. mitophagy-animal, 
which is known to increase resistance to diverse stressors 
and improve longevity [73]. Several studies have reported 
that mitophagy is impaired upon exposure to HS, oxida-
tive stress, or other stressors [74–76].

Several pathways related to synaptic transmission were 
identified for HS time-period 2, including glutamatergic 
synapse, serotonergic synapse, dopaminergic synapse, 
GABAergic synapse, cholinergic synapse, and retro-
grade endocannabinoid signaling. Previous studies have 
shown that thermal stress is associated with suppressed 
overall synaptic transmission (especially GABAergic, glu-
tamatergic synapse) and receptor loss [77]. In addition, 
GABAergic and glutamatergic synapse have been shown 

to be involved in the synthesis of heat shock proteins 
(HSP), which contributes to the repair of stress-induced 
synaptic protein damage and facilitates neuroprotective 
mechanisms [78, 79]. Cheruiyot et  al. [80] showed that 
the glutamatergic synapse pathway is highly enriched for 
heat tolerance in Holstein cows [80]. Another pathway, 
circadian entrainment was identified for HS time-period 
2, which is relevant since there is increasing evidence that 
thermoregulation is controlled by circadian rhythm and 
that animals with well-entrained circadian rhythms may 
be better able to cope with HS by optimizing their physi-
ological responses to the stressor [81, 82]. In addition, Li 
et  al. [83] used KEGG and GO enrichment analyses to 
demonstrate an association between circadian rhythm 
and heat stress response in Hu sheep.

Table 5 Significantly enriched (P < 0.05) KEGG pathways using uniquely enriched candidate genes identified for the three 
environmental gradient classes

EG: environmental gradient; FDR: false discovery rate
a Stage: mean ± standard deviation of vaginal temperature (Tv) and dew point (DP) for each environmental gradient (standardized dew point) class (no to mild heat 
stress: − 3.5 to 1.5; moderate heat stress: − 1.5 to 0.5; severe heat stress: 0.5–2.5)
b Number of unique genes: number of genes was uniquely enriched in each EG class
c Total number of genes: number of all genes enriched in each EG class

Environmental gradient (EG)  classa Term Number of 
unique  genesb

Total number 
of  genesc

P‑value FDR

EG class 1 ssc00514: Other types of O-glycan biosynthesis 20 61 0.016 0.027

(TV: 39.535 ± 0.734 DP: 18.217 ± 1.176) ssc04666: Fc gamma R-mediated phagocytosis 0.031 0.027

ssc04550: Signaling pathways regulating pluripo-
tency of stem cells

0.047 0.027

EG class 2 ssc04973: Carbohydrate digestion and absorption 1 86 0.016 0.034

(TV: 39.687 ± 0.743 DP: 22.403 ± 1.283) ssc04978: Mineral absorption 0.018 0.034

ssc04976: Bile secretion 0.028 0.034

ssc04114: Oocyte meiosis 0.040 0.034

ssc04110: Cell cycle 0.041 0.034

EG class 3 ssc00760: Nicotinate and nicotinamide metabolism 9 82 0.028 0.076

(TV: 39.874 ± 0.765DP: 25.310 ± 0.743) ssc04080: Neuroactive ligand-receptor interaction 0.030 0.076

ssc04730: Long-term depression 0.046 0.076

Table 4 (continued)

HS: heat stress; FDR: false discovery rate
a Time-period: mean ± standard deviation was showed for each stage: 1: from 23h00 to 06h30, 2: from 06h30 to 09h30, 3: from 09h30 to 18h30, and 4: from 18h30 to 
23h00
b Number of unique genes: number of genes was uniquely enriched in each HS stage
c Total number of genes: number of all genes enriched in each HS stage

Time‑perioda Term Number 
of unique 
 genesb

Total 
number of 
 genesc

P‑value FDR

ssc05032: Morphine addiction 0.031 0.006

ssc03040: Spliceosome 0.042 0.006

ssc00230: Purine metabolism 0.043 0.006
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Disease and development related pathways were mostly 
enriched for HS time-period 3, with particular emphasis 
on pathways related to cancer and cardiovascular dis-
ease, such as breast cancer and gastric cancer. Heat stress 
has been shown to activate HSP, which can promote cell 
proliferation and survival and may be involved in the 
development of cancer [84, 85]. In addition, as previously 
mentioned, HS increases the prevalence of cardiovascu-
lar diseases, potentially through the pro-inflammatory 
and pro-atherosclerotic activities of hormones, such as 
aldosterone [86]. Moreover, during HS time-period 3, 
sows were observed to suffer from the accumulated HS 
and produced more heat, leading to the activation of mul-
tiple pathways, including thermogenesis, hippo signaling 
pathway, mTOR signaling pathway, and Wnt signaling 
pathway. Machado et al. [87] showed that the thermogen-
esis pathway is related to stress-induced hyperthermia. 
Thermogenesis can also increase the capacity of endo-
therms to keep thermal homeostasis under cold stress 
conditions [88]. Hippo, mTOR, and Wnt signaling path-
ways are involved in various cell processes, such as cell 
proliferation, differentiation, and cell death. These path-
ways also regulate tissue homeostasis in multiple species 
[89, 90].

The main pathways identified for HS time-period 4 
were related to death (nucleotide metabolism, pyrimi-
dine metabolism, and purine metabolism) and hormone 
functions (e.g., renin secretion). During this HS time-
period, sows maintained high body temperatures for 
several hours and suffered from HS for a longer period. 
Das et al. [91] showed that increased levels of pyrimidine 
and purine can activate a tolerance mechanism to pro-
tect nucleic acids and ultimately protein synthesis from 
HS. Stasolla et  al. [92] found that alterations in pyrimi-
dine metabolism could be an early signal of apoptosis 
and could be caused by an increase in endogenous nitric 
oxide (NO). HS increases the level of reactive oxygen 
species (ROS) and leads to dysfunction and destruction 
of cell membranes and finally causes cell death [93]. Both 
the pyrimidine and purine metabolism pathways have 
been reported to be enriched in response to HS in buf-
falo [94], beef cattle [95], and dairy goats [96]. It is not 
surprising that renin secretion was enriched for HS time-
period 4, since animals may undergo severe dehydration 
during this stage, which can activate the renin–angioten-
sin–aldosterone system and cause hormonal responses to 
retain water and maintain mineral homeostasis [97]. The 
spliceosome pathway was also identified for this HS time-
period, which is consistent with the report of Hu et  al. 
[10] who showed that alternative splicing is an important 
transcriptional mechanism in heat stressed dairy cattle.

GWAS enrichment along the EG scale
Numerous HS-related pathways were identified based 
on the uniquely enriched genes for each EG class. Three 
pathways (other types of O-glycan biosynthesis, Fc 
gamma R-mediated phagocytosis, and signaling path-
ways regulating pluripotency of stem cells) were enriched 
exclusively for EG class 1. These are related to glycan 
metabolism, immunity, and stem cell. Heat stress induces 
the synthesis of HSP, which could affect stem cells, 
including their self-renewal, differentiation, sensitivity to 
environmental stress, and aging [98].

Five significantly enriched pathways were identified 
for genes that were uniquely enriched for EG class 2, 
and their functions were mainly associated with energy 
(i.e., carbohydrate digestion and absorption, mineral 
absorption, and bile secretion) and cell proliferation 
(e.g., oocyte meiosis, cell cycle). Carbohydrate is one of 
the most important energy sources and it is clear that HS 
has complex effects on carbohydrate metabolism through 
increased demands for glucose and changes in insulin 
signaling and sensitivity [99]. Bile functions are impor-
tant for fat digestion and metabolism and contribute to 
growth and the intestine development via the hormones 
and pheromones that are excreted in bile. Supplementa-
tion with bile acids has been shown to reduce the harm-
ful effects of HS in broiler chickens but this has not been 
studied in cattle or pigs [100]. Heat stress response mark-
edly alters postabsorptive carbohydrate, lipid, and pro-
tein metabolism independently of reduced feed intake 
through coordinated changes in fuel supply and utiliza-
tion by multiple tissues [99].

Nervous system related pathways (neuroactive ligand-
receptor interaction and long-term depression) and 
nicotinate and nicotinamide metabolism were enriched 
for genes that were uniquely enriched for EG class 3. 
The nervous system plays a vital role in controlling and 
regulating body temperature by continuously monitoring 
body temperature and initiating appropriate responses, 
such as vasodilatation, sweating, and reduced metabolic 
rate, to maintain homeostasis [43]. In ducks, a neuroac-
tive ligand-receptor interaction that is involved in main-
taining energy homeostasis during HS has been identified 
in a previous study [101]. Studies in humans have dem-
onstrated that HS induces mental issues such as chronic 
depression or chronic anxiety disorders [102, 103]. Nic-
otinamide provides anti-inflammatory and neuropro-
tective effects by increasing oxidative phosphorylation, 
buffering and preventing metabolic stress, and increasing 
mitochondrial size and motility [104, 105].

Taken together, the results suggest that  the genes that 
have a dynamic function are important in regulating 
HS across various time-periods or EG classes and in the 
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related pathways for HS in mammals. These findings are 
of interest for future research towards understanding and 
managing HS for coping with rising global temperatures. 
Greater knowledge of the biological basis of response 
to HS can help farmers and breeders design improved 
breeding programs and make selection decisions. How-
ever, heritability estimates for  TV are not available for 
the whole lactation period because of the data collection 
scheme implemented in our study. Such results could 
be useful and contribute to investigating how lactation 
affects body temperature under HS conditions. Moreo-
ver, more potential novel indicators of heat tolerance 
using body temperature data should be explored. As 
global warming intensifies, there is an increasing need for 
breeding more climatically-resilient livestock. Such ani-
mals should not only be minimally affected by potential 
disruptions due to climate changes and farm manage-
ment but also demonstrate better health, welfare, and 
improved production efficiency. Thus, the next step is to 
derive novel indicators of climatic resilience in lactating 
sows based on variability in Tv and investigate the genetic 
relationship of these novel traits with production indica-
tors and other routinely recorded traits in swine breeding 
programs.

Conclusions and implications
Automatically-recorded vaginal temperature is a promis-
ing indicator of HS response for breeding programs due 
to its moderate heritability and repeatability estimates. 
The RRM with Legendre orthogonal polynomials (i.e., 
LEG4) was identified as the best model due to its low BIC 
value and computational requirements. GxE interactions 
for  TV were identified, indicating that HS could result in 
re-ranking of breeding values under different climatic 
challenges or timing of HS.  TV is a highly polygenic trait 
and is controlled by multiple genomic regions of small 
effects. Twelve, 13, 16, and 10 relevant 10-SNP windows 
located on more than 10 Sus scrofa chromosomes (SSC) 
were estimated to explain more than 0.25% of the genetic 
variance for  TV across the four respective HS time-peri-
ods. For the three respective EG classes, 18, 15, and 14 
10-SNP windows were identified for  TV. Two genomic 
regions, on SSC10 (59.370–59.998  Mb) and SSC16 
(21.548–21.966 Mb), were identified across all HS time-
periods and EG classes. Most genomic regions related 
to  TV have dynamic regulatory functions over time and 
under varying climatic conditions, and specific biologi-
cal functions were identified for each HS time-period and 
EG class, such as those related to immunity, metabolism, 
and hormone. This study provides important insights to 
conduct genomic selection for improved heat tolerance 
in pigs, especially during lactation, based on automati-
cally-measured  TV.
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