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Abstract 

Background Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several 
genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved 
in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome pro‑
files of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor 
(RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance 
of our findings.

Results For this purpose, we used LD RNA‑Seq and intramuscular FA composition profiles of 129 Iberian × Duroc 
backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n‑6, C18:2n‑6, 
C20:3n‑6, C18:1n‑9, C18:0, and C16:1n‑7) that were among the most interconnected variables in the predicted 
network. The detected FA‑correlated genes include genes involved in lipid and/or carbohydrate metabolism 
or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR , IDH3A, 
LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, 
MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 
54 over‑represented gene ontology terms, including well‑known biological processes and pathways that regulate 
lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, 
MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based 
on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 
had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either 
positively or negatively) with C20:4n‑6, C18:2n‑6, C20:3n‑6, C18:1n‑9, and that of CARHSP1 correlated (positively) 
with the C16:1n‑7 lipokine. We also found that these two transcription factors share target genes that are involved 
in lipid metabolism (e.g., GOT1, PLIN1, and TFRC).

Conclusions This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable infor‑
mation about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some 
transcription factors are proposed to control gene expression and modulate FA composition differences.
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Background
Fatty acids (FA) are crucial for living organisms, as they 
serve as important energy sources and, in humans, they 
are known to play an important role in health. Further-
more, FA composition plays a significant role in meat 
quality in pigs [1], including technological and sensorial 
quality of meat products [2]. Fatty acids can be classified 
as saturated (SFA, absence of double bonds) or unsatu-
rated (presence of one or more double bonds) with mon-
ounsaturated (MUFA) and polyunsaturated (PUFA).

Fat, liver, and muscle are important tissues for FA 
metabolism and have different FA compositions, which 
are affected by several factors including genetic, man-
agement and environmental factors, and by gene expres-
sion, among others. Notwithstanding, the relationship 
between FA composition and gene expression is complex 
and still not fully elucidated. For instance, the composi-
tional distribution of lipids in pig muscle correlates with 
intramuscular fat content (IMF, also referred to as mar-
bling). Specifically, the deposition of FA classes when 
neutral lipid content is adjusted for IMF fractionation as 
a covariate suggests that deposition of SFA and MUFA 
increases significantly with age from 6 to 9  months, 
whereas that of PUFA decreases significantly [3]. For 
complex phenotypes such as porcine IMF content and its 
FA composition, in a previous study based on a hierarchi-
cal clustering analysis [4], we have shown that lipogenic-
related genes are in general positively correlated with 
MUFA, while the lipolytic-related genes are specifically 
positively correlated with PUFA. Likewise, by conduct-
ing RNA sequencing (RNA-Seq) experiments, several 
studies have reported numerous candidate genes with 
differential effects or global changes on intramuscular FA 
composition across several tissues, such as backfat, liver, 
and muscle [5–9]. Our research group has also identi-
fied links between the muscle transcriptome and its FA 
profile in Iberian × Duroc backcross (BC1_DU) pigs [9]. 
In that study, we used a univariate extended linear model 
and found that several candidate genes involved in car-
bohydrate and lipid metabolism were significantly associ-
ated with FA composition traits (mainly MUFA, PUFA, 
and FA ratios). Other relevant associations with FA ratios 
(e.g., ω6/ω3 and C18:2n-6/C18:3n-3, both including 
major FA) and their main transcriptional regulators still 
remain to be investigated. A better understanding of bio-
logical mechanisms that underlie complex traits requires 
integrative approaches via gene networks [10], as well as 
the identification of the main regulators driving gene-by-
gene interactions [11]. In the context of such multivariate 
and integrative approaches, there are several tools that 
allow the exploration and integration of biological data-
sets with a focus on variable selection. Among these, the 

mixOmics R package includes a plethora of multivariate 
methodologies with extensive statistical approximations 
[12].

In the study reported here, we analyzed our exist-
ing muscle data (i.e., expression levels of genes and only 
individual FA phenotypes) of the BC1_DU population 
[9]. From a multivariate perspective and using a com-
plementary integrative analysis, we investigated the gene 
expression of potential candidate genes and novel regu-
lators for intramuscular FA composition. We focused on 
integrative analyses between intramuscular FA and gene 
expression profiles in pigs to identify representative FA 
phenotypes, key regulators, candidate genes, and biologi-
cal processes and metabolic pathways related to the FA 
composition in muscle.

Methods
Animals and phenotypic data
The experimental backcross population (25% Iberian and 
75% Duroc, BC1_DU) used in this study is described in 
[9]. Briefly, it included 129 animals, which were raised 
under the standard, intensive conditions of produc-
tion; and fed ad libitum with a cereal-based commercial 
diet and free access to water. Details on the experimen-
tal BC1_DU generation, animal raising, and feeding are 
in [13]. Animal procedures were carried out according 
to the Spanish Policy for Animal Protection RD1201/05, 
which meets the European Union Directive 86/609 
about the protection of animals used in experimentation. 
This study was conducted in accordance with relevant 
guidelines and regulations of the animal care and use 
committee of the Institut de Recerca i Tecnologia Agroali-
mentàries (IRTA), which adopts “The European Code of 
Conduct for Research Integrity”. The experimental proto-
col was approved by the Ethical Committee of the IRTA. 
Our study is also reported in full compliance with the 
ARRIVE guidelines (https:// arriv eguid elines. org/).

Animals were slaughtered in the same commercial 
abattoir in Mollerussa (Spain). Samples of the longissimus 
dorsi (LD) skeletal muscle (59 females and 70 non-cas-
trated males) distributed in five slaughterhouse batches 
were collected, immediately snap frozen in liquid nitro-
gen and stored at − 80 °C until analysis. At slaughter, the 
average age of the pigs was 190 days (ranging from 174 
to 205  days), with an average carcass weight (CW) of 
73.70 kg (ranging from 46.10 to 109.20 kg).

The composition of FA in the chain-length range of 
C14-C20 in LD muscle (n = 129) was determined using 
a gas chromatography of methyl esters protocol [14]. 
Briefly, 200  g of muscle sample from each BC1_DU pig 
were homogenized and used to measure the FA profile in 
duplicate. Crespo-Piazuelo et  al. [15] provide additional 

https://arriveguidelines.org/
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information on the muscle FA composition in the BC1_
DU population. Then, each individual FA methyl ester 
(n = 15 FA phenotypes) was quantified and expressed as a 
percentage of the total amount of FA (Table 1).

Gene expression data
Total RNA was isolated from a muscle sample (100 mg) 
of each of the 129 animals using the RiboPure™ Isola-
tion kit for High-Quality Total RNA  (Ambion®; Austin, 
TX, USA) following the manufacturer’s recommenda-
tions. RNA quantification and purity were estimated with 
a NanoDrop ND-1000 spectrophotometer (NanoDrop 
products, Wilmington, DE, USA). RNA integrity was 
checked by an Agilent Bioanalyzer-2100 (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA), and samples with 
an RNA integrity number (RIN) greater than 7 were used 
for the RNA-Seq experiment.

Library preparation and sequencing were performed 
at the CNAG institute (Centro Nacional de Análi-
sis Genómico, Barcelona, Spain). For each sample, one 
paired-end library with an insert size of approximately 
300 bp was prepared using the TruSeq Stranded mRNA 
kit (Illumina, Inc.; San Diego, USA). Libraries were 
labeled by barcoding, pooled, and run on the Illumina 
HiSeq 3000/HiSeq4000 systems (Illumina, Inc.; San 
Diego, USA), yielding on average 45.09 million 2 × 75 bp 
paired-end reads per sample.

Bioinformatic and statistical analyses
Quality control and basic statistics of the sequencing 
data were performed using the FastQC (v0.11.9) [16] 

and MultiQC v0.7 [17] programs. Sequencing reads 
were mapped with the STAR software (v2.7.9a) using 
default parameters [18], and the Sscrofa11.1 pig genome 
assembly as reference. On average, 90.1% of reads were 
uniquely mapped (ranging from 80.5 to 96.1%). Gene 
expression was quantified by the RSEM (v1.2.28) soft-
ware [19] using default parameters and annotation 
from Ensembl Pig Genes 97.

Pre-processing of the raw count matrix was per-
formed by filtering based on a minimum of 129 reads 
per row and 15,091 genes were retained for further 
analyses. The raw count data were transformed into 
counts per million (CPM) to normalize the values 
(i.e., with log = TRUE and prior.count = 1 arguments) 
using the edgeR v3.38.1 package [20]. Then, the 15,091 
retained genes were matched against the newer anno-
tation from Ensembl Pig Genes 104 (Sscrofa11.1) using 
the biomaRt package [21] v2.52.0, which left 12,381 
genes with a gene name or symbol.

A regularized canonical correlation analysis (rCCA) 
was performed using the expression dataset of the 
12,381 genes (matrix Y ) and the 15 FA traits (matrix X) 
measured on the 129 individuals. The rCCA multivari-
ate approach is implemented in the mixOmics v6.14.1 
package [12], which allows subsets of canonical vari-
ables that maximize the correlation between two data-
sets (X and Y, respectively of sizes n × p and n × q) to 
be identified [22]. The shrinkage method was used to 
tune out the regularization parameters (λ1 and λ2) with 
values of λ1 = 0.05 and λ2 = 0.15, and ncomp = 3. Rather 
than considering all the genes that were included in 

Table 1 Descriptive statistics of the FA composition phenotypes measured in percentages in the longissimus dorsi muscle from BC1_
DU pigs

a Coefficient of variation (%)

Trait Name Mean SD Min Max SE CVa

C14:0 Myristic acid 1.27 0.23 0.73 1.78 0.02 17.95

C16:0 Palmitic acid 23.91 1.65 18.69 27.59 0.15 6.90

C18:0 Stearic acid 14.38 1.69 8.81 19.90 0.15 11.78

C20:0 Arachidic acid 0.23 0.08 0.08 0.71 0.01 33.94

C16:1n‑7 Palmitoleic acid 2.79 0.53 1.24 4.08 0.05 18.83

C16:1n‑10 Sapienic acid 0.30 0.12 0.16 0.92 0.01 38.62

C18:1n‑9 Oleic acid 35.93 5.71 19.99 44.15 0.50 15.88

C18:1n‑7 Vaccenic acid 3.82 0.30 3.02 4.83 0.03 7.97

C20:1n‑9 Gondoic acid 0.73 0.16 0.35 1.48 0.01 22.38

C18:2n‑6 Linoleic acid 12.13 5.82 4.81 29.34 0.51 48.01

C18:3n‑3 α‑Linolenic acid 0.40 0.13 0.15 0.89 0.01 32.77

C20:2n‑6 Eicosadienoic acid 0.43 0.12 0.14 0.91 0.01 28.61

C20:3n‑3 Eicosatrienoic acid 0.18 0.10 0.02 0.65 0.01 54.98

C20:3n‑6 Dihomo‑gamma‑linolenic acid 0.45 0.29 0.09 1.49 0.03 63.29

C20:4n‑6 Arachidonic acid 2.58 1.94 0.47 10.51 0.17 75.01
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the first canonical component (CC1) and according to 
the previous estimate by Ramayo-Caldas et al. [23], we 
applied a conservative approach and only kept genes 
for which the correlation between gene expression and 
FA traits was at least 0.29.

To display the rCCA results and improve their inter-
pretation, we applied three graphical outputs (circle 
plot, network, and Clustered Image Maps) that are all 
implemented in the mixOmics package [12] via plotVar, 
network and cim functions. In particular, the generated 
network output was exported to Cytoscape file format 
using the igraph v1.3.2 package [24]. In the network 
[25], FA were filled with colors to facilitate the identifi-
cation of each group (i.e., SFA, MUFA and PUFA) and 
the connected genes. Likewise, the genes were filled with 
different colors according to their functional group or 
gene family using a pre-built list according to their func-
tions (see the ‘Gene functional information’ section). 
In addition, we used a complementary heatmap via the 
ComplexHeatmap v2.14.0 package [26] to illustrate the 
different clusters of variables and the degree of correla-
tion between them.

For the functional analysis, genes included in the CC1 
(cutoff of r ±|0.29|) were submitted to the ClueGO v2.5.4 
plugin [27] in the Cytoscape v3.7.1 software [25], using 
default parameters. Gene ontology (GO) significance 
was assessed with a hypergeometric test, keeping only 
the GO terms (biological processes, molecular function, 
and pathways) that had a corrected Benjamini–Hochberg 
(BH) P-value lower than 0.05 [28]. All genes expressed 
in muscle (12,381) were included as background in this 
step. Furthermore, GO tree interval levels were set from 
three to eight and a minimum k-score of 0.44 and a 
minimum of three genes per cluster with at least 4% in 
selected genes were used. Results with and without the 
fusion feature “GO Term Fusion” were generated to eval-
uate the redundant parent–child terms. In addition, we 
visualized the ClueGO output using an R script via the 
ggplot2 v3.3.5 package [29], which allowed us to identify 
the intersection of significantly associated genes accord-
ing to over-represented GO terms.

Analysis of regulatory impact factors (RIF)
The RIF analysis was conducted using the runAna-
lysis function of the CeTF v1.8.0 package [30]. The RIF 
algorithm is described in detail in Reverter et  al. [11]. 
Briefly, the RIF metrics (RIF1 and RIF2) aim at identi-
fying relevant regulators (i.e., transcription factors, TF) 
from the gene expression data. This step calculates, for 
each condition, the co-expression correlation between 
the TF and the differentially expressed (DE) genes. For 
the DE analysis, we created two conditions by classi-
fying samples according to their FA profile through a 

principal component analysis (PCA). In the PCA, the 
prcomp function with scale = TRUE was used, consid-
ering as input the composition data of the pre-selected 
FA from the rCCA. In fact, we chose the extreme values 
from PC1 (condition 1 and condition 2 with n = 60, i.e., 
30 samples per condition). Here, animals in condition 1 
included 10 females and 20 males while those in condi-
tion 2 included 15 females and 15 males, in both cases 
belonging to five slaughterhouse batches. The fviz_pca 
function of the factoextra v1.0.7 package was used to 
extract and visualize the PCA results [31], includ-
ing the FA profile according to the three classes (SFA, 
MUFA and PUFA). Significant differences (corrected 
P-value < 0.05) between the means of FA conditions 
and phenotypes, for each FA selected in the rCCA were 
determined using a t-test approach, and the standard 
error of the mean (SEM) was calculated. We also tested 
the correlation between the FA used in the selection of 
the two groups for DE gene analysis and we identified 
the TF present in the expression data based on the list 
of pig TF available in the AnimalTFDB v3.0 database 
(http:// bioin fo. life. hust. edu. cn/ Anima lTFDB/# !/).

Analysis of the target genes of the transcription factors
The list of TF used in the RIF step was also examined to 
identify in silico putative target genes with an expres-
sion that was DE between the two FA conditions (n = 30 
samples per condition). This complementary analysis was 
conducted using the SmearPlot function [30]. Briefly, the 
predicted target genes identified by this approach were 
extracted, and, for each condition, co-expression between 
the TF and the DE genes was calculated using the partial 
correlation with information theory (PCIT) algorithm. 
The resulting matrix contained the correlations between 
genes, and a separate object included information about 
the significant correlations (adjusted values, padj = 0.05) 
of target genes (lfc = 1.5 and padj = 0.05) and the TF of 
interest.

Functional classification of FA‑interconnected genes 
in the network
To facilitate functional classification of the candidate 
genes, we ranked the global list of rCCA-derived genes. 
Overall, we focused on the functional annotation of 
genes and their plausible function in different aspects of 
FA, lipid, and carbohydrate metabolisms (see Additional 
file  1: Tables S1, S2 and S3). First, we used information 
from the ClueGO analysis that divided the genes into 
different functional groups, which contained biological 
processes and pathways clustered according to GO term 
similarities. Second, a trained list was created using the 
GUILDify v2.0 tool [32], which included genes associated 
with predefined keywords such as: “adipokine”, "amino 

http://bioinfo.life.hust.edu.cn/AnimalTFDB/#!/
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acid metabolism”, “electron transport chain”, “enzyme”, 
“fatty acid beta-oxidation”, “fatty acid metabolism”, “fatty 
acid synthesis”, “gluconeogenesis”, “glucose metabolism”, 
“glycolysis”, “tricarboxylic acid cycle”, “lipid metabo-
lism”, “carbohydrate metabolism”, “lipid degradation”, 
“lipid synthesis”, “nucleic acid”, “nucleotide metabolism”, 
“nutrient”, “receptor”, “transporter”, and “energy homeo-
stasis”; as well as homo sapiens species and lipogenic tis-
sues (adipose, liver and muscle-skeletal) options. Briefly, 
GUILDify uses the biological interaction and network 
analysis (BIANA) knowledge database to create a spe-
cies-specific interaction network for each gene detected. 
In the current study, the netcombo prioritization algo-
rithm based on network topology, and the highest guild 
score for the top 100 gene products (with only seed) were 
considered to constitute such a list. Third, the presence 
of TF and cofactors in pigs was corroborated according 
to the annotation of the aforementioned AnimalTFDB 
v3.0 database. Thus, the gene functional classification 
was based on the potential biological functions that were 
compiled from the overlap of the rCCA-derived gene list 
with the three previously explained information sources.

Results
Regularized canonical correlation analysis (rCCA)
Here, we used a multivariate integrative approach to 
explore the relationship between the muscle transcrip-
tome (n = 12,381 genes) and intramuscular FA compo-
sition (n = 15 FA) of 129 BC1_DU pigs. The correlation 
structure between datasets of interest is shown in Fig. 1. 
The rCCA yielded 365 genes and 15 FA (see Additional 
file 2: Table S4) that were included in the first canonical 
component (CC1). As expected, our results revealed that 
CC1 separated both SFA (C16:0) and MUFA (C18:1n-9) 
from PUFA (C18:3n-3, C18:2n-6, C20:2n-6, C20:3n-3, 
C20:3n-6 and C20:4n-6), while the second canonical 
component (CC2) differentiated C16:1n-7 and C18:1n-7 
MUFA from C18:0 SFA. An additional correlation circle 
plot from the PCA with contribution variables according 
to CC1 versus the third canonical component (CC3) is 
presented in Additional file 3: Fig. S1.

The most relevant variables participating in the defi-
nition of each component were C16:1n-7, C18:1n-9 and 
C18:0, as well as C18:2n-6, C20:3n-6, C20:4n-6, C20:3n-3 
and C20:2n-6 (Fig.  1). For example, we observed a rel-
evant contribution of C18:2n-6, C20:3n-6, C20:4n-6 
(positive) and C18:1n-9, C16:0 (negative) on component 
1, and C16:1n-7 (positive) and C18:0 (negative) on com-
ponent 2. Likewise, Fig. 1 suggests a negative correlation 
between [C18:2n-6, C20:3n-6, C20:4n-6, C18:3n-3] and 
C18:1n-9. Notably, the 365 genes were clustered in four 
groups at radii ~ 0.29 (with prioritized variables of gene 

expression) (Fig. 1). Details on the genes correlated with 
each FA (with and without the cutoff) are in Additional 
file 2: Table S4.

The results of the network approach suggested a 
complex correlation structure (bipartite relationship) 
between the FA profile and gene expression data (Fig. 2). 
Simultaneously, the representation of correlations via 
edges indicated that positive relationships were more 
common than negative relationships (i.e., lines in green 
and in red, respectively, in Fig.  2). As shown in Fig.  2, 
the network added another layer of information, which 
allowed visualization of groups of variables (FA and 
genes). Our results show that 13 FA and 365 genes (378 
nodes in total) were selected. Among the 13 FA, five 
(C16:1n-7, C20:1n-9, C18:0, C18:2n-6, and C20:4n-6) 
were correlated with a list of specific genes for each FA 
(see Additional file  2: Table  S4). The fourth most inter-
connected FA (see Additional file  2: Table  S4) were 
C20:4n-6, C18:2n-6, C20:3n-6 and C18.1n-9 (Fig.  2). 
Remarkably, both C20:4n-6 and C18:2n-6 showed the 
largest number of correlated genes, with 87% of the 
genes in common. In particular, C18:1n-9 was grouped 
very close to seven other FA (C14:0, C20:3n-3, C20:2n-6, 
C20:3n-6, C16:1n-10, C18:3n-3 and C16:0) (Fig.  2). In 
fact, C20:3n-6 and C18:1n-9 were the second pair of FA 
with the largest number of correlated genes, with 80.5% 
of genes in common. Please note, that the subsets of con-
nected genes suggested more complex relationships with 
the presence of shared or specific genes for FA.

It is worth mentioning that we observed a set of 10 
rCCA-derived genes (PLIN1, UNC93A, SFRP5, PPP1R1B, 
LEP, OPRL1, PTPRU, NUDT14, TFRC, and CYP4B1) that 
showed the largest number of connections with FA (i.e., 
7 to 10 connections out of 13 FA). In addition, six other 
rCCA-derived genes (CNP, LBX1, NDUFAF4, NMNAT2, 
PIK3C2G, and SDR16C5) showed at least six connec-
tions with total FA (Fig.  2) (for details [see Additional 
file  2: Table  S4]). The LBX1, PIK3C2G, and SDR16C5 
genes were positively correlated with C16:0 and C18:1n-9 
and negatively correlated with C18:2n-6, C20:3n-6 and 
C20:4n-6, and only the PIK3C2G gene was negatively 
correlated with C18:3n-3. However, we also detected 107 
genes that were uniquely correlated with a specific FA 
(Fig. 2) and (see Additional file 2: Table S4). For instance, 
the CEBPG and GCLC genes were negatively corre-
lated with C18.0, while EXOC7 was positively correlated 
with C18.0. Genes such as ADIPOQ, LGALS12, PAX7, 
CARHSP1 and YBX2 were positively correlated with 
C16:1n-7. As other examples, the CEBPA, ELOVL6, and 
MCTP2 genes were correlated negatively with C18:2n-6 
and C18:3n-3, respectively; while SDHD, LPIN1, DLD, 
and SNW1 were positively correlated with C20:4n-6, 
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and HMGCR , LEPROTL1, and TCEA1 were positively 
correlated with C18:2n-6 and C20:4n-6. The PNPLA8, 
HMGCS1, KATNAL1, and ATAD1 genes were negatively 
correlated with C18:1n-9, but positively correlated with 
C18:2n-6 and C20:4n-6 (Fig. 2).

A complementary heatmap illustrated the hierarchi-
cal clustering of the variables (13 FA and 365 genes) 
and the degree of correlation between them (see Addi-
tional file 4: Fig. S2). In general, two large clusters of FA 
and four clusters of genes were observed. Regarding the 
FA, cluster 1 was composed of six FA (C16:1n-7, C18:0, 
C20:1n-9, C18:1n-9, C16:0 and C14:0), while cluster 

2 grouped the other seven FA (C20:2n-6, C16:1n-10, 
C18:3n-3, C20:3n-3, C20:3n-6, C20:4n-6, and C18:2n-6). 
For the four gene clusters, a variable number of genes 
was detected in each of them. Notably, cluster 1 grouped 
together 41 genes, including the nine genes showing the 
greatest interconnection with FA, five TF (CARHSP1, 
CEBPA, DBX1, PAX7, and YBX2), plus 27 protein-cod-
ing genes including those functionally related to lipid 
metabolism (e.g., ELOVL6, FGFR4, LGALS12, NEU3, 
NGFR, NMRK1, NUDT14, PIK3C2G, SDR16C5, and 
WNT6). The two major gene clusters were 4 and 2, in 
which we detected several genes involved in energy and 

Fig. 1 Correlation circle plot from the PCA applied to the FA phenotypes and gene expression in muscle of BC1_DU pigs for the first two rCCA 
dimensions (15 FA and 365 genes selected in total)
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lipid metabolism [e.g., cluster 2: G0S2, SOD3, SLC44A2, 
PLCD3, EDF1, GDF1, and FBP1; cluster 4: CYCS, CYLD, 
EIF3A, GALNT15, GOT1, HMGCR , IDH3A, LPIN1, 
MDH1, MRPL44, MTIF2, NAMPT, NMNAT2, PDHA1, 
PNPLA8, SLC31A1, TFRC, and UGP2] and other TF 

[e.g., cluster 2: LBX1, MAFA, and SIX5; cluster 4: CEBPG, 
HBP1, KLF10, TADA2A, TERF1, and TFAM]. Finally, 
cluster 3 contained the smallest number of genes, most 
of which are not well described in the literature. As 
an example, the CHUK (encoding a component of a 

Fig. 2 Network plot for the longissimus dorsi muscle study in BC1_DU pigs. Green and red edges indicate positive and negative correlations. Output 
obtained for the first three rCCA dimensions (13 FA and 365 genes were selected), showing the correlation structure for all bipartite relationships 
with a correlation cutoff of 0.29. Color legend: FA: magenta = SFA members; royal blue = MUFA members; orange red = PUFA members; and genes: 
dark orange = enzyme; aquamarine = adipokine; chartreuse = TF; turquoise = TF cofactors; yellow = lipid metabolism‐related genes; Navajo 
white = carbohydrate metabolism; crimson = glycolysis; gold = transporter; light pink = fatty acid beta‑oxidation; coral = amino acid metabolism; 
corn silk = receptor family; deep sky blue = nucleic acid metabolism. Out of a total of 365 genes, the 176 colored genes refer to a functional or gene 
family classification (while 189 genes were unclassified)
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cytokine-activated protein complex), HSP90AA1, and 
GCLC genes are part of cluster 3 and are related to lipid 
or glucose metabolism. Details on the genes contained in 
each cluster and their respective correlation with FA are 
in Additional file 4: Fig. S2 and Additional file 2: Table S4, 
respectively. In addition, details on the distribution of 
correlations of FA with gene expression based on a den-
sity heatmap (with quantiles and mean values) are in 
Additional file 5: Fig. S3.

Functional analysis of genes correlated with FA
The 365 genes selected by rCCA were submitted to a GO 
analysis. Fifty-four GO terms (8 molecular functions, 8 
pathways, and 38 biological processes) (see Additional 
file 7: Table S5) were significantly over-represented (BH 
corrected P-value < 0.05). In total, 125 genes were anno-
tated into different functional groups, including an 
enrichment in GO terms related to lipid and carbohy-
drate metabolism. Notably, some of the closely associ-
ated Kyoto encyclopedia of genes and genomes (KEGG) 
pathways were “regulation of lipolysis in adipocytes”, “cit-
rate cycle (TCA cycle)”, “non-alcoholic fatty liver disease 
(NAFLD)”, “oxidative phosphorylation” and “Insulin sign-
aling pathway” (Fig. 3).

The GO analysis also suggested that these genes were 
significantly enriched in biological processes (see Addi-
tional file  6: Fig.  S4 with “GO Term Fusion”), such as 
“mitochondrial gene expression”, “tricarboxylic acid 
cycle”, “electron transport chain”, “ATP hydrolysis cou-
pled cation transmembrane transport”, “regulation of 
response to nutrient levels”, “magnesium ion transmem-
brane transport”, “generation of precursor metabolites 
and energy”, and “respiratory electron transport chain”. 
The complete results of GO terms with and without “GO 
Term Fusion” are listed in Additional file 7: Table S5.

Analysis of regulatory impact factors (RIF)
Based on the output of the rCCA, 22 putative regulators 
(i.e., TF) were identified. To perform the RIF analysis, the 
dataset was split into two conditions (30 individuals in 
each) based on the FA profile from the PCA data (Fig. 4). 
Condition 1 included animals that had a FA profile with 
fewer SFA and MUFA and more PUFA (and a lower IMF 
content) and condition 2 was the opposite with more SFA 
and MUFA and fewer PUFA, concurrently with a higher 
IMF content (see Additional file 8: Table S6).

We also found a complex correlation pattern between 
components of the three classes of FA (SFA, MUFA and 
PUFA) in muscle. For example, some FA, such as C18:0 
SFA and C18:1n-9 MUFA were positively correlated with 
each other but negatively with the most abundant PUFA 

(C18:2n-6, C18:3n-3, and C20:4n-6), which were posi-
tively correlated with each other. Correlations between 
the FA are in Additional file 9: Table S7. The results of the 
DE analysis revealed 293 DE genes (i.e., 274 genes and 19 
TF) (lfc = 1.5 and padj = 0.05) between the two FA condi-
tions (see Additional file 10: Table S8).

Table  2 contains a summary of the 19 regulators that 
were identified by including the RIF parameters. To inter-
pret these results, it is important to note that information 
from RIF1 and RIF2 is complementary. The RIF1 score 
classified the TF that were the most differentially co-
expressed with the highly abundant and highly DE genes, 
whereas the RIF2 score classified the TF that had the best 
ability to act as potential predictors of the abundance of 
DE genes due to FA differences. Among them, the top 
five TF with extreme values for the RIF metrics (Table 2) 
are the following, with a positive score: CARHSP1, 
TERF1, CEBPG, TFAM, MAF; and with a negative score: 
TADA2A, MBD2, HBP1, SIX5, and FOXJ3); and for RIF2 
with a positive score: KLF10, TADA2A, HBP1, FOXJ3, and 
ZNF407, and with a negative score MBD2, SIX5, TERF1, 
CEBPG, and MAF. Based on the absolute values of RIF, 
we found that the first and second most relevant regula-
tors were TADA2A and CARHSP1 based on RIF1 and 
KLF10 and TADA2A based on RIF2 (Table 2). Table 2 also 
shows that the TF were classified into ten different fami-
lies (i.e., based on AnimalTFDB3.0 database).

In silico prediction of transcription factor target genes 
in the post‑RIF stage
After the RIF analysis, an in silico prediction was car-
ried out based on the co-expression between each DE 
TF (n = 19) and its possible DE target genes (n = 274) for 
each FA condition. Consistently, target genes that were 
DE between the two conditions were identified (Table 3). 
PCIT indicated that only six TF genes were significantly 
correlated with 29 potential targets (CARHSP1, LBX1, 
MAFA, PAX7, SIX5, and TADA2A). These TF genes 
belonged to five of the 10 families identified (MYB, CSD, 
Homeobox, PAX and TF_bZIP).

Furthermore, as shown in Table  3, the TF genes were 
positively or negatively correlated with either a specific 
FA or several FA as shown in Additional file 2: Table S4. 
Additional information on the distribution of the DE 
genes and specific TF genes in both conditions and the 
relationships between log(baseMean) and expression dif-
ference are in Additional file 11: Table S9.

Overall, several of the identified candidate target genes 
(listed in Table  3) are well-known for their role in lipid 
metabolism (ADIPOQ, DHRS3, FGFR4, NEU3, PLIN1, 
TFRC, and WNT5B), carbohydrate metabolism (ADI-
POQ, FBXO6, GALNT15, GOT1, NEU3, NUDT14, and 



Page 9 of 18Valdés‑Hernández et al. Genetics Selection Evolution  (2024) 56:12 

PPP1R3D), glucose metabolism (MAFA), and ion bind-
ing (ADIPOQ, FGFR4, GOT1, NUDT14, SOD3, and 
TADA2A), among other categories. Thus, this target 
prediction approach allowed us to uncover target genes 
of newly identified TF genes in pig muscle, but also tar-
get genes that are associated with FA metabolism, such 
as TADA2A and CARHSP1. As shown in Table  3, both 
genes are targets for each other, but also share FA-related 
target genes (e.g., GOT1, PLIN1, and TFRC).

Discussion
Our results confirm a complex and bipartite relationship 
between intramuscular FA composition and gene expres-
sion. Gene expression levels can be associated with either 
specific or several FA traits (either positively or nega-
tively). Our findings of the integrative analysis using FA 
composition and gene expression datasets complement 
and extend previous work reported by Valdés-Hernández 
et al. [9] who performed a univariate association analysis 

Fig. 3 Functional analysis of the correlated genes from the rCCA approach that were significantly enriched in GO terms according to metabolic 
pathway delimitation. This output is a representation of the original table of generated with the ClueGO plugin in the Cytoscape software
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that ignored gene-by-gene interactions and the putative 
transcriptomic regulators. Here, we analyzed relevant 
traits such as FA involved in FA ratios that represent 
enzyme activites. In addition, an updated version of the 
pig genome annotation was used (release 104 vs. 97). Fur-
thermore, to highlight the most relevant genes and their 
regulators, a 3-step analytical pipeline was executed, 

comprising (1) multivariate analysis; (2) partial correla-
tion calculations with information theory (PCIT), and 
(3) study of RIF associated with FA metabolism. Taken 
together, the results may facilitate the implementation of 
breeding strategies based on the use of functional infor-
mation and improve our understanding of gene regula-
tion in muscle.
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Identification of subsets of canonical variables 
that maximize the correlation between gene expression 
and FA profiles, including functional information
Our study provides useful information on representative 
FA for the SFA, MUFA and PUFA classes, including can-
didate genes that may be associated with such FA traits. 
Through exploratory approaches [22, 24–26], we illus-
trated the relationships between muscle gene expression 
and intramuscular FA composition. In total, we identi-
fied a subset of 378 correlated variables (13 FA and 365 
genes).

Interestingly, FA were grouped into two large groups 
based on the heatmap approach [26]. Essential FA that 
are obtained only from the diet and their derivative mol-
ecules (e.g., C18:2n-6, C18:3n-3, C20:2n-6, C20:3n-3, 
C20:3n-6, and C20:4n-6) were clustered separately from 
those that can be derived from biosynthesis (e.g., C14:0, 
C16:0, C18:0, C18:1n-9, and C20:1n-9). We also found 
an interesting inverse relationship between [C20:4n-6, 
C18:3n-3] and C18:1n-9 FA. This was previously 
observed in humans, rats, and chickens, which suggests 
that the inverse association between relative abundances 

Table 2 RIF analysis with 19 significant  TFa identified by RIF1 or RIF2 metrics according to extreme FA profiles and gene expression in 
BC1_DU pigs

a The 19 TF belong to 10 different families
b The expression average (in log2 CPM) for each TF is indicated by avgexpr variable

TF Gene description Family Avgexprb RIF1 RIF2

TADA2A Transcriptional adaptor 2A MYB 4.11 − 2.09 1.44

MBD2 Methyl‑CpG binding domain protein 2 MBD 4.90 − 1.43 − 1.44

SIX5 SIX homeobox 5 Homeobox 2.38 − 0.83 − 1.30

TERF1 Telomeric repeat binding factor 1 MYB 3.21 1.63 − 1.28

CEBPG CCAAT enhancer binding protein gamma TF_bZIP 4.96 1.49 − 1.15

HBP1 HMG‑box transcription factor 1 HMG 6.12 − 0.89 1.12

FOXJ3 Forkhead box J3 Fork_head 6.36 − 0.54 1.09

CARHSP1 Calcium regulated heat stable protein 1 CSD 3.37 1.86 0.82

MAF MAF bZIP transcription factor TF_bZIP 7.19 0.39 − 0.68

TFAM Transcription factor A, mitochondrial HMG 4.79 0.82 − 0.52

KLF10 Kruppel like factor 10 zf‑C2H2 6.24 − 0.32 1.53

YBX2 Y‑box binding protein 2 CSD 4.22 − 0.38 − 1.06

ZNF407 Zinc finger protein 407 zf‑C2H2 3.74 0.10 0.95

ZNF524 Zinc finger protein 524 zf‑C2H2 4.84 0.13 0.73

PAX7 Paired box 7 PAX 2.72 − 0.28 0.46

ZNF326 Zinc finger protein 326 Others 5.56 0.35 − 0.45

LBX1 Ladybird homeobox 1 Homeobox 3.53 0.38 − 0.21

MAFA MAF bZIP transcription factor A TF_bZIP 3.23 − 0.19 − 0.09

ZNF146 Zinc finger protein 146 zf‑C2H2 3.46 − 0.20 0.03

Table 3 In silico prediction of TF target genes for high and low FA profiles, including potential regulators and their putative 
differentially expressed targets in BC1_DU pigs

Regulatory 
genes (n = 6)

Number of 
putative targets

Candidate target genes (n = 29)

Condition 1 (less SFA and MUFA, and more PUFA) Condition 2 (more SFA and MUFA, and less PUFA)

TADA2A 15 TBC1D16, TBKBP1, WNT5B, DHRS3, GADD45G, KCNT1, 
MAMSTR, PLPP7, SIX5

TFRC, APCDD1, CARHSP1, GOT1, PLIN1, SOD3

CARHSP1 8 DNAJB9, GOT1, MAFA, PLIN1, TFRC, ADIPOQ FBXO6, TADA2A

SIX5 5 TADA2A, FBXO6, GADD45G FGFR4, GALNT15

PAX7 9 PLPP7, TENT5C, GALNT15, GOT1, MAFA WNT5B, ADIPOQ, FBXO6, NEU3

MAFA 8 PAX7, TFRC, CARHSP1, DHRS3, FBXO6, FGFR4, GADD45G PLIN1

LBX1 3 FBXO6, GALNT15 TBKBP1
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of C18:1n-9 (oleic acid) and C20:4n-6 (arachidonic 
acid) is related to C18:3n-3 (alpha-linolenic acid) [33] 
and could reflect the buffering capacity of n-3 FA over 
inflammatory signals. Omega-6 and omega-3 PUFA have 
antagonistic inflammatory functions, with C20:4n-6 
being a pro-inflammatory and immunoactive FA [34] and 
an important constituent of membrane phospholipids 
involved in signal transduction [35]. In pigs, carcass fat-
ness shows a positive correlation with IMF. In addition, 
greater fatness has been associated with a lower relative 
proportion of PUFA and a higher SFA and MUFA con-
tent [36]. Although the n-6/n-3 FA ratio is affected by 
feeding, for a particular diet, the C18:2n-6/C18:3n-3 ratio 
is higher in lean meat compared to meat with a higher fat 
level [36]. Hence, in the current work, muscle FA com-
position may be partially explained by differences in IMF 
(see Additional file 8: Table S6). The oleic acid, C18:1n-9, 
is one of the most predominant MUFA in the triacylglyc-
erols, cholesteryl esters, wax esters, and membrane phos-
pholipids [37], and may also improve meat organoleptic 
properties and overall acceptability parameters of meat 
[38].

Analysis of the interaction network [25] revealed 
the five most interconnected FA (C20:4n-6, C18:2n-6, 
C20:3n-6, C18.1n-9, and C18.0), which had the larg-
est number of associated genes. We found that the n-6 
FA (C20:4n-6, C18:2n-6, and C20:3n-6) shared more 
than 51% of its correlated genes (see Additional file  2 
Table  S4). Remarkably, we also found overlaps of 100% 
and 80.54% when comparing the C18.1n-9 list versus 
the C20:4n-6 and C18:2n-6, and against the C20:3n-6 
list, respectively. It turns out that some of the genes that 
were correlated with C18.1n-9 also displayed other asso-
ciations, including those with minority FA. This means 
that C18.1n-9 is a key FA in muscle and captures com-
plex associations, with shared or specific genes linked 
to FA metabolism. Furthermore, five of the 13 analyzed 
FA (C16:1n-7, C20:1n-9, C18:0, C18:2n-6, and C20:4n-6) 
were correlated with a list of specific genes. For instance, 
emerging evidence in mice suggests that the lipokine, 
C16:1n-7, is an adipose tissue-derived lipid hormone that 
strongly stimulates muscle insulin action [39], thereby 
regulating systemic metabolic homeostasis.

Within the 365 rCCA-derived genes that were 
grouped into four clusters by the heatmap approach 
[26], we observed several candidate genes for FA 
metabolism, which also overlapped with results from 
previous research in pig populations. Considering the 
BC1_DU animals, 24 of the 365 FA-correlated genes 
in LD muscle were identified using a different asso-
ciation analysis strategy [9] (CPD, CYCS, LBX1, LEP, 
LGALS12, LRFN1, MAMSTR, MDH1, NMNAT2, 
NMRK1, NUP35, OPRL1, PDCD1LG2, PIK3C2G, 

PLCD3, PLIN1, PPP1R1B, PTPRU, SFRP5, TENT5C, 
TFRC, TIMM8A, UNC93A, and WNT6), with overlaps 
that were mostly observed in only six FA phenotypes 
(C18:0, C16:1n-7, C18:1n-9, C20:1n-9, C18:3n-3, and 
C20:2n-6). Therefore, the genes detected by both strat-
egies pointed to several candidate genes related to FA 
metabolism, which provided further validation of our 
findings. Overall, we revealed 10 GO terms and two 
KEGG pathways that were consistent between the two 
gene functional studies, which were all mainly related 
to metabolism and energy homeostasis. Among these, 
the citrate cycle (TCA cycle or Krebs cycle) is an impor-
tant aerobic pathway for the final steps of the oxidation 
of carbohydrates, FA, and amino acids [40], providing 
precursors for many biosynthetic pathways. For exam-
ple, common functional genes such as LEP, MDH1, 
CYCS, and NMNAT2 were enriched in such GO terms, 
indicating a potential regulatory role of these genes in 
FA and energy metabolism.

Although the aforementioned results indicated some 
degree of overlap in the detected candidate genes and 
overrepresented GO terms, the univariate association 
analysis and the integrative analysis used here should be 
considered as complementary strategies, as they differ 
in their analytical methods. However, the current study 
was based on a combination of multivariate methods 
(i.e. rCCA) [41], which integrates two datasets measured 
on the same samples (gene expression and FA composi-
tion, here without correction for systemic factors). rCCA 
achieves dimension reduction in each dataset while 
maximising the similar information between them, thus 
selecting variables that maximize the correlation. This 
allows variable selection and priorization at the gene and 
FA level, with a higher potential to explain the largest 
proportion of the relationship between the two subsets 
of data. We conducted a combination of complementary 
analyses (network, and RIF, in silico prediction of puta-
tive target genes, and GO term enrichment) to further 
prioritize the informative variables and provide insight 
into biological processes and pathways, in particular 
among those, the one that is associated with intramuscu-
lar FA metabolim.

More specifically, functional analysis with the 365 
rCCA-derived genes indicated overrepresentation of the 
insulin signaling pathway. It is worth noting that the LEP, 
MDH1, and CYCS genes were also enriched in the insulin 
signaling pathway, which can affect intramuscular lipid 
metabolism [42]. Regulation of lipolysis in adipocytes 
highlights the potential role of certain candidate genes in 
lipolysis of skeletal muscle (e.g., PLIN1) [43], as well as FA 
derived from intramuscular lipolysis (e.g., C16:1n-7 and 
C18:1n-9). In fact, a previous study of porcine adipocytes 
showed that PLIN1 (perilipin 1) is a novel candidate gene 
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for IMF deposition and adipocyte differentiation [44]. In 
addition, taking the exemplified FA into account, activa-
tion of adipocyte lipolysis by C16:1n-7 acid treatment has 
been demonstrated, while C18:1n-9 acid was chosen as a 
control FA in investigations in mice [45].

Our findings suggest that the six genes that were cor-
related with FA composition (ADIPOQ, CYP4B1, LEP, 
PLIN1, SDR16C5, and SFRP5) may also be responsible 
for IMF deposition [46]. Interestingly, the top 10 highly 
connected genes with FA (CYP4B1, LEP, NUDT14, 
OPRL1, PLIN1, PPP1R1B, PTPRU, SFRP5, TFRC, and 
UNC93A) generally showed positive correlations with 
MUFA and SFA, but negative correlations with PUFA. 
Therefore, they might be considered as candidate mark-
ers of adipocyte physiology. Among these, the PLIN1, 
LEP, and CYP4B1 genes are known to play a pivotal role 
in the metabolism of FA (FA storage and degradation), 
while the UNC93A gene is related to innate and adaptive 
immunity [47].

Notably, the gene with the largest number of connec-
tions was PLIN1, which was associated with 10 of the 13 
evaluated FA. With the exception of C18:3n-3, four other 
genes (LEP, PPP1R1B, SFRP5, and UNC93A) were con-
nected with the same nine FA as PLIN1, presenting a sim-
ilar pattern of positive correlations with SFA and MUFA, 
and negative correlations with PUFA. For instance, adi-
pokine genes such as the LEP (leptin) and SFRP5 (secreted 
frizzled related protein 5) genes were identified as IMF-
correlated genes in the muscle of Duroc × Luchuan pigs 
[46], and in addition, SFRP5 has been reported to be sig-
nificantly DE in the muscle of Duroc pigs with an extreme 
lipid profile [48]. The SFRP5 gene encodes an adipokine 
with anti-inflammatory and insulin-sensitizing proper-
ties and appears to have an effect on cytokine release and 
insulin action in primary adipocytes and skeletal muscle 
cells [49]. Furthermore, SFRP5 plays an important role in 
recognizing FA as well as in lipogenesis and, depending 
on the type of ligand or co-receptor, it can stimulate or 
inhibit adipogenesis through the WNT pathways [50]. In 
mice, a long non-coding RNA of the protein phosphatase 
1 regulatory inhibitor subunit 1B (PPP1R1B) gene is 
involved in skeletal muscle development [51]; such data 
argue for an important role of the PPP1R1B-lncRNA in 
promoting myogenic differentiation by competing for 
polycomb repressive complex 2 (PRC2) binding with 
chromatin of myogenic master regulators. While the rela-
tionship between UNC93A (unc-93 homolog A) and the 
lipid metabolism in muscle has yet to be explored, a study 
in mice determined that the expression of this putative 
solute carrier responded to nutrient availability [52]. In 
addition, UNC93A was also mentioned as a candidate 
gene in a quantitative trait loci (QTL) study for meat 

quality and disease resistance in the Chinese Jiangquhai 
pig breed [53].

Apart from the five genes mentioned above, among the 
365 rCCA-derived genes several other candidate genes 
that are involved in lipid metabolism are worth mention-
ing, such as ADIPOQ, ELOVL6, LPIN1, G0S2, PNPLA8, 
and SOD3. As another adipokine and candidate for meat 
quality, the adiponectin (ADIPOQ) gene was positively 
correlated with abundance of. C16:1n-7. The protein 
encoded by ADIPOQ enhances FA oxidation both in the 
skeletal muscle and the liver. It stimulates muscle glucose 
uptake and inhibits glucose production by the liver, thus, 
decreasing blood glucose levels [54]. Moreover, it has 
been shown that upregulation of the ADIPOQ gene in 
muscle is associated with inhibition of fat deposition in 
castrated male Iberian pigs (Torbiscal variety) [55].

For regulation of lipogenesis, the ELOVL fatty acid 
elongase 6 (ELOVL6) gene is of particular interest, as it 
is directly involved in elongation of FA in mammals [56]. 
In our group, Corominas et al. [57] previously reported a 
plausible effect of the expression levels of ELOVL6 on the 
abundance of C16:0 and C16:1n-7 FA in backfat and mus-
cle of Landrace backcross pigs. However, in our study, the 
BC1_DU pigs showed only a negative correlation with 
abundance of the essential FA C18:2n-6. As ELOVL6 
does not elongate C18:2n-6, this negative correlation may 
be due to the increase in the relative abundance of other 
SFA and MUFA caused by ELOVL6. Regarding regula-
tion of adipogenesis, our data revealed that the lipin 1 
(LPIN1) gene was positively correlated with abundance 
of C20:4n-6. This gene has been shown to participate in 
metabolism of the arachidonic acid in Caenorhabditis 
elegans [58]. Furthermore, in a previous study from our 
group, LPIN1 has also been investigated as a potential 
candidate gene for intramuscular FA composition in a 
Landrace backcross population [4].

Apart from PLIN1, other genes involved in lipoly-
sis and/or adipogenesis were FBP1, G0S2, and SOD3, 
which were positively correlated with abundance of 
C18:1n-9 and negatively correlated with abundances 
of C18:2n-6, C20:3n-6, and C20:4n-6. For instance, the 
expression level of the porcine G0/G1 switch 2 (G0S2) 
gene increased significantly during adipogenesis (both in 
in vitro and in vivo studies) [59]. In the same study, G0S2 
was suggested to be a negative regulator of adipose tri-
glyceride lipase (ATGL)-mediated lipolysis and cell pro-
liferation in adipose tissue, and to be closely related to 
lipid accumulation [59]. As an antioxidant enzyme, SOD3 
(superoxide dismutase 3) is secreted by adipocytes and 
has the potential to prevent oxidative stress. In mice, Cui 
et al. [60] suggested that SOD3 had a specific function in 
blocking adipogenesis and that overexpression of SOD3 
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suppressed expression of pro-inflammatory genes in adi-
pose tissue, and increased expression of anti-inflamma-
tory genes.

The positive correlations of levels of expression of the 
FBP1, G0S2, and SOD3 genes with abundance of oleic 
acid (C18:1n-9), and their negative correlations with 
the three other PUFA may be due to their involvement 
in lipid metabolism of the host, rather than to metabo-
lism of the essential FA and their derivatives. In fact, we 
highlighted candidate genes, such as ADIPOQ, ELOVL6, 
and PLIN1 that were also identified as overexpressed 
genes in individuals that were divergent for IMF values 
and had a higher IMF content according to transcrip-
tome analyses of LD muscle in Iberian pigs [61]. Fur-
thermore, Benítez et  al. [62] found that breed (Iberian/
Duroc) had a modulatory effect on the expression of the 
ELOVL6 and LEP genes (adjusted P-value < 0.10) in the 
adipose tissue from growing pigs; lipogenic (ELOVL6 
and LEP) and lipolytic (G0S2 and PLIN1) genes had a 
higher expression in biopsies obtained from the Iberian 
pigs. This seems to be the case when lipid deposition 
in the muscle of pigs is the result of a balance between 
lipogenesis and lipolysis processes [63]. Nevertheless, 
fat accumulation in animals results from an imbalance 
between synthesis and degradation. When synthesis of 
FA is greater than their consumption, FA are deposited 
in cells instead of mobilized to provide energy [64]. In 
addition, in an association study for backfat FA compo-
sition in free-range Iberian pigs, two single nucleotide 
polymorphisms (SNPs) ADIPOQ:g.124646194T>G and 
ELOVL6:g.112186423A>G were identified to have a sig-
nificant association [65].

We also found that the levels of expression of genes 
such as patatin-like phospholipase domain containing 
8 (PNPLA8), glutamate oxaloacetate transaminase 1 
(GOT1), and 3-hydroxy-3-methylglutaryl-CoA synthase 
1 (HMGCS1) were negatively correlated with abundance 
of C18:1n-9, while they were positively correlated with 
abundance of C18:2n-6 and C20:4n-6, together with the 
level of expression of the 3-hydroxy-3-methylglutaryl-
CoA reductase (HMGCR ) gene. The PNPLA8 protein 
(also known as iPLA2γ) plays an important role in lipoly-
sis and FA oxidation. It belongs to a family of phospho-
lipases that catalyze the cleavage of FA from membrane 
phospholipids [66]. Interestingly, PNPLA8 may preferen-
tially act on arachidonic containing membrane phospho-
lipids (C20:4n-6, a FA that can undergo beta-oxidation) 
to generate free arachidonic acid, along with lysophos-
phatidic acid [67]. Therefore, PNPLA8 plays an impor-
tant role in mobilization of arachidonic acid in response 
to cellular stimuli [68] and in release of lipid second mes-
sengers. As another candidate for meat quality and car-
bohydrate metabolism, the GOT1 gene controls cellular 

metabolism by coordinating utilization of carbohydrates 
and amino acids to meet nutrient requirements [69], but 
it is also crucial in providing oxaloacetate at low glucose 
levels, likely to maintain the redox homeostasis. In con-
trast, the HMGCR  gene encodes a cholesterol-synthesis 
limiting enzyme, an enzyme of the mevalonate pathway, 
which participates in fat deposition and is associated 
with meat composition traits [70, 71]. In addition, syn-
onymous polymorphisms in this gene, such as HMGCR 
:c.807A>C, have been shown to be associated with mus-
cle lipid deposition and cholesterol-related traits in 
Duroc pigs with an extreme lipid profile [70].

It is also worth mentioning that the two transporter 
genes exocyst complex component 7 (EXOC7) and solute 
carrier family 44 member 2 (SLC44A2) may have a role in 
lipid metabolism. The level of expression of the EXOC7 
gene was found to be positively correlated with abun-
dance of C18:0. As EXOC7 is a component of the exocyst 
complex, which regulates free FA uptake by adipocytes 
[72], it is involved in diverse biological functions, includ-
ing promoting translocation of the glucose transporter 
GLUT4 in the cell. Although there are other members of 
the solute carrier family, the SLC44A2 gene presented the 
same correlation pattern (positive with MUFA but nega-
tive with PUFA) as the FBP1, G0S2 and SOD3 genes. In 
mice, SLC44A2 mediates choline transport into mito-
chondria, and regulates synthesis of ATP, platelet acti-
vation and thrombosis [73]. In addition, supporting 
information for SLC44A2 has suggested its important 
role for normal homeostasis [74].

Identification of potential regulators of gene expression 
and their putative gene targets in muscle
We used RIF analysis to highlight putative regulators 
and to assess their potential role in controlling their pre-
dicted target genes. We identified six TF-regulator genes, 
including two novel (TADA2A and CARHSP1) but also 
four well-documented regulators (MAFA, SIX5, LBX1, 
and PAX7). Remarkably, among these six TF genes, 
TADA2A and CARSHP1 based on RIF1 and KLF10 and 
TADA2A based on RIF2 were scored as the first and 
second most relevant TF genes. In addition, the LBX1, 
KLF10, PAX7, and SIX5 genes encode TF that may be 
putative regulators of lean muscle growth. Moreover, 
several target genes of TADA2A and CARSHP1 were 
detected as being functionally related to lipid metabolism 
(e.g., PLIN1 and TFRC) and/or meat quality (e.g., GOT1). 
However, no target genes were detected for KLF10.

Considering the rCCA approach, our findings in muscle 
suggest that the transcriptional adaptor 2A (TADA2A) 
gene was linked to the four most interconnected FA (pos-
itively associated with C20:4n-6, C18:2n-6, and C20:3n-6, 
respectively, and negatively associated with C18:1n-9). 
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The TADA2A protein is part of the ATAC (Ada-Two-
A-Containing) complex that interacts with the TATA-
binding protein for transcriptional activation [75]. In 
addition, TADA2A has been suggested to be involved in 
de novo hepatic lipogenesis in chickens fed different diets 
[76]. The level of expression of the calcium regulated heat 
stable protein 1 (CARHSP1) gene was positively linked 
to the sixth most interconnected FA (C16:1n-7). In mice, 
CARHSP1 is regulated by the nutrient status in the liver 
and was suggested to inhibit hepatic gluconeogenic gene 
expression via repression of the transcriptional activity of 
the PPARα transcription factor [77]. Consequently, these 
two regulators were targets for each other in animals with 
condition 2 (i.e., more SFA and MUFA but fewer PUFA, 
and higher IMF content), as well as having shared target 
genes, such as GOT1, PLIN1, and TFRC. Taken together, 
these findings point to some of the potential transcrip-
tional circuits through which key regulatory genes exert 
their impact on their targets and FA. Conversely, FA may 
also act as signaling candidates to regulate transcription 
of target genes that encode proteins that are involved in 
muscle lipid metabolism [78]. In turn, gene expression 
may also be modulated by FA abundance, as suggested 
by independent studies that correlate gene expres-
sion with FA composition or with IMF content in pig 
muscle [1, 4, 9, 46, 79, 80]. Other factors can also affect 
gene expression, such as environmental factors, genetic 
background, breeding systems, management, and host-
factors. It has been reported that the FA composition in 
pig diets affects subcutaneous IMF FA profile [64, 79]. 
Recently, Ludwiczak et al. [81] also pointed out that FA 
profiles (SFA, MUFA, and PUFA) in the loin (e.g., in lon-
gissimus thoracis et lumborum muscle) or IMF content 
of European pigs (e.g., Nero Siciliano, Cinta Sense, and 
Iberian × Duroc) can be affected by diet or by the inter-
action between diet and housing system. However, in the 
present work a uniform diet was provided to all animals.

Conclusions
The findings of this study contribute to a better under-
standing of the complex relationship between FA compo-
sition and gene expression in muscle, but may also reveal 
patterns of gene expression involving Iberian and Duroc 
pigs. Based on the results of the rCCA, functional analy-
sis, RIF analysis, prediction of target genes, and support-
ing literature, all the genes discussed above are promising 
candidates for muscle lipid deposition and FA composi-
tion in Iberian and Duroc pigs. Our rCCA-derived find-
ings highlighted genes encoding enzymes associated with 
fat deposition, but also bioprocesses and metabolic path-
ways involved in the determination of FA traits. Using a 
complementary RIF analysis, we proposed two novel reg-
ulators (TADA2A and CARHSP1) for intramuscular FA 

metabolism. Functional analyses at the GO and pathway 
levels reinforced the significance of biological processes 
associated with energy, lipid, and carbohydrate metabo-
lism, as well as of the KEGG pathway of regulation of 
lipolysis in adipocytes in muscle tissue. Furthermore, 
our results highlighted the ADIPOQ, ELOVL6, G0S2, 
HMGCR, LEP, LPIN1, PLIN1, PNPLA8, and SFRP5 genes 
for their lipogenic and/or lipolytic potential to contribute 
to intramuscular FA composition. Our study also identi-
fied the endogenous antioxidant enzyme SOD3 as hav-
ing a promising role in regulation of adipogenesis in pig 
muscle.
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