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Abstract 

Background Paratuberculosis is a contagious and incurable disease that is caused by Mycobacterium avium subsp. 
paratuberculosis (MAP) with significant negative effects on animal welfare and farm profitability. Based on a large 
naturally infected flock over 12 years, we analyzed repeated enzyme-linked immunosorbent assay tests (ELISA), 
OvineSNP50 BeadChip genotypes and whole-genome sequences imputed from 56 influential animals. The main 
goals were to estimate the genetic parameters of proxy traits for resistance to MAP, identify genomic regions asso-
ciated with the host’s immune response against MAP and search for candidate genes and causative mutations 
through association and functional annotation analyses of polymorphisms identified by sequencing.

Results Two variables were derived from ELISA tests. The first, a binary variable, assessed the infection status of each 
animal over the entire productive life, while the second considered the level of antibody recorded over time. Very 
similar results were obtained for both variables. Heritability estimates of about 0.20 were found and a significant 
region capturing 18% and 13% of the genetic variance was detected on ovine chromosome 20 by linkage disequilib-
rium and linkage analysis on OvineSNP50 positions. Functional annotation and association analyses on the imputed 
sequence polymorphisms that were identified in this region were carried out. No significant variants showed a func-
tional effect on the genes that mapped to this region, most of which belong to the major histocompatibility complex 
class II (MHC II). However, the conditional analysis led to the identification of two significant polymorphisms that can 
explain the genetic variance associated with the investigated genomic region.

Conclusions Our results confirm the involvement of the host’s genetics in susceptibility to MAP in sheep and sug-
gest that selective breeding may be an option to limit the infection. The estimated heritability is moderate with a rel-
evant portion being due to a highly significant region on ovine chromosome 20. The results of the combined use 
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of sequence-based data and functional analyses suggest several genes belonging to the MHC II as the most likely 
candidates, although no mutations in their coding regions showed a significant association. Nevertheless, information 
from genotypes of two highly significant polymorphisms in the region can enhance the efficiency of selective breed-
ing programs.

Background
Paratuberculosis (PTB), also known as Johne’s disease, is 
a contagious disease caused by infection with the gram-
positive bacterium Mycobacterium avium subsp. para-
tuberculosis (MAP). It affects ruminant species and can 
manifest as chronic granulomatous enteritis. Paratuber-
culosis is a very common disease worldwide [1]. Never-
theless, the true prevalence in sheep is very difficult to 
estimate. Published data on the prevalence suggest a large 
variability between countries or geographical regions [1–
3]. Some studies carried out in Italy reported seropreva-
lence rates ranging from 66 to 73% at the flock level and 
from 10 to 15% at the individual level [3, 4].

In sheep, the main route of transmission of MAP 
is faecal-oral. Lambs are usually infected early in life 
by ingestion of bacteria from the teats or the pasture 
contaminated by faeces from infected animals [5, 6]. 
Although MAP is unable to reproduce itself outside of 
the host cells, it can survive for many months as a spore-
like form, so that an environment without animals can 
remain infectious for a long time [7]. Once infected, 
animals go through a latency phase that can last several 
months or years. Then, the disease can remain asympto-
matic, with a majority of infected animals being asymp-
tomatic and not developing clinical signs, or can evolve 
into two main forms (paucibacillary and multibacillary) 
[8]. Both these forms can result in weight and production 
loss, emaciation and finally in the death of the infected 
animals.

Thus, in infected flocks, PTB results in significant neg-
ative effects on both animal welfare and farm profitabil-
ity [9–11]. Moreover, several studies have suggested the 
implication of MAP in Crohn’s disease in humans [12, 
13]. Mycobacterium avium subsp. Paratuberculosis has 
also been linked to several human autoimmune diseases, 
such as type 1 diabetes, rheumatoid arthritis, Hashi-
moto’s thyroiditis, and multiple sclerosis [14]. Although 
the causal role of MAP in human diseases has not been 
proven [15–17], the possibility of zoonotic transmission 
remains a significant risk to public health.

There is no effective treatment against MAP infection 
and the control strategies based on culling seropositive 
animals are very expensive and have limited effective-
ness due to the long period of latency from infection to 
seroconversion and the lack of sensitive diagnostic tests 
[18] . Vaccination is known to reduce PTB prevalence, 

but its effectiveness varies between flocks [19]. More-
over, vaccination is not allowed in some countries 
because of a possible interference with tuberculosis 
diagnostic tests.

The most common diagnostic tests used to define 
individual PTB status are serum ELISA, milk ELISA, 
faecal culture, and faecal PCR. These tests, although at 
different extents, are characterized by high specificities 
and by variable and usually limited sensitivities [18, 20]  .

The role of host genetics in susceptibility to MAP 
infection has been largely studied in cattle. As reviewed 
by Brito et  al. [21], heritability estimates for this trait 
in this species ranged from 0.03 to 0.57 depending on 
the diagnostic tests, statistical models and populations 
[22–30]. Moreover, several genome-wide association 
studies (GWAS) have been carried out and numer-
ous quantitative trait loci (QTL) have been mapped on 
nearly all the bovine chromosomes. Indeed, to date, six 
and 601 QTL associated to “Johne’s disease tolerance” 
and “M. paratuberculosis susceptibility”, respectively, 
have been listed in the CattleQTLdb (release 5.1). The 
variability in terms of number and locations of the QTL 
between different studies could be due to differences 
in the methods used to define infected and healthy 
cohorts [29, 31, 32], statistical methodologies (i.e., lin-
ear [29], threshold models [33], case–control studies 
[34]), genetic markers (microsatellites [35]; SNPchip: 
[30, 31, 36–39]; and whole-genome sequence data [29, 
40]). Several positional candidate genes for MAP infec-
tion have been subsequently identified or suggested.

Furthermore, several candidate genes have been 
investigated due to their involvement with susceptibil-
ity to other mycobacterial diseases, including human 
tuberculosis or human leprosy, to their known role in 
disease pathogenesis or to their links to the susceptibil-
ity of humans to Crohn’s disease. As Purdie et  al. [41] 
and Kravitz et al. [42] report in their in-depth reviews 
on the topic, most of these genes are necessary for 
innate immune activation, signaling and the subsequent 
development of adaptive immunity. Thus, polymor-
phisms in the solute carrier family 11 member 1  gene 
(SLC11A1) [43, 44], interferon gamma gene (INFG) 
[43], nucleotide-binding oligomerization domain gene 
(NOD2) [45], several interleukin genes and their recep-
tors [46], toll-like receptor genes (TLR) [47, 48] and the 
major histocompatibility complex (MHC) genes [49], 
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have been reported to be significantly associated with 
various PTB phenotypes.

In sheep, the number of studies on the genetic archi-
tecture of the resistance/susceptibility to PTB is much 
smaller. Breed differences in resistance to MAP have 
been observed in some studies [50, 51]. The reported 
estimates of heritability range from 0.15 to 0.28 when 
estimated with threshold models [52, 53] and from 0.07 
to 0.24 when estimated for binary trait (survived or died 
from PTB diagnosed post mortem) [54].

The few studies on candidate genes performed in this 
species identified significant associations between PTB 
susceptibility and microsatellite polymorphisms in the 
SLC11A1 and MHC genes [55] or polymorphisms in 
the TLR genes [56, 57]. To date, only one genomic scan 
based on the OvineSNP50 BeadChip has been published 
in sheep. This study has shown suggestive associations 
between some genes or regions and susceptibility to PTB, 
but it was based on a small sample of animals (100) and 
markers (5000 single nucleotide polymorphisms (SNPs)) 
[58].

In the work reported here, the host’s genetic resist-
ance to PTB in sheep was studied based on data collected 
on a large experimental flock. Phenotypes consisted of 
repeated enzyme-linked immunosorbent assay (ELISA) 
tests performed over time. Ewes were genotyped with the 
OvineSNP50 BeadChip and whole-genome sequences 
(WGS) were imputed based on the WGS of 56 influen-
tial animals. The main goals were to estimate the genetic 
parameters of proxy traits for resistance to PTB, iden-
tify genomic regions associated with the host’s immune 
response against MAP, and search for candidate genes 
and causative mutations through association and func-
tional annotation analyses of polymorphisms identified 
by WGS data.

Methods
Experimental population
The individuals investigated in the present study belong 
to the female resource population (FRP) of the Sarda 
breed that is raised on an experimental farm located in 
the south of Sardinia. The FRP was set in 1999 with the 
first generation of ewes consisting of 928 back-crosses 
originating from 10  F1 Lacaune × Sarda rams and Sarda 
pure-breed females. The following generations were 
obtained by mating adult ewes from FRP with rams from 
the Sarda Herd Book. The average size of the flock was 
approximately 900 ewes with a replacement rate of ~ 25%. 
To date, approximately 5500 ewes have been bred within 
the FRP. Ewes of the FRP are routinely measured for 
several production, health and functional traits [59, 60]. 
The flock is managed following the farming system that 
is commonly adopted by commercial farms in Sardinia. 

Feeding is based on grazing natural or cultivated swards 
supplemented with hay, silage and concentrate. Lambing 
periods are autumn and late winter for adult ewes and 
primiparous ewes, respectively. Animals of the nucleus 
flock are naturally exposed to MAP infection and no con-
trol measures, treatment or vaccination against PTB is 
applied.

In the experimental flock, breeding females derive from 
adult ewes that lamb between November and December, 
as a result of artificial insemination or single-sire natural 
mating that occurs in June and July. Lambing ewes are 
kept on grassland during the day and housed during the 
night. After lambing and throughout the suckling period, 
the ewes are kept together. Lambs follow their mothers 
outside during grazing and inside during the night within 
one common indoor pen.

At weaning, at about 30 days of age, female lambs are 
separated from their mothers and gathered into one com-
mon pen, where feeding and water are provided in shared 
feeders and drinkers. From weaning to their first lamb-
ing, the female lambs are kept in a single group separated 
from the adult ewes: in spring, they start grazing, and in 
late summer–early autumn, they are naturally mated with 
adult rams resulting in late winter first lambings.

The experiment on resistance to PTB included 3088 
ewes born from 1999 to 2011 from 100 sires. The num-
ber and the size of the sire-families varied over years. 
The first generation born in 1999 derived from 712 Sarda 
purebred dams and 10 Lacaune × Sarda  F1 sires with on 
average 80 daughters each. From 2002 to 2009, five to 
six sire-families of around 40 ewes each were generated 
per year. In 2010 and 2011, the number of mating sires 
increased to 20 per year resulting in an average sire fam-
ily size of 10 daughters. Ewes born from 2002 to 2011 
derived from 90 purebred rams from the Sarda Herd 
Book mated with 1437 adult ewes from FRP. In each 
mating season, a specific set of breeding rams was used. 
Only seven rams needed two mating seasons to achieve 
the planned number of daughters. Overall, the 3088 ewes 
derived from 2670 lambings of 2149 dams. The number 
of daughters bred per lambed ewe was on average 1.16 (1 
for the 84% and 2 for the 16% of the lambings). The aver-
age number of daughters per dam across parities was 1.4 
(1 for the 68%, 2 for the 23% and more than 2 for the 9% 
of the dams).

Serological data
Collection of serological data in the experimental popula-
tion started in 2001 and ended in 2012. During this period, 
3088 ewes born from 1999 to 2011 were blood sampled 
with intervals between consecutive samplings ranging from 
5 to 12  months. The number of blood samples per head 
was 4.7 on average, ranging from 1 to 8. Overall, 14,482 
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blood samples were collected (Table  1). Blood samples 
were tested using the ELISA screening test (Idvet, France 
or Pourquier ELISA, France) and the test results were 
expressed on the basis of the percentage of the sample-to-
positive ratio (SP) calculated as:

where ODij is the optical density of blood sample i on 
plate j ; OD

neg
j  is the optical density average of negative 

controls of plate j , and OD
pos
j  is the optical density aver-

age of positive controls of plate j . A test was considered 
as positive when SP was ≥ 70% (Fig. 1).

(1)SPi = 100 ∗
ODij −OD

neg
j

OD
pos
j −OD

neg
j

,

Molecular data
All 3088 phenotyped ewes, their 100 sires and 10 Sarda 
grand-sires were genotyped with the Illumina Inc. 
OvineSNP50 BeadChip (50  K hereafter). Filtering of 
SNPs was performed by setting the call rate and minor 
allele frequency thresholds at 95% and 1%, respectively. 
The ovine genome assembly v4.0 and the SNPchimMpv.3 
software [61] were used to construct the genetic map by 
assuming 1  Mb = 1  cM. Unmapped SNPs and SNPs on 
sex chromosomes were not included in the study. Finally, 
43,390 SNPs were retained for further analyses.

Among the genotyped animals described above, 56 
individuals had been previously fully resequenced. A 
first group of 24 animals (22 ewes and 2 sires) had been 
chosen within the framework of previous projects and 
were whole-genome resequenced with a target coverage 
of 12×. They were selected to mimic trios for opposite 

Table 1 Summary of blood samples and serum ELISA tests

Number of samples/heads Number of head Number of samples Average age (months) Proportion 
of positives 
samples

1 160 160 37 0.33

2 411 822 35 0.20

3 213 639 36 0.21

4 1021 4084 42 0.16

5 72 360 29 0.26

6 426 2556 35 0.18

7 419 2933 37 0.12

8 366 2928 36 0.14

Total 3088 14,482 37 0.16

Fig. 1 Distribution of sample-to-positive ratio (SP) values
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alleles at QTL segregating in the Sarda breed for vari-
ous traits of interest [62]. A second group, consisting 
of 32 Sarda rams (30 sires and 2 grand-sires), was rese-
quenced more recently with a 30× target coverage. They 
were selected based on their genetic impact on FRP 
to maximize the portion of segregating Sarda gametes 
included in the sequenced sample. Genomic libraries 
were prepared using the Illumina’s Nextera DNA Flex kit 
according to the manufacturer instructions. The quality 
of dual-indexed libraries was assessed using DNA1000 
Chip on the Bioanalyzer 2100 (Agilent) and Qubit fluoro-
metric quantification using Qubit dsDNA BR Assay kits 
(Invitrogen). Dual-indexed 150-bp paired-end sequenc-
ing was performed on an Illumina HiSeq3000 instru-
ment at CRS4 (Center For Advanced Studies, Research 
and Development in Sardinia https:// www. crs4. it/) NGS 
facility. Whole-genome sequence (WGS) data were pro-
cessed with a pipeline implemented with Snakemake 
[63] that was developed at CRS4 and available at https:// 
github. com/ solida- core. Briefly, adapter sequences were 
removed from the short reads, then low-quality ends 
were trimmed, and sequences shorter than 25  bp after 
trimming were removed with the TrimGalore (v0.4.5) 
software [64]. The quality of the reads, before and after 
trimming, was evaluated with the Fastqc (v0.11.5) tool 
[65]. Trimmed reads were aligned to the Ovis aries ref-
erence genome v4.0 (https:// www. ncbi. nlm. nih. gov/ 
assem bly/ GCF_ 00029 8735.2) using the Burrow-Wheeler 
Aligner (BWA v0.7.15) program [66]. Alignments were 
further sorted, converted to a CRAM file and indexed 
with Samtools (v1.6) [67]. PCR duplicates were detected 
with the Picard (v2.18.9) tool [68]. After alignment, joint 
single nucleotide variant calling was performed using the 
GATK (v4.0.11.0) software [69], according to the GATK 
Best practices workflow [70]. In order to apply the GATK 
variant quality score recalibration, first we ran an initial 
round of SNP calling and only used the top 5% SNPs with 
the highest quality scores.

Descriptive variables
The definition of the infected status of an individual 
based on the antibody levels assessed by the serum ELISA 
test is questionable. Several studies pointed out that the 
PTB status based on the SP cutoff has a low sensitivity 
and high specificity [18]. Thus, a large proportion of the 
infected animals is expected to be falsely negative, while 
a true negative is unlikely to result positive. Therefore, 
to check the overall consistency of the results, we per-
formed the genetic analyses with two different variables.

First, a binary variable (CAR) was defined by assign-
ing the infected status (CAR = 1) to animals showing at 
least one test during the recording period with an SP ≥ 

70. However, CAR roughly approximates the status for 
the animals that have just one test within the recording 
period (5%) and neglects the test results after obtention 
of the first positive test, regardless of whether they were 
all positive or not (as it was the case for 41% of animals 
which showed at least one negative test after the first 
positive one).

The second analyzed variable was SP [Eq.  (1)] i.e. the 
level of antibody observed over time without explicit def-
inition of the PTB status.

Analysis of variance components
As far as the sources of environmental variation are 
concerned, vertical transmission of MAP from dam to 
offspring through contaminated milk or fecal contamina-
tion of the udder [5] may generate a non-genetic covari-
ance between relatives. Thus, including full-sib or dam 
family random effects in the model would be the best way 
to avoid a potential overestimation of the genetic vari-
ance. However, these effects were not estimable in our 
study because of either the small litter sizes or the small 
number of offspring per dam. Moreover, in our study, the 
dam status at birth was available for 73% of the whole 
population (2246 ewes). Considering this sample, 71% of 
infected ewes were from uninfected dams and the preva-
lence of infected offspring from infected and uninfected 
dams was 40 and 28%, respectively. This suggests that, in 
our experimental population, routes of transmission such 
as suckling from other ewes or between contemporaries 
make the effect of the dam-to-lamb vertical transmission 
less relevant than expected.

The lambing season and the management group as 
well as different biosafety strategies between years could 
be potential sources of environmental variation of MAP 
prevalence since animals could be differently exposed to 
the pathogen’s infection. However, as described above, 
the strategy of raising animals in a single management 
group per year as well as the homogeneity of the manage-
ment strategies across years make it likely that no system-
atic environmental effect of the year and/or management 
group affects the PTB status of an animal. Thus, this 
factor was not included in the statistical model as fixed 
effect to avoid differences in prevalence between years 
being incorrectly attributed to environmental sources of 
variation rather than to the genetic background of the 
corresponding yearly set of sires and dams.

Finally, the variance component analyses were per-
formed by two variable-specific animal models.

CAR was analyzed with the following single-trait ani-
mal model:

(2)y = 1µ+ Zg + e,

https://www.crs4.it/
https://github.com/solida-core
https://github.com/solida-core
https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_000298735.2
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where y is the vector of CAR observations (3088); µ is the 
overall mean; g is the vector of genomic breeding values; 
e is the vector of random residuals; 1 is a vector of 1 s; and 
Z is the incidence matrix relating y to g.

SP was analyzed with the following single-trait repeat-
ability animal model:

where y is the vector of observations (14,482 for SP); µ is 
the overall mean; b is the fixed effect of age at the test; c is 
the vector of the 149 random effects of ELISA plates; p is 
the vector of the 3088 random animal non genetic effects; 
g is the vector of genomic breeding values; e is the vector 
of random residuals; 1 is a vector of 1s; x is the vector of 
ages (in days) at the test date and U , W and Z are inci-
dence matrices.

Vectors g and e in both Eqs. (2) and (3) and vectors c and p 
in Eq. (3) were assumed to be distributed as g ∼ N

(

0,Gσ2g

)

 , 

e ∼ N
(

0, Ieσ2e
)

 , c ∼ N
(

0, Icσ2c
)

 and p ∼ N

(

0, Ipσ2p

)

 , 
where G is a genomic relationship matrix calculated by the 
Van Raden method 1 [71]; Ie , Ic and Ip are specific identity 
matrices; σ2g is the trait genetic variance, σ2e is the trait resid-
ual variance, σ2c is the ELISA plate variance and σ2p is the 
individual non genetic variance. Variance components were 
estimated by a REML procedure through the airemlf90 soft-
ware [72].

For QTL mapping on CAR, the original variable was 
used, and for QTL mapping on SP, the average perfor-
mance deviations (APD) were obtained by averaging 
individual random residuals ( e ) and summing-up the 
genetic and non genetic animal effects ( p+ g).

Linkage disequilibrium and linkage analysis 
and quantitative trait loci variance
A genome scan to detect genomic regions that are associ-
ated with resistance to MAP was carried out on 43,390 
50  K SNP positions by using the method proposed by 
Usai et al. [59]. This method uses principal components 
(PC) to summarize identity-by-descent probabilities 
(IBD) between gametes of genotyped individuals. There-
fore, the paternal and maternal transmitted gametes 
(named gametes hereafter) of the genotyped individuals 
were first reconstructed by the linkage disequilibrium 
multilocus iterative peeling method [73] using genotype 
and pedigree information. Then, at each 50 K SNP posi-
tion l , a matrix ( Ql ) allocating IBD probabilities between 
gametes of phenotyped individuals was built by combin-
ing linkage disequilibrium and linkage analyses (LDLA). 
The IBD between segments of Lacaune origin (inher-
ited from  F1 sires) and segments of Sarda origin was set 
to 0. Moreover, a genome-wide IBD matrix ( Qg ) was 

(3)y = 1µ+ xb+Uc+Wp+ Zg + e,

calculated by averaging all the Ql to account for the poly-
genic effects. At this stage, Usai et al. [59] proposed the 
use of principal component analysis to summarize the 
information of Ql and Qg to overcome the nonpositive 
definiteness of Ql and to limit the computational needs 
in handling both IBD matrices. The final model does not 
include random effects other than the residuals and is 
solved by a weighted least squares method.

At each SNP position l , the model was as follows:

where y is the vector of phenotypes (APD of SP or CAR); 
µ is the overall mean; VS

l  and VL
l  are the matrices includ-

ing the scores of PC extracted from Ql that explain more 
than 99% of the variation of IBD probabilities within 
Sarda and Lacaune, respectively, and βSl  and βLl  are the 
vectors of the corresponding fixed effects; Vg is the 
matrix including the scores of PC that explain more than 
99% of the variation of the genome-wide IBD probability 
matrix Qg and αl is the vector of the corresponding fixed 
effects estimated at locus l ; Zq is an incidence matrix 
relating phenotypes with gametes and εl is the vector of 
residuals calculated at locus l , assuming that 
ε ∼ N

(

0,R−1σ 2
ε

)

 with R being a diagonal matrix with 
phenotype weight as diagonal elements. For the variable 
CAR, weights were assumed to be 1 throughout, and thus 
R is an identity matrix. For the variable SP, with analyzed 
phenotypes being APD, to take the different reliability of 
the individual APD resulting from the different number 
of ELISA tests per animal into account, the individual 
weight of the phenotype of the ewe i ( Rii ) was calculated 
as Rii = 1−

σ
2
e

nTi

(

σ2g+σ2p

) , where nTi  is the number of ELISA 

tests carried out on ewe i ; σ2e , σ2g and σ2p are the estimated 
variances from the animal model in Eq. (3).

The aim of this analysis was to identify QTL that seg-
regate in the Sarda breed. Thus, at each SNP position 
l , the null hypothesis that the effects of Sarda PC were 
zero ( H0 : β

S
l = 0 ) was tested by an F-test where the sum 

of the squared residuals of the full model in Eq.  (4) was 
compared with that obtained by the following reduced 
model:

The genome-wide (GW) significance threshold was 
determined by the Bonferroni correction of the signifi-
cance level chosen for the analysis (0.05) for the total 
number of tested positions (43,390). Thus, the GW 
significant threshold, in negative logarithm with base 
10, was set to 6. This approach is conservative since it 
does not account for the linkage disequilibrium (LD) 
between the SNP positions tested. Significant positions 

(4)y = 1µ+ ZqVS
l β

S
l + ZqVL

l β
L
l + ZqVgαl + εl,

(5)y = 1µ+ ZqVL
l β

L
l + ZqVgαl + ε∗l .
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identified on the same chromosome were clustered 
into QTL regions (QTLR) on the basis of the correla-
tions between phenotypes predicted by the QTL effects 
( ̂yQl = ZqVS

l
̂β
S

l + ZqVL
l
̂β
L

l  ) as proposed by Usai et  al. 
[59].

Moreover, to appreciate the potential impact of a 
marker-assisted selection approach, the QTL variance 
for the most significant position of each QTLR was esti-
mated by including in the animal models in Eqs. (2) and 
(3) the random effects of the identified QTL. To deal with 
the nonpositive definite nature of the IBD matrix Ql cal-
culated at the QTLR peak position l , a positive definite 
submatrix ( Qpd

l  ) was extracted from Ql . To maximize the 
information captured by Qpd

l  , gametes included in Qpd
l  

were iteratively selected based on their impact on Ql and 
the IBD with the previously selected gametes. Then, each 
gamete carried by a phenotyped ewe was related to the 
gamete in Qpd

l  with which it had the highest IBD prob-
ability. In our study, this latter probability was on aver-
age ~ 0.99 (± 0.05). Thus, the two variable-specific animal 
models in Eqs. (2) and (3) were updated as follows:

For CAR:

and for SP:

where ql is a vector of random effects of the selected 
gametes included in Qpd

l  and assumed to be distributed 
as ql ∼ N

(

0,Q
pd
l σ

2
ql

)

 ; σ2ql is the variance of the QTL; Zpd
l  

is an incidence matrix relating the paternal (maternal) 
gamete of the phenotyped ewes with Qpd

l  ; the remaining 
elements of Eqs. (6) and (7) are the same as in Eqs. (2) 
and (3). Variance components were estimated by a REML 
procedure through the airemlf90 software [72].

Analysis of sequence data
Quantitative trait loci regions as defined above were fur-
ther investigated using information from WGS data. Bial-
lelic SNPs passing the filtering and falling in these target 
QTLR were extracted from the assembled sequences of 
the 56 resequenced animals (WGS SNPs). Then, the 
parental gametes of the phenotyped ewes were imputed 
from 50  K data to WGS by the procedure proposed by 
Usai et al. [74]. The imputation procedure consisted of a 
first step where the phase of each parental gamete k 
(where k = 1 or k = 2 identify the paternal or maternal 
transmitted gamete, respectively) carried by the 
sequenced animal j ( hsjk ) was iteratively reconstructed by 

(6)y = 1µ+ Zg + Z
pd
l ql + e,

(7)y = 1µ+ xb+Uc+Wp+ Zg + Z
pd
l ql + e,

estimating the probability of carrying the reference 
P
(

hsjkl = R
)

 and the alternative P
(

hsjkl = A
)

 allele at each 
WGS SNP position l . These probabilities were condi-
tioned to the genotypic information from sequencing and 
the IBD between gametes of sequenced individuals at the 
neighboring 50 K SNP positions.

Then, at each WGS SNP position l , the probabili-
ties that gamete k of the phenotyped ewe i ( hpik ) car-
ried the reference P

(

h
p
ikl = R

)

 and the alternative 
P
(

h
p
ikl = A

)

 allele were inferred on the basis of the 
gametic phases of sequenced animals and the IBD 
between gametes of the sequenced animals with gam-
etes of the phenotyped ewes. The information con-
tent of each imputed gamete ( wikl ) was defined by 

the general formula wikl =
na
∑m=na

m=1 P
(

h
p
ikl=m

)2
−1

na−1  , 
which for biallelic cases ( na = 2 ) can be simplified to 
wikl =

[

P
(

h
p
ikl = R

)

− P
(

h
p
ikl = A

)]2.
Two approaches were used to assess the accuracy of 

imputation in the target regions. The first approach con-
sidered only the sequenced animals and all the WGS 
SNPs. The accuracy was defined by 56 leave-one-out 
cross-validations and corresponded to the correlation 
between the true and the imputed genotypes. The sec-
ond approach considered all the phenotyped ewes and 
only 50 K SNP positions. In this case, the accuracy was 
calculated as the correlation between P

(

h
p
ikl = R

)

 and the 
actual occurrence of the same allele defined in the LDLA 
analysis on 50 K data.

Then, an association analysis was run in the target 
regions by regressing the investigated variables on the 
allele dosage of the reference allele (R). The model tested 
at each WGS SNP position l was the following:

where the terms y , 1µ , ZVgαl and εl are the same as for 
the LDLA mapping model in Eq.  (4); γl is the additive 
substitution effect of R and pl is the vector allocating the 
dosage of allele R of the phenotyped ewes. To calculate 
the allele dosage, the probability P

(

h
p
ikl = R

)

 from the 
imputation was weighted for its information content wikl , 
to limit the impact on the regression of gametes imputed 
with low precision. Therefore, the weighted probability of 
each gamete ik carrying R at WGS SNP position 
l  (Pw

(

h
p
ikl = R

)

 ) was calculated as 
Pw

(

h
p
ikl = R

)

= wikl

[

P
(

h
p
ikl = R

)

− fRl

]

+ fRl  , where fRl  is 
the allele frequency of the allele R at SNP l calculated as 
fRl =

∑

wiklP
(

h
p
ikl = R

)

/
∑

wikl and the individual allele 
dosage was calculated as 
pil = Pw

(

h
p
i1l = R

)

+ Pw
(

h
p
i2l = R

)

 , where subscripts “ 1 ” 

(8)y = 1µ+ plγl + ZVgαl + εl,
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and “ 2 ” indicate the paternal and maternal gametes 
inherited by the phenotyped ewe i.

The null hypothesis that the effect of SNP l was zero 
( H0 : γl = 0 ) was tested by an F-test.

Functional annotation of the WGS SNPs included 
in each QTLR was performed by using the NCBI 4.0 
sheep genome annotation release 102 and the SnpEff 
software v4.3.t [75] . Genes included in the most sig-
nificantly associated regions, annotated by orthology 
to human genes from the OrthoDB v10 database, were 
analyzed using the KEGG and gene ontology (GO) bio-
logical process terms databases with the web-based 
software WebGestalt [76].

Moreover, a conditional analysis [77] was carried 
out to determine if the multiple significant WGS SNP 
effects detected in a QTLR were due to LD or to cap-
tured independent effects. The conditional association 
analysis was performed by a step-wise procedure. At 
each step, the association model in Eq. (8) was updated 
by adding, as fixed effect, the most significant WGS 
SNP; then all the remaining WGS SNPs were retested 
with the updated model and the new p-values were 
used to select additional SNPs to be added in the 
model as fixed effect. The procedure continued until 
the most significant WGS SNP did not exceed the sig-
nificance threshold of −log10(P− value) = 6.

Results
Serological data
Approximately 16% of the 14,482 ELISA tests were posi-
tive (SP > 70%) and 29.7% of the 3088 investigated ewes 

were considered infected since they had at least one posi-
tive test during the recording period. Figure 2 shows the 
prevalence of infected animals (CAR = 1) observed in 
FRP for different age classes. Prevalence increases until 
4  years of age reaching a maximum of approximately 
27%; then it decreases in older ewes. Since animals are 
usually infected early in life, the progressive increase in 
infection prevalence in the first four age classes is prob-
ably caused by differences in the length of the infection-
to-seroconversion period. The decrease in infection 
prevalence in 5 to 6 year-old animals is probably due to 
the greater chance of the infected animals to be voluntary 
or involuntary culled earlier in life with respect to healthy 
animals. In fact, Fig.  2 shows that the infection preva-
lence in the group of culled animals at each age class is 
always higher than that observed in surviving animals of 
the same age, especially for 3 and 4 year-old ewes. Thus, 
although no selective culling based on serological status 
was applied, the mortality due to PTB combined with the 
voluntary culling not clearly attributable to PTB, signifi-
cantly reduced the prevalence of infection in older ani-
mals. During the recording period, 115 ewes died within 
six months after the last ELISA test with clinical signs 
of PTB and 77% of them were also classified as infected 
(CAR = 1).

Figure  1 shows the distribution of the observed SP 
values. The overall mean was 33 (± 47) and the most 
frequently observed value was 2. The skewed distri-
bution of this variable is mainly due to the large vari-
ability of SP values in positive tests. In several studies, 
SP has been log-transformed to make the data more 

Fig. 2 Prevalence of infected animals per age class. Whole: prevalence in the entire set of contemporaries; culled: prevalence in the portion 
of contemporaries died or removed; survived: prevalence in the portion of contemporaries alive in the next year of age
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concordant with the normal distribution. In this study, 
we present results from non-transformed SP since no 
relevant differences between log-transformed and 

original SP were observed both in terms of genetic 
parameters’ estimates and QTL mapping.

Variance components
Table  2 shows the estimates of variance components 
obtained with the two variable-specific animal models. 
The heritability estimates were 0.20 for both CAR and 
SP. The repeatability estimate for SP was 0.68. The vari-
ance explained by the random effect of the ELISA plate 
was 2.9% (± 0.41) of the total SP variance, indicating the 
good stability of the ELISA results in our study.

Linkage disequilibrium and linkage analysis 
and quantitative trait loci variance
Figures 3 and 4 show the results of the genome scan that 
was carried out on the 43,390 positions of the 50 K SNPs 
by LDLA mapping. The significance profiles obtained for 

Table 2 Estimates and standard errors (SE) of ELISA plate 
variance ( ̂σ2c ), individual non genetic variance ( ̂σ2p ), genetic 
variance ( ̂σ2g ), residual variance ( ̂σ2e ), total variance ( ̂σ2tot ), 
repeatability ( ̂r  ) and heritability ( ̂h2 ) for CAR and SP

Parameter CAR (SE) SP (SE)

σ̂
2
c

69 (10)

σ̂
2
p

– 1079 (49)

σ̂
2
g

0.0427 (0.007) 453 (60)

σ̂
2
e

0.1676 (0.006) 736 (10)

σ̂
2
tot

0.2102 (0.006) 2268 (51)

̂r – 0.68 (0.008)

̂

h2
0.20 (0.029) 0.20 (0.024)

Fig. 3 Manhattan plot of the −  log10(nominal P-values) against the 43,390 positions of the 50 K SNPs obtained by LDLA mapping that was carried 
out based on CAR. The grey line indicates the 0.05 genome-wide significance threshold determined by Bonferroni correction for 43,390 tests

Fig. 4 Manhattan plot of the −  log10(nominal P-values) against the 43,390 positions of the 50 K SNPs obtained by LDLA mapping that was carried 
out based on SP. The grey line indicates the 0.05 genome-wide significance threshold determined by Bonferroni correction for 43,390 tests
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CAR (Fig. 3) and SP (Fig. 4) were very similar even if more 
significant associations were obtained with CAR. One 
hundred and twelve SNP positions exceeded the 0.05 GW 
significance threshold ( −log10(P− value) = 6 ) for both 
variables. Forty-four and four specific significant locations, 
were identified for CAR and SP, respectively. All the sig-
nificant positions were located on Ovis aries chromosome 
(OAR) 20 within a region between 23 and 35  Mb. The 
most significant position for the two variables corresponds 
to two close SNPs located at ~ 24.8 Mb (Table 3). For both 
variables, significant SNPs were clustered in a unique 
QTLR since the phenotypes predicted by the QTL ( ̂yQl ) 
at each significant SNP position were strongly correlated 
(r > 0.45) to the phenotypes predicted by the QTL at the 
position of the peak. Additional positions close to the GW 
significance threshold were detected on OAR15 at ~ 62 Mb 
for both variables; on OAR18 at ~ 30 Mb for CAR and on 
OAR1 at ~ 200 Mb for SP.

The Q–Q plot of P-values are reported in Additional 
file 1: Figs. S1 and S2 and nominal P-values and false dis-
covery rates are in Additional file 2: Tables S1 and S2 for 
all the 50 K SNP positions.

Concerning the estimation of QTL variance, the posi-
tive definite sub-matrices ( Qpd

l  ) extracted from the whole 
IBD matrices ( Ql ) calculated at QTLR peak positions on 
OAR20, included 52 and 56 gametes for CAR and SP, 
respectively, and captured 0.99 (± 0.05) of the Ql informa-
tion for both variables. Table  4 shows the REML esti-
mates of the variance components of the animal models 
including the random QTL effects. The variance 
explained by the QTL was ~ 3.6% and 2.5% of the total 
phenotypic variance and ~ 18% and 13% of the cumula-
tive genetic variance ( ̂σ2g + σ̂

2
q ) for CAR and SP, respec-

tively. The higher proportion of variance explained by the 
QTL based on CAR with respect to that based on SP 
could explain the higher significance values obtained 
with the variable CAR. Moreover, for both of the investi-
gated variables, the sums of the QTL and polygenic 

variances ( ̂σ2g + σ̂
2
q ) as well as their ratios with the total 

variances 
(

σ̂
2
g + σ̂

2
q

)

/σ̂2tot (Table  4) corresponded well to 
the genetic variances and heritabilities estimated with the 
animal models without QTL (Table 2).

Analysis of sequence data
According to the QTLR identified by LDLA mapping 
(Table 3), the genomic region between 23.1 and 35.2 Mb 
on OAR20 was further investigated by using WGS data. 
Within this region, 167,895 biallelic WGS SNPs were pol-
ymorphic in the 56 sequenced animals and were imputed 
to the phenotyped individuals by exploiting the IBD 
probability at the 191 50 K SNP positions that were esti-
mated for the LDLA mapping. The average information 
content of the phenotyped ewes across WGS SNPs was 
0.90 (± 0.06) with a strong difference between gametes of 
Lacaune or Sarda origin. In fact, the average information 

Table 3 QTL regions from the LDLA analysis

OAR: Ovis aries chromosome; significant SNPs: number of 50 K SNPs exceeding the 0.05 genome-wide significance threshold ( −log10(Pvalue) > 6); range: position of 
the first and last significant SNP of the QTL region; highest peak: the most significant SNP 50 K position

Variable OAR Significant SNPs (n) Range (Mb) Highest peak

SNP name Position (bp) −log10
(

Pvalue
)

SP 20 116 23.49–35.13 rs419287784 24,791,184 18.025

CAR 20 156 23.12–35.13 rs413015672 24,860,179 21.396

Table 4 Estimates and standard errors (SE) of ELISA plate 
variance ( ̂σ2c ), individual non genetic variance ( ̂σ2p ), genetic 
variance ( ̂σ2g ), QTL variance ( ̂σ2q ), residual variance ( ̂σ2e ), total 
variance ( ̂σ2tot ) estimated for CAR and SP when random QTL 
effects were included in the animal models

Parameter CAR (SE) SP (SE)

σ̂
2
c

68 (10)

σ̂
2
p

– 1058 (47)

σ̂
2
g

0.0334 (0.006) 379 (55)

σ̂
2
q

0.0074 (0.002) 56 (13)

σ̂
2
e

0.1653 (0.006) 737 (10)

σ̂
2
tot

0.2063 (0.006) 2230 (47)

σ̂
2
g + σ̂

2
q

0.0408 (0.006) 436 (56)
(

σ̂
2
g + σ̂

2
q

)

/σ̂2tot
0.20 (0.027) 0.20 (0.023)

σ̂
2
q/σ̂

2
tot

0.036 (0.008) 0.025 (0.006)

σ̂
2
q/

(

σ̂
2
g + σ̂

2
q

)

0.18 (0.046) 0.13 (0.032)
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content was 0.98 (± 0.002) and 0.33 (± 0.13) for Sarda and 
Lacaune gametes, respectively. This result was expected 
since sequenced animals were selected with the aim of 
representing most of the Sarda variability regardless of 
the Lacaune gametes that were, consequently, poorly 
represented. In fact, in this specific region, only 2.6% of 
the genomic information from sequenced animals was of 
Lacaune origin. This percentage was too low to accurately 
impute gametes of Lacaune origin, which represent ~ 12% 
of the gametes of the phenotyped ewes. For this reason, 
we set the information content of all the Lacaune gam-
etes to zero when the association analysis was performed 
on WGS SNPs.

The accuracy of imputation calculated by cross-valida-
tion on sequenced animals was on average 0.93 (± 0.04), 
ranging from 0.84 to 0.98. The accuracy of imputation 
estimated at the 191 50 K positions on phenotyped ewes 
was on average higher than 0.99 (± 0.01) for all the Sarda 
gametes.

Manhattan plots from the association analysis on the 
WGS SNPs included in the QTLR identified by LDLA 
mapping, are in Figs.  5 and 6 for CAR and SP, respec-
tively. In agreement with the results of LDLA mapping, 
the profiles obtained for the two investigated variables 
follow the same pattern, although CAR outperformed 
SP in terms of P-value. For both variables, the most 
significant WGS SNP was detected at 25,253,298  bp 

(rs400535267) with a −log10(P− value) of 20.2 and 
16.3 for CAR and SP, respectively. Moreover, consider-
ing the top 500 significant SNPs (corresponding to a 
−log10(P− value) higher than 14.4 and 12.6 for CAR and 
SP, respectively), 455 SNPs (91%) were in common and 
the correlation between −log10(P− value) was 0.78.

The 50  K SNPs included in the region showed low 
significance levels when compared with the most sig-
nificant WGS SNPs. Indeed, the highest peaks showed a 
−log10(P− value) equal to 10.3 and 8.9 for CAR and SP, 
respectively. Given the overall similarity of the results 
and in order not to overload the following sections, only 
the CAR variable will be considered hereafter.

The analysis of the functional annotation focused on 
the most significantly associated region, which con-
sisted of the interval between 23.77 and 25.83  Mb and 
was bounded by the extreme positions of WGS SNPs 
that were included in the upper quarter of the peak 
( −log10(P− value)>15). This interval included 35,506 
SNPs and harbored 31 protein coding genes. The num-
ber of transcripts per gene reported in the NCBI 4.0 
sheep genome annotation release 102 was on average 2.4, 
ranging from 1 to 15. SNPeff provided 167,562 effects in 
the region. The enrichment analysis was possible for 28 
genes for which 23 orthologous human genes were iden-
tified. The top ranked biological functions were all related 
to the immune response process: GO:0050852: T-cell 

Fig. 5 Statistic tests profile of the LDLA mapping (red line) and Manhattan plot of the association analysis on WGS SNPs (blue dots) for CAR. The 
black line indicates the upper quarter of the peak significance threshold for the WGS association analysis
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receptor signaling pathway; GO:0060333: interferon-
gamma-mediated signaling pathway and GO:0019886: 
antigen processing and presentation of exogenous pep-
tide antigen via MHC class II. Moreover, the top ranked 
KEGG pathway was the inflammatory bowel disease, 
a term that includes human chronic gastrointestinal 
inflammatory disorders such as ulcerative colitis and 
Crohn’s disease. Thirteen genes enriched this pathway, 
two of which encode interleukins (IL17F and IL17A) 
and 11 encode major histocompatibility complex class 
II (MHC II) molecules (DQA, DQB, LOC101108696, 
LOC101109220, LOC101109492, LOC101109747, 
LOC101119856, LOC105603927, OVAR-DRB1, OVAR-
DRB3 and LOC101120871). These 11 genes also enriched 
the three most represented GO processes.

As far as the functional annotation is concerned, 
Table  5 reports a summary of the annotation impacts 
and effects of the investigated SNPs on OAR20. Nine 
SNPs were predicted to have a HIGH impact on multiple 
transcripts of the PKHD1, LOC101106976 (glutathione 
S-transferase A4-like), DQA, BTNL2 and LOC101110277 
(butyrophilin-like protein 1) genes. However, none of 
these variants was significantly associated with the CAR 
variable ( −log10(P− value) <5). A MODERATE impact 
was predicted for 356 missense variants spread over 
28 of the 31 identified genes. The most significant SNP 
( −log10(P− value)=14.8) of this impact category was 

located at 25,591,715  bp (rs1089342381) corresponding 
to exon 2 of the DQA gene (HGVS.p = p.Thr49Ile). Fur-
thermore, three missense variants with suggestive signifi-
cance −log10(P− value)>10) were identified in the DQA, 
PKHD1 and BTNL2 genes.

Moreover, among the 26 and 12 missense variants 
identified in the DQA and DQB genes, only 4 (2 per gene) 
were predicted to have a probably damaging effect by the 
PolyPhen-2 tool [78]. However, all of them showed a very 
low significance level ( −log10(P− value) < 3).

Concerning SNPs with a predicted impact LOW, 
444 variants were identified in the investigated region, 
which were mostly annotated as synonymous vari-
ants. The three most significant LOW impact SNPs 
( −log10(P− value) from 15.2 to 17.5) were located at 
positions 25,497,603 bp (rs429603683) and 25,497,202 bp 
(rs1093423097) corresponding to exons 4 and 3 of the 
LOC101109492 (SLA class II histocompatibility antigen, 
DQ haplotype D alpha chain) gene and at 25,462,223 bp 
in the first exon of the DQB gene. Six additional synony-
mous variants with −log10(P− value)>10 were identified, 
in the PKHD1 (3 variants), PAQR8, MCM3 and OVAR-
DRB3 genes.

With the exception of the three synonymous vari-
ants with a LOW impact described above, all the 384 

Fig. 6 Statistic tests profile of the LDLA mapping (red line) and Manhattan plot of the association analysis on WGS SNPs (blue dots) for SP. The black 
line indicates the upper quarter of the peak significance threshold for the WGS association analysis
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Table 5 Annotation impacts and effects of WGS SNPs located within the interval between 23.77 and 25.83 Mb on OAR 20

nSNP: number of WGS SNPs in the region; n effects: number of corresponding effects; -log10(P-value) negative logarithm of the P-value of the most significant SNP; n 
SNP > 15: number of WGS SNPs exceeding the significance threshold −log10(Pvalue) > 15

Annotation impact Annotation effect n SNP n effects −log10
(

Pvalue
)

n SNP > 15

High Stop gained 5 26 4.8 0

Splice donor variant 2 4 1.4 0

Splice acceptor variant 1 13 1.1 0

Stop lost 1 8 0.3 0

Moderate Missense variant 356 2042 14.8 0

Low Synonymous variant 324 1849 17.5 3

Splice region variant 80 342 8.8 0

Initiator codon variant 1 1 4.0 0

5′ UTR premature start codon gain variant 47 89 9.3 0

Modifier Intergenic region 17,333 17,333 20.2 314

Upstream gene variant 4017 7537 19.9 74

Downstream gene variant 3255 6202 19.0 27

Intron variant 16,791 130,561 19.0 65

Non coding transcript exon variant 214 214 13.8 0

5′ UTR variant 250 483 10.3 0

3′ UTR variant 422 1209 7.8 0

Table 6 Functional annotation of WGS SNPs belonging to the upper quarter of the peak [ −log10
(

Pvalue
)

> 15 ] for CAR 

* Major histocompatibility complex class II genes; nSNP: number of WGS SNPs exceeding the significance threshold −log10(Pvalue) > 15 ; −log10(Pvalue) negative 
logarithm of the p-value of the most significant SNP

Functional annotation Gene/region Interval (bp) n SNP −log10
(

Pvalue
)

Synonymous DQB* 25,457,637–25,462,339 1 17.2

LOC101109492* 25,492,374–25,497,723 2 17.5

Intron PKHD1 23,775,497–24,227,486 31 16.9

TMEM14A 24,776,903–24,790,779 1 15.2

LOC101106976 24,901,975–24,923,227 12 19.0

LOC101107232 24,929,447–24,941,686 1 15.9

ELOVL5 25,120,790–25,145,587 1 17.4

OVAR-DRB1* 25,318,507–25,332,926 4 16.8

LOC101119856* 25,379,045–25,387,727 3 16.6

LOC101109492* 25,492,374–25,497,723 8 18.1

DQA* 25,589,973–25,595,946 4 16.5

Intergenic TRAM2-TMEM14A 24,642,641–24,776,902 8 17.5

GSTA1-1-LOC101106291 24,807,779–24,824,652 1 16.4

LOC101106720-LOC101106976 24,874,489–24,901,974 2 16.4

LOC101106976-LOC101107232 24,923,228–24,929,446 2 15.9

ELOVL5-LOC101108696* 25,145,588–25,279,802 75 20.2

LOC101108696*-OVAR-DRB1* 25,283,274–25,318,506 128 18.8

OVAR-DRB1*-LOC101119856* 25,332,927–25,379,044 3 16.6

LOC105603927*-LOC101109220* 25,412,660–25,431,004 22 18.2

LOC101109492*-OVAR-DRB3* 25,497,724–25,523,968 31 18.2

OVAR-DRB3*-DQA* 25,538,379–25,589,972 7 16.9

DQA*-LOC101120871* 25,595,947–25,654,933 32 17.4

LOC101120871*-LOC101109747* 25,660,584–25,693,040 3 16.5

LOC101110277—LOC101121635 25,755,893–25,849,941 2 15.7

Total 23,773,103–25,828,335 384 20.2
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significant SNPs included in the upper quarter of the 
peak ( −log10(P− value) > 15) were classified as MODI-
FIER, thus with no impact on the transcripts (Table  6). 
They were annotated as intron variants (65) or intergenic 
regions (316). Intron variants were spread across nine of 
the 31 investigated genes, with the majority (31) falling into 
introns of the PKHD1 gene, consistent with the large size 
of this gene. Another 12 highly significant intronic variants 
were found in the LOC101106976 gene and included the 
most significant intronic SNP. This variant (rs400071669) 
was located within the fifth intron at 24,906,858  bp and 
its significance ( −log10(P− value)=19.02) was the fourth 
highest detected among all the WGS SNPs analyzed. 
The remaining 22 highly significant SNPs were detected 
in intronic regions of the LOC101109492 (8), OVAR-
DRB1 (4), DQA (4), LOC101119856 (3), TMEM14A (1), 
LOC101107232 (1) and ELOVL5 (1) genes.

The 316 intergenic variants with a −log10(P− value)

>15 were located within 13 intergenic regions delimited 
by 20 protein coding genes (Table  6). The highest den-
sity of SNPs was identified in the region bounded by the 
LOC101108696 (SLA class II histocompatibility anti-
gen, DQ haplotype D alpha chain-like) and OVAR-DRB1 
genes. However, the most significant SNP detected in this 
region was ranked only 20th for significance. The most 
significant SNPs were detected in the region bounded 
by the ELOVL5 and LOC101108696 genes, which are 

localized just before the intergenic region described 
above. This region included 18 of the top 20 significant 
SNPs, including the most significant one. In fact, the 
most significant variant ( −log10(P− value) = 20.2) was 
detected at 25,253,298 bp, 107,710 bp from the ELOVL5 
gene and 26,504  bp from LOC101108696. This SNP 
(rs400535267) consisted of a G > T change. The frequency 
of the reference allele (G) was 0.88 and the additive sub-
stitution effect estimated on CAR was -0.223, thus the 
expected explained variance was 0.0105.

In addition to the rs400535267 SNP, the conditional 
analysis carried out on all the WGS SNPs in the QTLR 
for CAR, led to the selection of one more WGS SNP 
(rs605280267) (Fig. 7), which is located at 25,033,899 bp, 
within the fifth intron of the glial cells missing transcrip-
tion factor 1 (GCM1) gene and consisted of an A > C 
change. The significance of this SNP, estimated by the 
updated model, was 7.4 −log10(P− value) ; the fre-
quency of the reference allele (A) was 0.86 and the LD 
with the rs400535267 variant was very low  (r2 = 0.005). 
The significance of these two variants tested jointly was 
25.6 −log10(P− value) and the estimated effects were 
-0.244 and -0.114 for rs400535267 and rs605280267, 
respectively.

Fig. 7 Conditional analysis on WGS SNPs for CAR. Step0: original WGS mapping; Step1: WGS mapping conditioned to SNP rs400535267 (red circle); 
Step2: WGS mapping conditioned to SNPs rs400535267 and rs605280267 (red and blue circles)
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Discussion
The analysis of the prevalence of PTB in our population 
confirmed the relevant negative effect that MAP infec-
tion may have on sheep farms’ economy. In fact, we 
observed that infected ewes have a risk of being culled 
earlier in life about 50% higher than that of uninfected 
ones. This increase in risk reaches 90% at 4 years of age 
(Fig. 2).

In spite of the different nature of the two analyzed vari-
ables, the results clearly overlap in terms of heritability 
estimates and detection of QTL. Overall, the heritabili-
ties of the serological response to PTB estimated based 
on the genomic relationship matrix were moderate and 
consistent with previous studies on sheep that used ped-
igree-based relationship matrices [52–54]. Even if our 
estimates may be slightly overestimated due the impos-
sibility of estimating the shared maternal environment 
effect of dam or litter and to the statistical confounding 
between the genetic background of the dams and their 
serological status at lambing, our results allow to con-
clude that selective breeding based on progeny testing 
and large-scale ELISA tests in the selected population 
may be an option to enhance the resistance of sheep to 
MAP infection. The main limitation to the application of 
such a breeding program is the high cost of collecting the 
phenotypes. However, some reduction in the number of 
serological tests needed to assess the infection status of 
an individual can be achieved by avoiding further tests 
after the first positive one. For instance, in the present 
experiment, this approach would have reduced the num-
ber of serological tests by 16%.

On the one hand, the significant region on OAR20 
identified by LDLA analysis, maps close to a region that 
affects the resistance to gastro‐intestinal nematodes 
detected in the same experimental population [79]. 
Moreover, the orthologous region on bovine chromo-
some 23 has been found to be significantly associated 
with resistance to PTB in most of the recent GWAS per-
formed with high-density SNP genotypes or imputed 
whole-genome sequences [29, 30, 39, 40, 80, 81]. In our 
population, this region explains a relevant portion of the 
genetic variance for both variables and could be exploited 
in selection schemes. However, the direct use of effects 
estimated by the LDLA approach in a large-scale selec-
tive program would be constrained by the difficulty of 
estimating accurate IBD matrices in populations that are 
not structured as the current experimental one.

On the other hand, the analysis of this QTLR based on 
imputed WGS data, confirmed the strong association 
of many WGS SNP genotypes with resistance to PTB. 
Moreover, the functional annotation analysis of the most 
significant segment on OAR20 (approximately between 
23.8 and 25.8 Mb), led to the identification of 31 protein 

coding genes as positional candidates. Gene ontology 
(GO) and pathway enrichment analyses confirmed that 
many of these genes are involved in biological processes 
that are compatible with MAP infection. In particular, 
11 genes in this region belong to the MHC class II genes 
and have a role in both the innate and adaptive immune 
systems. They encode for molecules involved in the pres-
entation of antigens to T-cells to induce the expression 
of interferon gamma, which leads to the activation of 
macrophages and the induction of inflammation. MHC 
II genes are mainly expressed by the phagocytes and 
they have been shown to be downregulated in response 
to MAP infection [82]. Polymorphisms within the MHC 
II genes also influence the activation of the adaptive 
immune system, since MHC II molecules loaded with 
antigens interact with  CD4+ T cells to induce the antigen-
specific immune response [42]. An association between 
MHC II alleles and susceptibility to MAP has already 
been suggested in sheep [55] and differential expression 
of MHC class II genes has been observed in experimen-
tally-infected [83] or sub-clinically affected [46] cows. 
Mutations that modify the expression of these genes or 
the ability to activate T cells have a systemic effect on the 
host, causing an inappropriate immune response that 
could change the course of the infection [42]. Although 
Gossner et  al. [84] did not find evidence of differential 
expression of MHC II genes in the ileocaecal lymph node 
of ewes with paucibacillary or multibacillary PTB, Purdie 
et al. [85] found a differential expression of the MHC II 
DQα and β genes in resilient sheep (i.e. animals that had 
received an infectious dose of MAP and did not develop 
an infection).

Nevertheless, the joint analysis of the results of WGS 
mapping and functional annotation of WGS SNPs did 
not reveal any mutations that had an effect on amino 
acid sequence and were significantly associated with the 
antibody response to PTB. In fact, most of the highly 
significant variants were located outside of the cod-
ing regions, especially, in intergenic regions bounded by 
MHC II genes (Table 6). Among these intergenic regions, 
the most significant one was located just upstream of the 
LOC101108696 (SLA class II histocompatibility antigen, 
DQ haplotype D alpha chain-like) gene. For this gene, 
Purdie et al. [85] observed an up-regulated expression in 
resilient individuals. Although in the annotation release 
that we used, no functions are associated with highly 
significant variants, some functional meaning might be 
revealed by further advances in the annotation of the 
sheep genome. In addition, although not directly involved 
in detectable functional effects, the most significant 
WGS SNP (rs400535267) shows an important statistical 
effect. The conditional analysis led to the identification of 
another WGS SNP (rs605280267) that is localized about 
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200  kb away and may explain the residual portion of 
genetic variance attributable to the investigated genome 
segment. It cannot be excluded that the detected effect 
of this additional WGS SNP could be due to the inability 
of the top SNP to capture the overall amount of variation 
at this locus, because of the lack of information content 
[86]. This additional SNP is within an intronic region of 
the GCM1 gene, which does not appear to be involved in 
biological processes compatible with antibody response 
to PTB. Overall, the results suggest that information 
from genotypes at these two WGS SNPs can be exploited 
to increase the efficiency of selective breeding programs. 
The possibility that the effects of these significant SNPs 
may be caused by their LD with other genome variants 
such as insertions or deletions, copy number variants, 
or the presence of multiple copies of the DQA and DQB 
genes [87, 88] was not investigated in this study since this 
would have entailed the application of specific bioinfor-
matic analyses and ad hoc statistical models.

Several studies underlined the need of integrating tra-
ditional genetic models with epidemiological data for 
traits based on infectious diseases and demonstrated that 
quantitative genetic approaches do not account for the 
feed-back dynamics in the transmission when predict-
ing the response to genetic selection for disease resist-
ance [89–91]. In fact, it has been demonstrated that the 
response to selection for resistance to infectious diseases 
is substantially larger than expected for non-contagious 
traits [89, 92] and that it increases as the prevalence 
decreases [93]. Taken together, this evidence strength-
ens the prospects to significantly reduce PTB prevalence 
by selective breeding for resistance to PTB in sheep 
populations.

Conclusions
This study produced significant advances in the understand-
ing of the genetic architecture of the antibody response to 
paratuberculosis in sheep. The overall results allow us to 
conclude that the genetic background underlying the host’s 
resistance to paratuberculosis infection is complex. The 
estimates of heritability with polygenic models confirm that 
progeny testing for selective breeding based on large-scale 
recording of the infection status is a feasible approach. Link-
age disequilibrium and linkage analysis detected a highly 
significant region on ovine chromosome 20. The associa-
tion analysis with whole-genome sequence data allowed us 
to markedly reduce the length of the genome segment to be 
investigated by functional studies depending on the progress 
of the ovine genome annotation. Moreover, a plausible list 
of candidate genes in the major histocompatibility complex 
class II was produced. Information on genotypes at the two 
identified whole-genome sequence SNPs can enhance the 

efficiency of selective breeding programs. Further analyses 
are needed either to detect single nucleotide causative muta-
tions based on updates of the ovine genome assembly and 
annotation or to investigate the functional role of genome 
variants such as insertions or deletions and copy number 
variants.
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