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Abstract 

Background In the current context of climate change, livestock production faces many challenges to improve 
the sustainability of systems. Dairy farming, in particular, must find ways to select animals that will be able to achieve 
sufficient overall production while maintaining their reproductive ability in environments with increasing tempera-
tures. With future forecasted climate conditions in mind, this study used data from Holstein and Montbeliarde dairy 
cattle to: (1) estimate the genetic-by-temperature-humidity index (THI) interactions for female fertility, and (2) evalu-
ate the production-fertility trade-off with increasing values of THI.

Results Two-trait random regression models were fitted for conception rate (fertility) and test-day protein yield (pro-
duction). For fertility, genetic correlations between different THI values were generally above 0.75, suggesting weak 
genotype-by-THI interactions for conception rate in both breeds. However, the genetic correlations between the con-
ception rate breeding values at the current average THI (THI = 50, corresponding to a 24-h average temperature 
of 8 °C at 50% relative humidity) and their slopes (i.e., potential reranking) for heat stress scenarios (THI > 70), were 
different for each breed. For Montbeliarde, this correlation tended to be positive (i.e., overall the best reproducers 
are less affected by heat stress), whereas for Holstein it was approximately zero. Finally, our results indicated a weak 
antagonism between production and fertility, although for Montbeliarde this antagonism intensified with increasing 
THI.

Conclusions Within the range of weather conditions studied, increasing temperatures are not expected to exacer-
bate the fertility-production trade-off. However, our results indicated that the animals with the best breeding values 
for production today will be the most affected by temperature increases, both in terms of fertility and production. 
Nonetheless, these animals should remain among the most productive ones during heat waves. For Montbeliarde, 
the current selection program for fertility seems to be adequate for ensuring the adaptation of fertility traits to tem-
perature increases, without adverse effects on production. Such a conclusion cannot be drawn for Holstein. In 
the future, the incorporation of a heat tolerance index into dairy cattle breeding programs would be valuable to pro-
mote the selection of animals adapted to future climate conditions.
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Background
The negative effect of heat stress (measured by the tem-
perature-humidity index, or THI) on various traits in 
dairy cattle has been consistently reported by numerous 
studies, especially with respect to traits related to pro-
duction [1–3], reproduction [1, 2, 4], and udder health 
[1, 5]. Several studies have estimated genotype-by-THI 
interactions, usually with reaction norm models, that 
describe the trajectory of genetic parameters along a 
continuous THI gradient [6, 7]. Nearly systematically, 
these studies have predicted an unfavorable genetic cor-
relation between the trait level in standard climate condi-
tions and the slope in heat stress conditions. For instance, 
Vinet et  al. [8] found that this correlation was negative 
for production (i.e., a stronger decline for high-yielding 
cows) and positive for somatic cell score (i.e., sensitive 
cows are even more sensitive at high THI). For repro-
duction, fertility has also been predicted to decline with 
increasing THI, e.g., [1, 9, 10], which is consistent with 
in vitro tests (reviewed in [11, 12]). Heat stress is known 
to adversely affect different stages of cattle reproduction, 
suppressing the dominance of the large follicle, impairing 
oocyte quality and embryo development, and increasing 
embryo mortality (reviewed in [12]). However, data on 
genotype-by-THI interactions for fertility are still scarce. 
The estimation of genetic correlations between fertility at 
different THI values is important, because such correla-
tions provide information about the relevance of current 
selection goals and their suitability for future forecasted 
climate conditions, in which higher average THI values 
are expected.

Irrespective of climate conditions, dairy cows have a 
physiological need to balance their investment in produc-
tion with that in other functional traits, a trade-off that 
is known to generate moderate negative genetic corre-
lations between production and fertility traits [13–15]. 
This unfavorable genetic correlation has long been incor-
porated by most countries in their breeding objectives. 
However, most research on the production-fertility trade-
off has occurred in the context of current climate condi-
tions (intermediate average THI), and it is unknown to 
what extent genetic correlations between production and 
reproduction traits might depend on environmental fac-
tors. Given global forecasts of increasing temperatures, 
this question has taken on considerable urgency. If cor-
relations between production and reproduction become 
even more unfavorable at higher THI values, the cur-
rent selection objectives would again lead to a decrease 
in fertility. Consequently, the weight of the fertility in the 
total merit index would have to be increased to prevent 
such a decline. With future forecasted climate condi-
tions in mind, the aim of this study was to use data from 
Holstein and Montbeliarde dairy cattle to: (1) estimate 

genetic-by-THI interactions for female fertility, and (2) 
evaluate the production-fertility trade-off with increasing 
values of THI.

Methods
Dataset
Performance and pedigree records from 2010 to 2020 
were extracted from the French national database hosted 
by INRAE-CTIG. The fertility phenotype considered 
was the outcome of the first insemination after first calv-
ing, and the production phenotype consisted of test-day 
protein yield (PY) records from the first lactation, for 
both Holstein (HOL) and Montbeliarde (MON) cows. 
The fertility phenotype, hereafter called conception rate 
(CR), was determined as in Barbat et  al. [16]: the out-
come was set to 100 (successful) if the cow calved fol-
lowing the expected gestation length of the breed (281 
and 285 ± 15 days in Holstein and Montbeliarde, respec-
tively), and 0 otherwise. Insemination data of cows culled 
before 250  days in milk, i.e. with uncertain status, were 
excluded. As inseminations with male-sexed semen were 
very limited and not randomly distributed among lac-
tating cows, these were also discarded. We considered 
only purebred inseminations performed between 25 and 
48 months of age and occurring between 50 and 180 days 
after calving (more than 90% of the first service records in 
both breeds). For PY, we collected test-day records occur-
ring between 80 and 200 days of lactation from cows who 
calved between 23 and 42  months of age. This restric-
tion on days in milk was intended to simplify the random 
regression model and will be described in further detail 
below. Cows with unknown parents were removed. The 
contemporary groups were herd-year (HY) and herd-
test-day (HTD) for CR and PY, respectively, and data 
from contemporary groups with less than three cows 
were discarded. Only sires with at least 15 daughters with 
both performances, PY and CR, were retained. The final 
datasets comprised 3,351,068 (HOL) and 649,814 (MON) 
CR records, and 10,245,692 (HOL) and 1,966,985 (MON) 
PY records. These performance data were recorded from 
a total of 3,368,605 (HOL) and 656,164 (MON) cows, 
born from 5463 and 1612 sires, respectively. The pedi-
gree of sires was traced back three generations. After 
trimming, the HOL and MON pedigree files comprised 
12,741 and 4148 animals, respectively. Statistics on the 
raw data are in Table 1.

As in Vinet et al. [8], we used meteorological SAFRAN 
data provided by the French national meteorological 
agency (MeteoFrance) that included daily estimates of 
various indicators for each of the 9892 8 × 8-km2 squares 
that cover the entire French territory. Following the rec-
ommendations of Mbuthia et  al. [17], we used modeled 
data instead of observed data. These daily estimates are 
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the result of a model developed for meteorological fore-
casting based on continuous local recording from a wide 
network of meteorological stations. The meteorological 
variables used in this study were the average daily tem-
perature and relative humidity. Based on its zip code, 
each herd was assigned daily meteorological data con-
sisting of weighted averages of the values from each of 
the 8 × 8-km2 squares overlaying its location, with the 
weights reflecting the proportion of the area of the village 
located in each square. The daily THI [18] was calculated 
as THI = (1.8 × T + 32)−(0.55–0.0055 × RH) × (1.8 × T-26), 
where T is the 24-h average temperature (Celsius), and 
RH is the 24-h average relative humidity (%), as adopted 
in Bohlouli et al. [19] and Brügemann et al. [20]. Two dif-
ferent averages for THI were considered depending on 
the trait. For PY, THI was averaged over the three days 
leading up to the test day (i.e., the date of the test and the 
two previous days) as described in Vinet et  al. [8]; this 
was designated THIp. For CR, we averaged THI over the 
eight days following insemination (i.e., day of insemina-
tion to day 7 after insemination) and denoted this THIf. 
In preliminary work, we tested several periods between 
30  days before and 30  days after insemination (THIf 
included) and, as in Brügemann et al. [21], we found that 
different periods provided similar results when analyzed 
separately because they are highly correlated. The effect 
of this THIf on conception rate is illustrated in Fig. 1. We 
chose to use THIf for two reasons: (a) its effect was the 
most pronounced, and (b) in a model including THI both 
before and after insemination, the effect of THI before 
insemination was cancelled out (data not shown), indicat-
ing that THI after insemination is more relevant. Indeed, 
although heat stress affects all reproductive processes of 

cows (estrus behavior, oocyte quality, pregnancy losses; 
reviewed in [22]), only the result of insemination (i.e., 
insemination failure and embryo losses) can be investi-
gated with our data. Figure 2 depicts the distribution of 
the meteorological variables experienced by herds during 
the period examined for this study.

Model for analysis
To estimate genotype-by-THI interactions within traits 
and the evolution of genetic correlations between 
traits across various THI conditions, bivariate ran-
dom regression models were used. Random regression 

Table 1 Number of cows and records, number of sires, means 
and standard deviations (sd) of conception rates (CR) and protein 
yields (PY), and means and sd of average temperature-humidity 
index (THI) by trait in Holstein and Montbeliarde

THIp average THI in the three days leading up to the test day; THIf average THI in 
the seven days following insemination

Holstein Montbeliarde

Number of phenotyped cows 3,368,605 656,164

Number of herds 35,579 9850

Number of CR records 3,351,068 649,814

Number of PY records 10,245,692 1,966,985

Number of sires 5463 1612

Average number of daughters 
per sire (min–max)

617 (26–49,961) 407 (23–24,884)

Average CR % (sd) 44.5 (49.7) 54.6 (49.8)

Average PY g/d (sd) 839 (176) 740 (164)

Average THIf (sd) 51.3 (8.9) 47.4 (10.6)

Average THIp (sd) 50.7 (9.1) 47.3 (10.7)

Fig. 1 Average effect of average temperature-humidity indices (THIf ) 
on conception rate. Results are given in number of points of success 
of the insemination compared to the effect at THIf = 50, for the two 
breeds, Holstein (HOL, in blue) and Montbeliarde (MON, in brown)

Fig. 2 Distribution of average temperature-humidity indices 
(THI) associated with performance records. Results are given as a 
percentage of the total records, within-trait and within-breed records. 
THI values used for the production trait (i.e., protein yield = THIp) are 
shown with a dashed line and THI values used for the fertility trait (i.e., 
conception rate = THIf ) are shown with a solid line
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models enable prediction of the performance of each 
genotype under a given environmental condition. The 
main objective was to measure the trend in the genetic 
correlation between CR and PY along a broad THI gra-
dient. Because CR has a very low heritability, very large 
datasets are required to accurately estimate the varying 
genetic correlations over the THI gradient. Using a ran-
dom regression model applied to millions of records, 
as needed to accurately estimate the trends in genetic 
correlations over the THI gradient, poses huge compu-
tational constraints when applied to an animal model. 
Therefore, we opted for a sire model, which made it 
computationally feasible to perform the study that han-
dled all the performance data spanning a wide range of 
THI conditions. In addition, since each cow had only 
one CR record, a sire model was deemed more appro-
priate for describing the effect of the THI gradient in 
the progeny group.

For test-day production records, it is generally recom-
mended to use a random regression model to account 
for the varying genetic determinism of PY along the lac-
tation. In previous work by our group [8], we presented 
a two-dimensional random regression model with com-
ponents that depended on both days in milk (DIM) and 
THI. Here, with a CR-PY bivariate approach and a very 
large dataset, we preferred to avoid this complexity, 
and instead focused on PY records in the middle of the 
lactation (80–200 DIM), when genetic parameters are 
fairly stable [6, 23, 24]. Therefore, no random compo-
nent associated with DIM was considered.

The following models were used for CR and PY, 
respectively:

with yfi and ypin being the fertility and the n-th pro-
duction phenotypes of cow i , βf and βp are the vec-
tors of  the fixed effects and xfi and xpin their incidence 
vectors, afs(i)k and aps(i)k the k-th genetic component of 
sire s(i) , ppik the k-th animal component of the cow i 
(including the permanent environment effect and a 
part of the genetic effect) for production, efi and epin the 
residuals, zfjk the k-th Legendre polynomial of standard-
ized THIf j , zpjkn and wpjkn the k-th Legendre polynomi-
als of standardized THIp j . Note that zpjkn and wpjkn are 
equal for animals with phenotypes.

(1)yfi = xfiβf +
∑2

k=0
zfjkafs(i)k + efi,

(2)ypin
= xpinβp +

∑3

k=0
zpjknaps(i)k +

∑3

k=0
wpjknppik + epin ,

For CR, the vector of fixed effects βf included: (i) 
herd-year as the contemporary group (261,087 levels 
in HOL; 66,544 levels in MON), (ii) month-year, (iii) 
age at insemination, in months (4 levels), (iv) interval 
between calving and insemination (3 levels), (v) sexed 
semen nested by year (30 levels), and day of the week 
(7 levels). The additive genetic effect afs(i)k was regressed 
using three functions: an intercept independent of THI 
and two THI-dependent functions (linear and quad-
ratic functions). The vector zf  contains three non-zero 
terms, equal to a constant and the first- and second-
order Legendre polynomials of standardized THIf, 
respectively, afs(i) the corresponding vector of additive 
sire regression coefficients, contains three values per 
animal. Preliminary analysis indicated that the effect of 
the service bull used for mating was low (< 1% variance) 
and this effect was not accounted for in our analyses. 
For PY, the vector of fixed effects βp included: (i) herd-
test-day as the contemporary group (1,572,611 levels 
in Holstein; 337,550 levels in Montbeliarde), (ii) days 
in milk defined in 10-d classes (12 levels), (iii) age at 
calving (20 levels), and (iv) days carried calf (days from 
successful insemination until test-day, converted into 
months, 5 levels). The additive sire effect aps(i)k and the 
permanent environmental effect of the cow ppik were 
each regressed using four functions: an intercept inde-
pendent of THI and three THI-dependent functions 
(linear, quadratic, and cubic functions). The vectors 
zp and wp contain four non-zero terms on each line, 
equal to a constant and the first-, second-, and third-
order Legendre polynomials of standardized THIp, 
respectively. aps(i) and ppi , the corresponding vector of 
additive sire regression coefficients and vector of per-
manent environmental regression coefficients contain 
each four values per animal (i.e., per sire s(i) for aps(i) 

and per cow i for ppi ). The arguments of the polyno-
mials were standardized values of THI in the interval 
−  1 to + 1. For THIp, the raw range extended from 13 
to 79 in Holstein and 11 to 79 in Montbeliarde, with 
zero corresponding to THI 46 in Holstein and THI 45 
in Montbeliarde. Raw THIf values ranged from 14 to 
77 in Holstein and 12 to 77 in Montbeliarde, with zero 
corresponding to THI 45 in Holstein and THI 44 in 
Montbeliarde. For both traits, the residuals efi and epin 
are considered heterogeneous across five THI classes 
(≤ 29, 30–39, 40–49, 50–59, ≥ 60). These classes were 
defined based on preliminary analyses and we chose to 
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keep evenly spaced intervals although the differences 
were small between some adjacent classes.

The sire random regression variance matrix var(a) = S 
is a 7 × 7 symmetric matrix:

with Sp =









σ2sp0
σsp1p0
σsp2p0
σsp3p0

σsp0p1
σ2sp1
σsp2p1
σsp3p1

σsp0p2
σsp1p2
σ2sp2
σsp3p2

σsp0p3
σsp1p3
σsp2p3
σ2sp3









,

where σ2spi is the variance of the i-th regression coefficient 
of the Legendre polynomial for PY, σ2sfi is the variance of 
the i-th regression coefficient of the Legendre polynomial 
for CR, σspipj is the covariance between coefficients i and 
j of the regression for PY, σsfifj is the covariance between 
coefficients i and j of the regression for CR, and σspifj is 
the covariance between the coefficient i of the regression 
for PY and the coefficient j of the regression for CR.

The additive sire variances and covariances at each 
THIp/f were estimated by pre- and post-multiplying the 
sire variance matrix S by the corresponding THI-coeffi-
cients of the Legendre polynomials using the formulas:

The additive genetic variances varGPYthip1
 and varGCRthif1

 

and covariances at each THIp/f, covG
(

PYthip1;PYthip2

)

 , 
covG

(

CRthif1;CRthif2

)

 , and covG
(

PYthip1;CRthif1

)

 , were 
estimated by multiplying the corresponding sire additive 
variances and covariances by 4. With varGPYthip1

 , the 

S =

[

Sp Spf
Sfp Sf

]

,

Sf =





σ2sf0
σsf1f0
σsf2f0

σsf0f1
σ2sf1
σsf2f1

σsf0f2
σsf1f2
σ2sf2



,

Spf =









σsp0f0
σsp1f0
σsp2f0
σsp3f0

σsp0f1
σsp1f1
σsp2f1
σsp3f1

σsp0f2
σsp1f2
σsp2f2
σsp3f2









,

(3)varSPYthip1
= zpthip1

Spz
′
pthip1

,

(4)varSCRthif1
= zfthif1

Sfz
′

fthif1
,

(5)covS
(

PYthip1;PYthip2

)

= zpthip1
Spz

′
pthip2

,

(6)covS
(

CRthif1;CRthif2

)

= zfthif1
Sfz

′

fthif2
,

(7)covS
(

PYthip1;CRthif2

)

= zpthip1
Spf z

′

fthif2
.

genetic variance of PY was evaluated at  THIp1; with 
varGCRthif1

 , the genetic variance of CR was evaluated at 
 THIf1; covG

(

PYthip1;PYthip2

)

 was the genetic covariance 
between PY at  THIp1 and PY at  THIp2;   
covG

(

CRthif1;CRthif2

)

 was the genetic covariance 
between CR at  THIf1 and CR at  THIf2; and 
covG

(

PYthip1;CRthif2

)

 was the genetic covariance 
between PY at  THIp1 and CR at  THIf2. zpthip1 is the vector 
of covariates estimated at  THIp1 and zfthif1 is the vector of 
covariates estimated at  THIf1.

The permanent environmental random regression 
variance matrix P and the permanent environmental 
variances, defined only for PY, were defined similarly as 
follows:

with P being the 4 × 4 symmetric permanent environ-
mental random regression variance matrix.

Finally, varRPYthip1
, varRCRthif2

 , and covR
(

PYthip1;CRthif2

)

 
are the residual variances and covariance at  THIp1 and 
 THIf2, respectively.

All these variances allowed calculation of the herit-
abilities at each  THIpi or  THIfj as:

and the correlations between traits at each  THIpi and 
 THIfj as:

where rg

(

PYthipi;CRthifj

)

 is the genetic correlation 
between PY at  THIpi and CR at  THIfj.

The genetic correlation between the PY breeding 
value at  THIpi and the PY slope of the regression on 
(standardized)  THIpj was calculated as follows:

(8)varPpthip1
= zpthip1

Pz′pthip1 ,

(9)h2PYthipi
=

4 ∗ varSPYthipi

varSPYthipi
+ varPPYthipi

+ varRPYthipi

,

(10)h2CRthifj
=

4 ∗ varSCRthifj

varSCRthifj
+ varRCRthifj

,

(11)

rg

(

PYthipi;CRthifj

)

=

covG
(

PYthipi;CRthifj

)

√

varGPYthipi
∗ varGCRthifj

,

(12)

rg

(

PYthipi; slopePYthipj

)

=

covG
(

PYthipi; slopePYthipj

)

√

varGPYthipi
∗ varGslopePYthipj

,
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with the variance of the PY slope at  THIpj computed 
using the derivative formula:

and the additive genetic covariance between the PY 
breeding value at  THIpi and the PY slope at  THIpj com-
puted as:

The same formula was used to estimate the genetic cor-
relation between the CR breeding value and the CR slope 
at two different values of THIf by adapting the matrix S , the 
vector z , and the derivative with regard to dTHIf.

Between traits, the correlation between the PY breeding 
value at  THIpi and the CR slope of the regression at  THIfj 
was calculated as:

(13)varGslopePYthipj
= 4 ∗

dzpthipj

dTHIp
Sp

(

dzpthipj

dTHIp

)′

,

(14)

covG
(

PYthipi; slopePYthipj

)

= 4 ∗ zpthipi
Sp

(

dzpthipj

dTHIp

)′

.

The approximate standard errors of the variance com-
ponents were derived from the average information 
matrix as proposed in [25] and the standard errors of the 
genetic correlations were approximated as proposed in 
[26].

All fixed effects and variance components were esti-
mated using the WOMBAT software [27].

In preliminary analyses, different orders of Legendre 
polynomials were tested in the MON breed. For each 
trait, models with different orders of Legendre polynomi-
als (order two and three, featuring three and four polyno-
mial coefficients, respectively) were compared using the 
Akaike information (AIC) and the Bayesian information 
criteria (BIC). The results with respect to these criteria of 
model assessment indicated that the best model was that 
of a third order polynomial for PY (cubic, with four poly-
nomial coefficients—for order 0, 1, 2, and 3), and that of 
a second order polynomial (quadratic, with three polyno-
mial coefficients—for order 0, 1, and 2) for CR (Table 2).

Results
Genotype‑by‑THI interactions within traits
The trajectories of the estimated genetic and permanent 
environmental variances followed the same trend in 
both breeds; however, the estimated values were higher 
for HOL than for MON (Figs. 3 and 4). For CR, the larg-
est additive genetic variances were observed for extreme 
values of THI (i.e., THIf < 30 and THIf > 60), but for PY, 

(15)

rg

(

PYthipi; slopeCRthifj

)

=

covG
(

PYthipi; slopeCRthifj

)

√

varGPYthipi
∗ varGslopeCRfj

.

Table 2 Akaike information criterion (AIC) and Bayesian 
information criteria (BIC) for all tested models in Montbeliarde

Number of polynomials 
considered for each trait

AIC BIC

Protein yield Conception 
rate

Model 1 4 4 21,864,428.1 21,865,475.8

Model 2 4 3 21,864,415.6 21,865,348.4

Model 3 3 3 21,864,934.0 21,865,713.5

Model 4 3 4 21,865,198.8 21,866,118.8

Fig. 3 Trajectories of estimates of additive genetic variance for a conception rate (CR) and b protein yield (PY) with changing 
temperature-humidity index (THI) in Holstein (HOL) and Montbeliarde (MON) breeds. THIp THI for protein yield, THIf THI for conception rate
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these extreme THI values were associated with the lowest 
estimates of additive genetic variance (Fig. 3). Similar to 
the trends for genetic variance, the permanent environ-
mental variance for PY tended to decrease with extreme 
THIp values for both breeds, but this pattern was more 
pronounced for HOL (Fig.  4). For MON, the residual 
variances of both traits increased with THI, whereas for 
HOL the residual variance tended to decrease for CR at 
values of THI > 50, and for PY at THI > 60 (Fig. 5).

Figure 6 presents the trends in heritability as a function 
of THI. These reflected the patterns that were observed 
for the additive genetic variances, with a tendency for 

heritabilities to increase at extreme THIf values for CR, 
and conversely, to decrease at extreme THIp values 
for PY. In spite of the general declining trend for PY, a 
rebound was observed in HOL heritabilities (and genetic 
variances) at the highest THI values. Although additive 
genetic variances were larger for HOL than for MON, 
the heritabilities of PY for the former breed were lower 
than those for the latter due to the much larger estimates 
of residual and permanent environmental variances for 
HOL (Figs. 3, 4, 5 and 6).

The genetic correlations within traits across THI val-
ues were lower for HOL than for MON, and lower for CR 
than for PY (Fig.  7). Nonetheless, interactions between 
genotype and THI remain limited, with correlations gen-
erally high and mostly above 0.80. In fact, the majority of 
the estimated genetic correlations within PY were higher 
than 0.85 and 0.95 for HOL and MON, respectively. For 
CR, these genetic correlations dropped to 0.75 for both 
breeds when calculated between extreme and intermedi-
ate THI values.

Recent work by our group found that, even when 
genetic correlations suggest weak genetic-by-THI inter-
actions, some reranking of animals can occur at high THI 
values [8]. The same pattern was detected in the current 
study: some animals experienced a decrease in their esti-
mated breeding values (BV) while others moved up in the 
ranking. These changes in the ranking of estimated BV 
can be quantified by calculating the slope at a given THI. 
The estimates of the genetic variances of the traits at 
intermediate THI (THI = 50) and at high THI (THI = 70), 
and the estimates of the genetic variances of the slope of 
the trait at THI 70 (i.e. the derivative at THI 70) are in 
Table 3. The estimates of the genetic standard deviations 

Fig. 4 Trajectories of estimates of permanent environmental 
variances for protein yield (PY) with changing temperature-humidity 
index (THI) in Holstein (HOL) and Montbeliarde (MON) cows. THIp THI 
for protein yield, THIf  THI for conception rate

Fig. 5 Trajectories of estimates of residual variance for a conception rate (CR) and b protein yield (PY) with changing temperature-humidity index 
(THI) in Holstein (HOL) and Montbeliarde (MON) cows. THIp THI for protein yield, THIf  THI for conception rate
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of the slopes at high THI (THI = 70) and the propor-
tions of their variability out of the total genetic variabil-
ity of each trait at THI = 70 are in Table  4. The genetic 

standard deviations of the slopes ranged from 0.19 to 
0.35 points per unit of additional THI for CR and around 
1  g/d per unit of additional THI for PY. These genetic 

Fig. 6 Smoothed trajectories of estimates of heritability for a conception rate (CR) and b protein yield (PY) with changing temperature-humidity 
index (THI) in Holstein (HOL) and Montbeliarde (MON) cows. THIp THI for protein yield, THIf  THI for conception rate

Fig. 7 Estimates of within-trait genetic correlations at different values of temperature-humidity index (THI) for conception rate (CR, left-hand 
graphs) and protein yield (PY, right-hand graphs) in Holstein (HOL, top graphs) and Montbeliarde (MON, bottom graphs). White contour lines 
separate genetic correlation classes differing by 0.05. THIp THI for protein yield, THIf  THI for conception rate
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standard deviations of the slopes accounted for less than 
5% of the overall genetic standard deviation of the traits 
at THI 70, regardless of the breed. Although the mag-
nitude of these effects was limited, they were estimated 
for only a short period of heat stress (Tables 3 and 4). In 
the future, heat waves are expected to be more frequent 
and more intense, making it likely that losses in CR and 
PY will accumulate. Therefore, we also investigated the 
genetic correlations of these slopes at high THI with the 
BV at intermediate THI, which enables the prediction of 
potential consequences from current selection decisions 
(based on BV expressed at intermediate THI) in a breed-
ing scenario taking place in future forecasted climate 
conditions (higher THI). Table 5 presents the within-trait 
genetic correlations between BV at THI 50 and slope at 
THI 70. The genetic correlation for PY was negative for 
both breeds (−0.37 ± 0.06 for HOL and −0.71 ± 0.09 for 
MON), while for CR the trends differed between breeds. 
For MON, the BV for CR at THI 50 tended to be favora-
bly correlated with the slope at THI 70, meaning that, 
for this breed, the most fertile animals under the current 

climate conditions likely remain the most fertile under 
future forecasted conditions  (rg =  0.37 ± 0.38). Instead, for 
the HOL breed, the genetic correlation was close to zero 
 (rg = −0.03 ± 0.09). This means that the current selection 
for the CR does not appear to have any consequence on 
the slope under a heat stress scenario.

Genotype‑by‑THI interactions between traits
The genetic correlations between traits are presented in 
Figs. 8 and 9 and in Table 5. Unlike the additive genetic 
variances, the additive genetic covariances between 
traits -and thus the additive genetic correlations- 
evolved differently for the two breeds (Figs. 8 and 9). All 
genetic correlations between traits at a given THI (e.g., 
THIp = THIf ) were low, ranging from 0 to −0.2. However, 
for HOL these increased with THI (Fig.  8), whereas for 
MON, estimates were close to zero at intermediate THI 

Table 3 Genetic variances of the traits at temperature-humidity 
index (THI) 50 and THI 70, and genetic variances of the slopes at 
THI 70

Standard errors in brackets

CR (%2) PY  (g2/d2)

Genetic variance of the trait at THI = 50

 HOL 58.9 (2.53) 2277 (56)

 MON 33.6 (3.85) 1887 (87)

Genetic variance of the trait at THI = 70

 HOL 78.3 (5.68) 1733 (55)

 MON 49.7 (8.95) 1322 (84)

Genetic variance of slope at THI = 70 (per unit of additional  THI2)

 HOL 0.12 (0.01) 1.31 (0.03)

 MON 0.03 (0.006) 0.99 (0.03)

Table 4 Genetic standard deviation (sd) of the trait and genetic sd of the slope at temperature-humidity index (THI) 70, and 
proportion of the genetic sd of the slope compared to the overall sd of the trait at THI70

CR PY

Genetic standard deviation of the trait at THI = 70

 HOL 8.8% 42 g/d

 MON 7.1% 36 g/d

Genetic standard deviation of slope at THI = 70 (per unit of additional THI)

 HOL 0.35% 1.14 g/d

 MON 0.19% 1.00 g/d

Ratio between genetic standard deviation of the slope at THI = 70 (per unit of additional THI) and genetic standard deviation of the trait at THI = 70 (%)

 HOL 4.0% 2.7%

 MON 2.6% 2.7%

Table 5 Estimates of genetic correlations (standard errors in 
brackets) between breeding values (BV) and slopes at various 
temperature-humidity index (THI) combinations

HOL MON

Genetic correlations within traits

  rg  (BVCR(THIf=50);  slopeCR(THIf=70)) − 0.03 (0.09)  + 0.37 (0.38)

  rg  (BVPY(THIp=50);  slopePY(THIp=70)) − 0.37 (0.06) − 0.71 (0.09)

Genetic correlations between traits

 Genetic correlations between BV

   rg  (BVCR(THIf=50);  BVPY(THIp=50)) − 0.14 (0.02) − 0.03 (0.06)

   rg  (BVCR(THIf=70);  BVPY(THIp=70)) − 0.08 (0.04) − 0.16 (0.08)

   rg  (BVCR(THIf=50);  BVPY(THIp=70)) − 0.06 (0.03)  + 0.01 (0.06)

   rg  (BVCR(THIf=70);  BVPY(THIp=50)) − 0.18 (0.03) − 0.20 (0.08)

 Genetic correlations between BV and slope

   rg  (BVPY(THIp=50);  slopeCR(THIf=70)) − 0.15 (0.08) − 0.54 (0.35)

   rg  (BVCR(THIf=50);  slopePY(THIp=70))  + 0.33 (0.06)  + 0.20 (0.13)

 Genetic correlations between slopes

   rg  (slopeCR(THIf=70);  slopePY(THIp=70))  + 0.24 (0.14)  + 0.27 (0.45)
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and mildly negative at extreme THI (e.g., −0.16 ± 0.08 at 
THIf = THIp = 70, Fig. 8), suggesting some deterioration 
of the production-fertility trade-off when THI is extreme. 
Figure  9 shows the trajectories of genetic correlations 
between CR and PY along the gradient of THIf and for 
five THIp values ranging from 30 to 70. For both breeds, 
the genetic correlations between CR and PY varied lit-
tle regardless of the value of THIp considered for PY. For 
instance, the genetic correlations between CR at THIf 70 
and PY at THIp 50 are close to the genetic correlations 
between CR at THIf 70 and PY at THIp 70 (−0.18 vs 

−0.08 for HOL, and −0.20 vs −0.16 for MON, Fig. 9 and 
Table 5).

Table  5 reports the genetic correlations between 
various combinations of breeding values and slopes of 
regression at different values of THI. The genetic corre-
lation between breeding values at THI 50 and the slope 
at THI 70 represents the relationship between the aver-
age current breeding value and the trend of breeding val-
ues in warmer conditions. The correlation between PY 
level at THIp 50 and CR slope at THIf 70 was negative 
for both breeds, although more strongly for MON than 
for HOL  (rg = −0.54 ± 0.35 and −0.15 ± 0.08, respectively). 
These correlations indicated that the cows that are high-
yielding under current climate conditions are expected to 
have a stronger decline in fertility under future forecasted 
climate conditions. Finally, the correlation between CR 
and PY slopes was positive at THI 70 for both breeds 
 (rg =  0.24 ± 0.14 for HOL and 0.27 ± 0.45 for MON), which 
suggests that the animals with the strongest favorable 
responses to THI were the same for both traits.

Discussion
Choice of the model and distribution of THI data
In order to achieve accurate estimates for genetic cor-
relations at various values of THI for a low-heritability 
trait such as CR, we chose to use a very large dataset. 
However, this required a reduction in the complexity of 
the model to reduce the computational burden. Specifi-
cally, we removed genetic-by-DIM interactions by using 
only PY records from the middle of the lactation (80–200 
DIM), which greatly simplified the model. This range of 
DIM presents highly correlated BV, with stable genetic 
variance [6, 23, 24]. However, due to the partial season-
ality of calving, many first calvings occurred in fall. For 
these lactations, PY performances recorded in summer 
were not included because they were later than 200 days 
in milk. Consequently, the average THIp for MON was 
lower than that observed in a previous analysis of MON 
PY [8]. In the current study, the proportion of PY data 
obtained under hot conditions (i.e., with THIp ≥ 70) rep-
resented only 1.2% (HOL) and 1.4% (MON) of the total. 
In spite of this, the amount of information was large 
enough to obtain accurate estimates. As shown in Fig. 2, 
the distribution of THI values in this study covered a 
large range from low to high, and accurately reflects the 
climatic variability in France. However, farmers tend to 
avoid breeding during the warm season, and as a result, 
the majority of the first services are planned in fall and 
winter. In the original data before filtering, 61% (HOL) 
and 67% (MON) of primiparous first services were per-
formed between October and March, meaning that 
only 0.7% (HOL) and 1.2% (MON) of the inseminations 

Fig. 8 Estimates of genetic correlations between conception rate 
and protein yield at a given temperature-humidity index (THIf = THIp) 
in Holstein (HOL) and Montbeliarde (MON) cows

Fig. 9 Estimates of genetic correlations between conception rate 
and protein yield with changing levels of temperature-humidity 
index for fertility (THIf ) and for five levels of temperature-humidity 
index for production (THIp). Results are given for Holstein (HOL, left) 
and Montbeliarde (MON, right)
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were recorded at THIf ≥ 70. Given this disparity, a very 
large dataset was needed to generate accurate estimates. 
Accordingly, to make model computation feasible, a sire 
model was used.

Genetic‑by‑THI interactions within trait
Conception rate
Under intermediate climate conditions (THI from 30 
to 60), estimates of the CR heritability were lower than 
0.025. These values are in agreement with the existing lit-
erature on fertility traits in dairy cattle, which commonly 
reports heritabilities between 0.01 and 0.05 for the two 
breeds studied here [13, 21, 28–36]. In earlier studies of 
fertility in French dairy cattle populations, Boichard et al. 
[13, 28] estimated the heritability of successful postpar-
tum insemination for HOL (0.013 to 0.022) and MON 
(0.011), and their values were close to our estimates at 
the intermediate THIf of 50 (0.024 for HOL and 0.014 for 
MON, Fig. 6). The estimates of additive genetic standard 
deviation (5 points) from that study were also similar to, 
although somewhat lower than, our results (7.7 points in 
HOL and 5.8 points in MON at THIf 50, Table  3). The 
estimates of CR heritability were higher at extreme values 
of THI, both high and low (up to 4% in HOL and 2.3% in 
MON). Generally, in studies on genetic-by-climate inter-
actions with random regression models or with multivar-
iate analyses of performance in various climate zones, a 
slight increase in the heritability of cow fertility traits is 
reported in warmer environments (e.g., calving interval 
[37]; conception rate at first service [21]; conception rate 
in second parity [40]; 25-d non-return rate at first service 
[38]; 90-d non-return rate at first service [34]). Brüge-
mann et al. [21] highlighted that, for random regression 
models with Legendre polynomials, this increase in her-
itabilities at extreme THI is observed regardless of the 
production system and THI period considered (before, 
after, or on the day of insemination). This increase in 
heritability with extreme THI might be explained by an 
enhanced genetic differentiation of functional traits in 
harsher environments [21], a phenomenon that has also 
been reported for udder health traits [8].

Our results did not support the existence of strong 
genetic-by-THI interactions for CR (Fig. 7). Some genetic 
correlations lower than 0.80 were observed between 
extreme and intermediate THI values; however, extreme 
THI values (i.e., lower than 21 or higher than 76) were 
scarce in our datasets (Fig.  2). Because of this under-
representation of extreme THI, we are unable to fully 
distinguish true genetic-by-environment interactions 
from border effects, a well-known drawback of ran-
dom regression models that is accentuated when data 
are scarce at boundaries [23]. Results from the litera-
ture on genetic-by-climate interactions for fertility traits 

are contradictory. High genetic correlations (i.e., higher 
than 0.78) between THI conditions have been observed 
for the 25-d non-return rate at first service ([38], in Aus-
tralian Holstein), days open ([39], in US Holstein), con-
ception rate ([40], in Japanese Holstein), and calving 
interval ([37], in Iranian Holstein). However, results for 
Brazilian Holsteins revealed stronger interactions [41]. 
In that study, the average genetic correlation between the 
non-return rate at 56  days at opposite extremes of the 
THI scale (THI 61 and 76) reached -0.12. Similarly high 
genetic x THI interactions were also found in Brazilian 
Nellore heifers [42] for reproductive traits.

Protein yield
All values of PY variance estimated in this study for the 
MON breed with a sire model were in agreement with 
previous estimates obtained for the same breed with a 
single-trait animal model [8]. Most of the differences 
observed in the present study compared to previous 
research can be explained by the size of our dataset or 
possibly by our use of a sire model. As expected, genetic 
variances were slightly larger for HOL than for MON 
due to a higher production level and scale effect. In line 
with the results of Carabaño et  al. [7], our heritability 
estimates tended to decrease with increasing tempera-
ture. However, overall, the results from the literature on 
variation in heritabilities for production traits are not 
completely consistent. In contrast to our findings, Agui-
lar et al. [43] and Ravagnolo and Misztal [44] highlighted 
an increase in the heritability of yields starting from THI 
72. Here, a slight rebound in PY heritability and genetic 
variance was also observed starting from THI 70 for 
HOL only (Figs. 3 and 6), but due to the lack of data at 
THI ≥ 70, this minor increase is most likely due to border 
effects.

Our estimates of additive genetic correlations for PY 
remained high across values of THI (Fig. 7), which con-
firms previous results obtained in MON and is consistent 
with the findings of Brügemann et  al. [6] and Cherui-
yot et al. [45]. However, when comparing extreme mean 
temperatures such as –1 and 34  °C, Carabaño et  al. [7] 
were able to detect much stronger interactions  (rg = 0.24). 
Although the temperature range in France is quite wide, 
a daily average temperature of 34  °C, with performance 
data recorded, is still rare. Based on the range of humid-
ity usually observed in France at high temperatures, such 
an extreme situation would correspond to a THI between 
80 and 89.

Evolution of the trade‑off between fertility and production 
with changing THI
In an intermediate-THI scenario (i.e., THI 50), the esti-
mated genetic correlations between CR and PY were only 
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mildly negative for HOL (−0.14 ± 0.02) and close to zero 
for MON (−0.03 ± 0.06, Fig. 8 and Table 5). These results 
are consistent with those of Kadarmideen et al. [32] and 
Sun et  al. [46], who observed little or no genetic corre-
lation between production and fertility. However, this 
lack of a trade-off between production and fertility is in 
conflict with what is generally found in high-producing 
dairy cows. Indeed, most studies have revealed an antag-
onism between CR or non-return rate and 305-d produc-
tion, with consistent results among milk, fat, or protein 
yields. The magnitude of this antagonism varies widely 
among reports, however, with values ranging from weak 
(less than −0.2 [32, 47]) or moderate (between −0.2 and 
−0.4 [14, 36]) to strong (up to −0.5 [15, 31]). It is impor-
tant to emphasize that the correlation with 305-d yields 
also reflects the depressive effect of gestation on persis-
tency in the last third of lactation; the true antagonism 
between fertility and production must be measured ear-
lier in the lactation. When genetic correlations are esti-
mated between CR or non-return rate and test-day milk 
yields, the results tend to be more stable, with low to 
moderate genetic correlations between fertility and pro-
duction (between −0.10 and −0.25 in [30, 35, 48]; up to 
−0.41 in [34]). In studies on French dairy cattle, Boichard 
et al. [13, 28] found a greater opposition between CR and 
PY (−0.25 to −0.36 for HOL and −0.35 for MON) than 
we did here, and an even greater opposition between CR 
and milk yield. Because their studies focused on produc-
tion at the beginning of the lactation (up to 100 days in 
milk), they suggested that these correlations reflected the 
influence of the energy balance of the cow. In the present 
study, only mid-lactation performances were consid-
ered, between 80 and 200 days in milk. At this lactation 
stage, the energy balance is no longer negative and PY is 
free from gestation effects, and the genetic correlation 
between PY and CR is therefore less unfavorable than in 
the first 100 days of lactation.

Using THI-dependent bivariate random regression 
models, it is possible to estimate the genetic correla-
tions between CR and PY for any combination of THIf 
and THIp, and thus to foresee the evolution of the cor-
relation between these two traits in forecasted warmer 
conditions. Although the magnitude of this evolution-
ary change is not strong, its direction differs for the two 
breeds studied: an increase is predicted for HOL (up to 
around  rg = −0.08 ± 0.04 at THI 70, Fig.  8 and Table  5), 
whereas a slight decrease is predicted for MON (around 
 rg = −0.16 ± 0.08 at THI 70, Fig. 8 and Table 5). While the 
results presented to date indicated a similar amount of 
genetic determinism in HOL and MON, this finding may 
suggest a slight divergence between these two breeds. 
This relatively small change in the genetic correlation 
between PY and CR with changing THI was unexpected, 

because a stronger antagonism was anticipated by many 
dairy cattle specialists. To our knowledge, no similar 
studies have yet been conducted and our results cannot 
be compared with data from the literature.

An illustration of the potential consequences of selec-
tion on PY under current conditions for CR in future 
environmental conditions is given in Fig.  9. A THIp 
equal to 50 is approximately the average THI value under 
current conditions (Table  1) and a frequent situation 
encountered by French dairy cattle (Fig. 2). Thus, it can be 
considered as the average meteorological condition of the 
current selection regime in France. In both breeds, ongo-
ing selection on PY was found to have a mildly negative 
effect on CR at THI 70. For MON, the current selection 
on PY may worsen the antagonism between the two traits 
in the future  (rg = −0.20 ± 0.08 vs −0.03 ± 0.06 today); 
instead, for HOL, the scenario would not be worse than 
at present. Indeed, the genetic correlation between PY at 
THIp 50 and CR at THIf 70  (rg = −0.18 ± 0.03) was only 
slightly different from the current situation  (rg between 
PY at THIp 50 and CR at THIf 50 = −0.14 ± 0.02).

Selection on heat tolerance
For CR in MON, the likely positive genetic correla-
tion between the breeding value at intermediate THI 
and the slope at high THI  (rg = 0.37 ± 0.38, Table 5) sug-
gests that cows that are already the poorest reproducers 
at THI 50 may experience even more difficulties under 
heat stress. The same phenomenon of amplified differ-
ences during heat stress was also observed for somatic 
cell score for MON [8]. However for HOL, this correla-
tion is, instead, close to zero. For this breed, the expected 
evolution (either an increase or decrease) in the ranking 
of animals exposed to a heat stress scenario is not cor-
related with the ranking at intermediate THI. These 
results differ from those in the available literature, which 
generally report negative genetic correlations between 
breeding values under normal climate conditions (i.e., 
no heat stress) and slope at high THI in US [34, 49], Ital-
ian [50], and Iranian Holsteins [51]. These correlations 
ranged from −0.25 to −0.95 depending on the trait (45-d, 
60-d, or 90-d non-return rates [34]); from −0.35 to −0.82 
according to parity [49]; from −0.35 to −0.45 also accord-
ing to the parity of the cow [50]; and from −0.18 to −0.47 
depending on the trait (CR or 45-d and 90-d non-return 
rates [51]). However, all of these previous estimates were 
obtained using broken line models, which is not the case 
in our analyses. The broken line model assumes the pres-
ence of a neutral zone in which THI has no effect, i.e., an 
intercept; beyond this neutral zone, the slope, i.e., the tol-
erance effect, is present. In a preliminary analysis of CR, 
we fitted such a broken line model to our HOL data, and, 
although the broken line model emphasized the slope 
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compared to the random regression model, the genetic 
correlations between intercept and slope remained close 
to zero. Ravagnolo and Misztal [34] observed slightly 
different results depending on whether this trait was 
evaluated with a single-trait model or combined with 
a production trait in a two-trait model. These authors 
hypothesized that analyses of the non-return rate with-
out the correlated production trait resulted in biased 
estimates [34]. Here, although, in a preliminary analysis 
of CR using random regression on THI and a single-trait 
model, we obtained results that were very close to those 
obtained with the two-trait model with PY (results not 
shown). Overall, in our study, estimates of the variance 
components of the fertility trait were not substantially 
affected by either the choice of the random regression 
model or by the joint analysis of fertility and production. 
This may explain the discrepancies we observed between 
our results and those reported in the literature.

With respect to the genetic correlation between the BV 
of PY at THI 50 and the slope at THI 70, although the 
relationship was negative in both breeds, it was much 
stronger for MON than for HOL (−0.37 ± 0.06 for HOL 
and −0.71 ± 0.09 for MON, Table  5). These findings are 
consistent with those reported by Ravagnolo and Misztal 
[34]  (rg = −0.45) and provide additional support to previ-
ous results obtained by our group for MON [8]. In our 
earlier study on production traits (as well as somatic cell 
score), we discussed whether the slope at high THI was 
a good predictor of heat tolerance in cows. Specifically, 
our question was whether a negative slope for PY at high 
THI actually reflects a lower tolerance to heat stress, or 
whether it simply reflects a self-protective mechanism 
to prioritize other functions. The moderate, but posi-
tive, genetic correlation between the PY and CR slopes 
at THI 70 for HOL  (rg = 0.24 ± 0.14, Table  5) suggests 
that the slope of production traits at high THI could be 
an indicator of heat tolerance. Since production traits are 
more heritable and more intensively recorded than fertil-
ity traits, the inclusion of this slope for production traits 
(with or without that for CR) in breeding goals may be 
effective in improving overall heat tolerance in dairy cat-
tle without compromising reproductive capacity at high 
temperatures. With their THI-dependent, two-trait, and 
broken line model, Ravagnolo and Misztal [34] estimated 
a genetic correlation close to zero between the two traits 
of heat tolerance (i.e., slopes for both 90-d non-return 
rate and milk yield), and they concluded that the meta-
bolic and physiological processes that are responsible for 
heat tolerance are different for milk and reproduction 
traits. Our estimates of the genetic correlations between 
PY and CR slopes in a heat stress scenario (THI 70) were 
positive but still quite moderate. Therefore, selection for 
heat tolerance using the PY slope may not necessarily 

select for the same physiological processes as would 
selection based on the CR slope. Nevertheless, the results 
of this study suggest that these two heat tolerance traits 
are not antagonistic.

The use of THI-dependent bivariate random regres-
sion models can also provide information on what the 
consequences of the current selection program might 
be for PY and CR in future THI conditions. The perfor-
mance of PY at THI 50 presented a negative genetic cor-
relation with that of CR at THI 70, i.e., in the forecasted 
warmer future conditions  (rg = −0.2 for both breeds, 
Fig.  9 and Table  5). Likewise, the BV of PY at THI 50 
were also negatively correlated with the slopes for CR at 
THI 70  (rg = −0.15 ± 0.08 for HOL and −0.54 ± 0.35 for 
MON, Table  5). These genetic correlations suggest that 
the current selection for PY may have a negative impact 
on future CR, but probably not much more than in cur-
rent conditions (especially for HOL). Conversely, the 
current selection regime for CR would have no effect on 
PY in the warmer conditions of the future  (rg = −0.06 for 
HOL and  rg = 0.01, for MON, Table 5), and a minor posi-
tive impact on the slope of PY in a heat stress scenario 
 (rg = 0.33 ± 0.06 for HOL and  rg = 0.20 ± 0.13 for MON, 
Table  5). Furthermore, due to the high values observed 
for the genetic correlations between the BV of PY across 
the gradient of THI  (rg > 0.95 for the two breeds, Fig. 7), 
it seems that the current selection for PY would be able 
to select for animals with high BV for PY over the whole 
THI gradient, including the THI values associated with 
a heat stress scenario. However, these animals will still 
be more sensitive to heat stress with respect to both PY 
and CR. Overall, our study indicated that both PY and 
CR are negatively affected by increasing values of THI, 
which highlights the importance of selecting for greater 
heat tolerance. Such efforts must be designed to take the 
evolution of both production and functional traits under 
heat stress conditions into account.

Conclusions
The aim of this study was to predict the evolution of 
fertility in Holstein and Montbeliarde females and to 
identify relevant traits for selection in the context of cli-
mate change. Our results revealed that, for PY, genetic 
variance and heritability decreased with increasing THI; 
instead, the opposite pattern was observed for CR, indi-
cating that adverse conditions are potentially favorable 
to the genetic expression of reproductive traits. When 
PY was measured in mid-lactation, i.e. when its genetic 
determinism is stable and cows are in a situation of neu-
tral energy balance, its antagonism with CR was lower 
than usually assumed. Surprisingly, this genetic correla-
tion remained more or less stable, between 0 and -0.2, 
in all THI conditions, with slight differences between 



Page 14 of 15Vinet et al. Genetics Selection Evolution           (2024) 56:23 

breeds. In MON, the genetic correlations between trait 
levels under current conditions and slopes at high THI 
were strongly negative for PY and rather positive for CR. 
Therefore, in this breed, the cows with the best CR in 
current conditions would be among those with CR that 
would be the least affected by heat stress in future condi-
tions. The correlations between PY and CR slopes tended 
to be positive, indicating that the response to heat stress 
could affect both traits similarly. These slopes can there-
fore be interpreted as indicators of adaptation, even if 
their variability is limited.
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