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Abstract 

Background With the introduction of digital phenotyping and high‑throughput data, traits that were previously 
difficult or impossible to measure directly have become easily accessible, offering the opportunity to enhance 
the efficiency and rate of genetic gain in animal production. It is of interest to assess how behavioral traits are 
indirectly related to the production traits during the performance testing period. The aim of this study was to assess 
the quality of behavior data extracted from day‑wise video recordings and estimate the genetic parameters 
of behavior traits and their phenotypic and genetic correlations with production traits in pigs. Behavior was recorded 
for 70 days after on‑test at about 10 weeks of age and ended at off‑test for 2008 female purebred pigs, totaling 
119,812 day‑wise records. Behavior traits included time spent eating, drinking, laterally lying, sternally lying, 
sitting, standing, and meters of distance traveled. A quality control procedure was created for algorithm training 
and adjustment, standardizing recording hours, removing culled animals, and filtering unrealistic records.

Results Production traits included average daily gain (ADG), back fat thickness (BF), and loin depth (LD). Single‑
trait linear models were used to estimate heritabilities of the behavior traits and two‑trait linear models were used 
to estimate genetic correlations between behavior and production traits. The results indicated that all behavior 
traits are heritable, with heritability estimates ranging from 0.19 to 0.57, and showed low‑to‑moderate phenotypic 
and genetic correlations with production traits. Two‑trait linear models were also used to compare traits at different 
intervals of the recording period. To analyze the redundancies in behavior data during the recording period, 
the averages of various recording time intervals for the behavior and production traits were compared. Overall, 
the average of the 55‑ to 68‑day recording interval had the strongest phenotypic and genetic correlation estimates 
with the production traits.

Conclusions Digital phenotyping is a new and low‑cost method to record behavior phenotypes, but thorough 
data cleaning procedures are needed. Evaluating behavioral traits at different time intervals offers a deeper insight 
into their changes throughout the growth periods and their relationship with production traits, which may be 
recorded at a less frequent basis.

Background
High-throughput phenotyping, digital data recording, 
and novel traits have recently become topics of interest 
in animal production. With advancements in technology, 
phenotypes can be collected with higher accuracy, in 
greater quantities, and new traits that are difficult or 
impossible to measure directly can be captured [1]. 
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Applications include sensors, wearable technology, 
imaging, video, and audio recording to assess body 
temperature [2], stress [3], disease [4, 5], behavior [6], or 
overall health [7, 8].

In pork production, meat quality and quantity are 
economically relevant traits that are under genetic or 
genomic selection. Determining the meat characteristics 
of an animal may not be possible until the peak of 
production age or slaughter [9]. If a trait that can be 
measured early in an animal’s life is indicative of later 
production traits, it allows for earlier selection and 
culling decisions, which can reduce the generation 
interval. In addition, incorporating phenotypes from 
progeny at the multiplication or commercial level would 
benefit nucleus level parents and enhance accuracy of 
the genomic estimated breeding values (GEBV) of the 
elite animals. As collecting phenotypes can be costly 
and labor-intensive, automated data collection via digital 
phenotyping could increase data collection at a low cost 
and with more precision than human labor [10, 11]. Traits 
that are of interest to capture using digital phenotyping 
are those that are heritable and that are genetically 
related to, or that affect an animal’s economically relevant 
production traits.

Animal behavior is one example of such a trait but 
recording behavior using cameras is challenging due 
to the difficulty in identifying individual animals. 
Technologies to obtain automated long-term 
individualized behavior data include the use of radio 
frequency identification (RFID) [12], ultra-wideband 
[13], and visual fingerprinting [14] for animal recognition 
in a pen. However, these methods are fundamentally 
limited in spatial resolution (RFID and ultra-wideband) 
and reliability (visual fingerprinting). An alternative 
approach that provides reliable identification relies on 
industry-standard ear tags, albeit intermittently, i.e. when 
the ear tag is exposed to the camera [15]. Regardless of 
which method is used, thorough data cleaning is always 
necessary to ensure that the information captured is 
realistic and accurate.

Behavior traits that are genetically correlated to 
production traits can be used for genetic improvement, 
including activity levels [16], eating patterns [17], and 
management refinement [18]. The goal of this study 
was to create a data quality control procedure and 
investigate behavior traits that can be captured by 
digital phenotyping and their phenotypic and genetic 
correlations with production traits.

Methods
Dataset
The data were provided by PIC (Genus Company, 
Hendersonville, TN) and included 119,812  day-wise 

behavior records for 2008 pigs collected between August 
26, 2021, and May 23, 2023. All animals were housed on 
the same farm and belonged to two lines of purebred 
pigs. Digital behavior phenotypes were extracted from 
video recordings and included the daily cumulative 
time each animal spent eating, drinking, lying laterally, 
lying sternally, sitting, and standing, and the distance 
traveled. Whereas, standing refers to the raised position 
which also includes walking or running. The recording 
period began after the on-test, at about 10  weeks of 
age, and ended at off-test, for 70 recording days. There 
were 12 cameras that recorded 14  h per day (5:00  a.m. 
to 7:00  p.m.), with one camera per pen and two pens 
per room had cameras. The two cameras in the same 
room recorded simultaneously throughout the recording 
period. The recording group was defined as the animals 
under the same camera with the same recording start 
date.

All video was processed by a multi-object tracking 
algorithm to extract individualized activity data. The 
first stage of processing consisted of detecting individual 
pigs using a customized version of the DeepCut pose 
estimation algorithm [19] that detects mid-points, 
snouts, and right ear tag locations and associated 
these with individuals. For each detected midpoint, a 
convolutional neural network (CNN) also estimated 
the posture of the pig and whether the pig was eating. 
Snout locations were used to limit the possible locations 
where eating can take place and to estimate drinking 
activities based on proximity to the feeder and waterer, 
respectively.

Once detected, each pig was tracked using Hungarian 
matching [20] to follow detected pigs from one frame 
to the next, with pigs that were not detected assumed 
to “stay put” in their previous locations. The most 
challenging aspect of reliable tracking is maintaining 
identity, for which a custom ear tag reading method 
developed by PIC was used [15]. This method allows 
tags to be read at low resolution with challenging 
perspectives, motion blur, noise, and shadows.

Of the 2008 animals with digital behavior records, 
1705 had production trait records. The production traits 
included average daily gain (ADG), back fat thickness 
(BF), loin depth (LD). All production traits were captured 
at off-test, at about 20 weeks of age, i.e. at the end of the 
recording period.

To validate the system’s accuracy in determining 
location, posture, and identification, a trial with 36 
randomly selected pigs was conducted (six from each of 
six pens, with each pen housing 19 pigs). These pigs were 
distinctly marked for easy identification in video footage. 
Across 5  days, 330 annotated images were produced by 
the tracking algorithm to highlight each pig’s location, 
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posture, and ear tag identification. The cross-checker 
was tasked with first identifying the pig with specific 
paint markings in the image. If the pig could not be 
reliably identified, this image was not included in the 
analysis. If it could be identified with high confidence, 
its identity was compared to the known identity from 
the table of paint-ID correspondences. Its posture and 
eating/drinking status were also manually recorded and 
compared to the automated activity detections. Overall, 
the pigs of interest were all identified in more than 95% 
of the images and used to evaluate accuracy. Preliminary 
validation metrics precision, recall, and F1-score 
indicated an accuracy of correctly annotating location, 
posture, and identity greater than 97% [21].

Data cleaning procedure
Since digital phenotyping is a recently developed and 
evolving data collection technique, quality control 
efforts are needed. After analyzing the data patterns, 
several observations were made that suggested that, 
under certain conditions, the data may not be reliable. 
As the equipment was set-up and calibrated, and the 
farm standard operating procedures and data-extracting 
algorithms were being created and adjusted, a “learning 
period” was designated. The “learning period” spanned 
from the beginning of the recording period, August 21, 
2021, to March 17, 2022, and the data collected during 
this period were discarded from the analyses. After the 
learning period, the average recording time per day by 
each camera became more consistent, and the start and 
end dates for each 70-day recording group became more 
cyclic than before the learning period.

The data for each pig and each day were summarized 
into cumulative time spent in each behavior, position, 
or distance traveled over a 14-h period. Therefore, days 
with less than 8 h of recording time were removed as this 
is not representative of the behavior for the total 14  h. 
Days with less than 14 h and more than 8 h of recording 
time were scaled up to 14 h by dividing the daily record 
by the number of recording hours and multiplying by 
14. The data for culled animals on the day they were 
extracted from the pen were removed, as the time when 
an animal was extracted from the pen was not available, 
so it is not known how many hours to account for the 
culled animal’s activity for that day. The start and end 
days of the recording period were also removed from the 
analyses due to the lack of the full 14 recording hours and 
disruptions from loading and unloading the animals.

After further examination of the data, some records for 
distance traveled were biologically impossible compared 
to the time spent standing. For example, one animal 
stood for only three min and was recorded to have 
traveled 600  m. After investigation, it was determined 

that the data-extracting algorithm accumulated meters 
traveled if the animal was rotating while in a sitting 
position. To account for this, the daily distance data 
were truncated to 15  m per min standing, and all daily 
records that exceeded this ratio were discarded. The data 
extracting algorithm will be modified for future studies 
to prevent recording distance while the animal is in the 
sitting position.

After data cleaning, 77,423 daily records from 1327 
animals remained. The average eating time, distance, 
and recording time per day after the learning period 
and following data cleaning are shown in Fig.  1a–c, 
and the summary statistics for the behavior traits are 
in Table 1. Since the data in Fig. 1a–c are averaged over 
the recording days, they include animals of various ages 
and at different stages of the recording period. The peak 
shown in the average eating time is because, at that time, 
only young pigs were recorded and they spend more 
time at the feeder than older pigs. It should be noted that 
the drinking time behavior measures time spent at the 
waterer, not the amount of water consumed.

Only animals with off-test production records were 
used to estimate genetic parameters, which included 
71,999 daily behavior records from 1079 animals, among 
which 563 were of one line and 516 were of a different 
line. Summary statistics for the production traits of these 
animals are in Table 2.

Models and statistical analyses
Variance components were estimated using the blupf90+ 
program [22, 23] that applies a single-trait and a two-
trait linear model. The equation for all models can be 
expressed as:

where y is the vector of phenotypes, β is the vector of 
the fixed line effects, u , l , and c are random vectors 
of additive genetic, common litter, and contemporary 
group effects, respectively. Contemporary groups were 
represented by off-test day and year. A pen or camera 
effect was not included in the model because it was 
confounded with the litter effect. Elements of y are 
related to elements u , l , and c by incidence matrices Z , 
W1 , and W2 , respectively, and e is a random vector of 
residuals. For single-trait models, the covariance matrices 
were assumed to be:

y = Xβ+ Zu +W1l +W2c+ e,
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where A is the numerator relationship matrix, I is the 
identity matrix, and σ2u , σ2

l
 , σ2c , and σ2e are variances for 

the additive genetic, common litter, contemporary group, 
and residual effects, respectively.

For two-trait models, the vectors u , l , and c , and e 
were assumed to be distributed as multivariate normal 
with mean zero and the following covariance structure:

where G is the additive genetic (co)variance matrix 
between the two traits, L is the common litter (co)
variance matrix, C is the contemporary group (co)
variance matrix, and R is the residual (co)variance 
matrix. Single-trait models were used for heritability 
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Fig. 1 Average eating, distance, and recording time per group over time. a Average eating time in min, b Average distance in m and c Average 
recording time in h
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estimation for the behavior traits. Two-trait models 
were used to analyze the relationship between behavior 
and production traits and to determine the redundancy 
in the 70 recording days by splitting the recording time 
into separate periods and determining the relationship 
of behavior traits in each period with those for the full 
recording time or with a production trait.

Results and discussion
Behavior trends
All results shown are with data after the learning period 
and cleaning. Trends in average behavior and posture 
over the recording period based on the clean data for 
animals with off-test records are shown in Fig.  2a and 
b. The data showed a decreasing pattern for eating time, 
distance traveled, and standing time as the pigs aged. 
These trends agree with Hyun and Ellis [24], who showed 
that younger pigs eat more meals per day and eat less 
per meal than older pigs. A slight increasing pattern was 
seen for time lying laterally and sternally as pigs aged. 
Figure  3 shows the average eating time per recording 
group over the recording period, where each line is a 
unique recording group. The substantial variation in 
behavior between recording groups is shown as in eating 
time trends in Fig.  3. Therefore, it is important to have 
an adequate data cleaning procedure and statistical 
model to separate genuine variation between groups 
from noise. We also observed that the pigs spent more 
time lying laterally and less time lying sternally in the 

warmer months than in the cooler months, which agrees 
with studies from Ekkel et al. [25] and Huynh et al. [26]. 
The trends of the average lateral lying time, sternal lying 
time, and temperature over the recording date are shown 
in Fig. 4. The temperature data were retrieved from the 
NASA POWER website (https:// power. larc. nasa. gov/ 
data- access- viewer/) using the longitude and latitude 
coordinates of the farm and reflect the average outside air 
temperature at a height of two meters. Similarly, Aarnink 
et al. [27] found that the relative number of pigs that lay 
laterally increased by 1.8% for each degree Celsius rise in 
temperature. There was no pattern seen for drinking time 
as the pigs aged.

Behavior trait heritabilities and correlations
Table  3 shows estimates of phenotypic and genetic 
correlations, and of heritabilities. Eating time had the 
highest heritability estimate among the behavior traits, at 
0.57, with a standard error of 0.12. The behavior trait with 
the lowest heritability estimate was laterally lying at 0.19, 
with a standard error of 0.07. The standard errors of the 
heritability estimates of the behavior traits were sizeable, 
ranging from 0.07 to 0.13, likely observed due to the small 
size of the dataset and the lack of multiple generations 
with records. The behavior traits with the strongest 
phenotypic correlation estimates were standing time 
and distance (0.67) and laterally lying time and sternally 
lying time (− 0.82). The same trait combinations had the 
strongest genetic correlation estimates, i.e. 0.93 ± 0.03 for 
standing time and distance and − 0.84 ± 0.04 for laterally 
lying time and sternally lying time. These estimates are 
expected, as generally, the animals are in a standing 
position while mobile and may prefer one lying position 
over the other, especially if the 70 days of recording time 
is during consistently hot or cold weather.

Redundancy in recording time
To determine whether all 70  days of recording time 
were necessary, we analyzed phenotypic correlations of 
daily and weekly intervals for the same trait and fitted 
two-trait models with a time interval of a behavior trait 
as one trait and either the total average of the behavior 
trait or a production trait as the second trait. In general, 
estimates of phenotypic correlations between daily and 
weekly intervals of the same trait became stronger as 
the recording time progressed and were stronger closer 
to the end of the recording period compared to the 
beginning. This suggests that the animals behaved more 
similarly as they aged and adapted to their environment, 
which infers redundant information. For example, 
Fig. 5a and b show estimates of phenotypic correlations 
between daily and weekly averages for distance traveled; 
the correlation for weeks 1 and 2 was 0.68, while the 

Table 1 Summary statistics for digital behavior traits after data 
cleaning

Traits recorded in time are shown in min

SD standard deviation

Trait Mean Median SD Min Max

Eating time 56.41 54.41 19.55 0.00 165.96

Drinking time 7.25 6.36 4.51 0.0 84.65

Laterally lying time 287.52 285.45 90.81 6.06 718.70

Sternally lying time 359.12 358.20 73.59 79.84 716.75

Sitting time 22.97 18.06 18.13 0.00 260.19

Standing time 170.28 168.60 52.21 0.00 611.34

Distance (m) 872.55 827.31 357.47 0.00 3589.54

Table 2 Summary statistics for production traits

ADG average daily gain, BF back fat thickness, LD loin depth, SD standard 
deviation

Trait Mean Median SD Min Max

ADG, g 710.59 710.77 63.98 510.90 934.00

BF, mm 8.33 8.00 2.30 4.58 17.12

LD, mm 66.34 66.10 5.40 51.50 83.10

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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correlation for weeks 8 and 9 was 0.82. Days closer to 
the end of the recording period had stronger correlations 
than days at the beginning of the recording period. Thus, 
not all 70 recording days are needed to capture the 
behavior of the animals or to associate the production 
traits with behaviors.

For the two-trait models, the behavior traits were 
split into five intervals: days 1–13, 14–26, 27–40, 
41–54, and 55–68. Estimates of phenotypic and genetic 

correlations were compared between the two traits and 
are shown in Figs. 6a and b and 7a and b, respectively. 
For all traits, generally, the middle intervals had 
higher correlations with the total average compared 
to intervals at the beginning and end of the recording 
time, and estimates of genetic correlations were 
higher than estimates of phenotypic correlations. For 
phenotypic and genetic correlations between intervals 
and total recording period average, eating time had the 

Fig. 2 Average behavior and posture trends per individual over time. Eating time, drinking time, laterally lying, standing, and sternally lying are 
shown in h. Sitting is shown in min and distance is shown in m. a Behavior trends and b Posture trends
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Fig. 3 Average eating time per group over time

Fig. 4 Average lateral lying time, sternal lying time, and temperature over time. The temperature data were obtained from the NASA POWER 
website (https:// power. larc. nasa. gov/ data‑ access‑ viewer/) using the longitude and latitude coordinates of the farm and were the average air 
temperatures at a height of two m above the surface of the earth

https://power.larc.nasa.gov/data-access-viewer/
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lowest phenotypic correlation estimate, at 0.73 for the 
1- to 13-day interval, and the lowest genetic correlation 
estimate at 0.95 for the 55-to 68-day interval, 
respectively. The highest phenotypic correlations were 
0.94, for laterally lying and sternally lying, and sitting 
for the 27- to 40-day interval and 0.94 for sitting for the 
41-to 54-day interval. The highest genetic correlation 
estimates were 1.00 for laterally lying, sternally lying, 
sitting, and standing for the 27- to 40-day interval, 1.00 
for laterally lying, sternally lying, and drinking time for 
the 41- to 54-day interval, and 1.00 for sitting for the 
55- to 68-day interval.

A genetic correlation of 1.00 indicates that the 
two traits have the same genetic basis. Therefore, 
if recording is to capture the average behavior of 
the animals from the on-test period until the off-
test period, then the same information, or the most 
informative data, can be captured during days 27–40 
of this period, as this interval has a 1.00 genetic 
correlation with the total average of the recording 
period. As storing videos is very costly, recording for 
the entire 70  days is not necessary, as the behavior 
of the animal becomes redundant, and the overall 
behavior patterns can be captured in a span of 2 weeks. 
The closer the genetic correlations are to 0, the weaker 
the relationship between the two traits, indicating that 
the traits give different genetic information.

Relationships between behavior and production traits
The purpose of this study was to determine if a 
relationship exists between an animal’s behavior and 
its production performance. If a sufficiently strong 
relationship exists, the behavior data could predict the 
production trait phenotypes before the animal’s off-test. 
Two-trait models were fit to estimate the relationship 
between behavior traits and production traits. To 
determine if the behavior during a specific time span in 
the recording period had a stronger relationship with 
the production traits than the average behavior trait 
for the entire period, behavior traits measured over 
five recording intervals were analyzed also in two-trait 
models with production traits.

The strongest positive genetic and phenotypic 
correlations between average behavior across the full 
recording period and production traits were estimated 
for lateral lying time and ADG (0.50 ± 0.18) and sternal 
lying time and LD (0.29), respectively (Fig. 8a–c). The 
strongest negative genetic and phenotypic correlations 
were estimated between distance and ADG 
(− 0.57 ± 0.10 and -0.30, respectively). The strongest 
positive genetic correlation between average behavior 
traits for the five time periods and production traits 
was estimated between the average lateral lying time 
for the 55–68-day interval and ADG (0.55 ± 0.19). 
The strongest negative genetic correlation was 

Fig. 5 Estimates of phenotypic correlations of average daily and weekly distance traveled. The data used are from the dataset after the data 
cleaning procedure and for animals with off‑test records. a Average daily distance traveled and b Average weekly distance traveled
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estimated between average distance for the 55–68-
day interval and ADG (− 0.70 ± 0.11). Intuitively, 
time spent lying and distance traveled are expected 
to have the strongest genetic correlations with ADG, 
as an animal that expends less energy is expected to 
grow faster. Obermier et  al. [16] also found that pigs 
that spent more time lying and that were less active 
had higher growth rates and greater body weight at a 

given age. Sitting time was the behavior trait that was 
estimated to be least phenotypically and genetically 
correlated with all production traits, while distance 
was estimated to be the most correlated. As eating and 
drinking time only consider the amount of time spent 
at the feeder and waterer and not the quantity of feed 
or water consumed, it is expected that these traits are 
not strongly correlated with the production traits. 

Fig. 6 Estimates of phenotypic correlations between the total average and the average of each recording time interval for each behavior trait. All 
traits are expressed in min, expect for distance which is expressed in m. a Traits: distance traveled, drinking time, eating time and b Traits: laterally 
lying time, sternally lying time, sitting time, standing time
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The period with the strongest genetic correlations 
between behavior and production traits was the 
55–68-day interval, and the period with the weakest 
correlations was the 27–40-day interval. Therefore, the 
last 2 to 3  weeks before off-test can best capture the 
relationship between behavior and production traits.

Conclusions
Digital phenotyping for behavior traits recorded 
at an individual level provides an opportunity to 
further understand the association between behavior 
and production performance. Although behavior 
and production traits are not highly correlated, 

Fig. 7 Estimates of genetic correlations (standard errors) between the total average and the average of each recording time interval for each 
behavior trait. All traits are expressed in min, expect for distance which is expressed in m. a Traits: distance traveled, drinking time, eating time and b 
traits: laterally lying time, sternally lying time, sitting time, standing time
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Fig. 8 Estimates of genetic correlations (standard errors) between production traits, and time intervals or total averages of each behavior trait. 
The cells with green circles denote a positive correlation, whereas the cells with red circles denote a negative correlation and the size of the circle 
indicates the strength of the correlation. The cells without color indicate a range of genetic correlations that passed through 0.0 when the standard 
error was considered. a ADG, b BF and c LD
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this study introduces the possibility of capturing 
behavior information and its potential association 
with production. Obtaining additional information 
on breeding candidates can increase accuracy of (G)
EBV, leading to greater genetic improvement. The link 
between digital behavior data and economically relevant 
production traits is of interest, and digital phenotyping 
is a low-cost method to obtain this information on 
performance. High-throughput phenotyping is a new 
method for data collection; therefore, extensive quality 
control measures are needed before implementing the 
results into evaluations. The results of this study suggest 
that some pig behaviors, such as standing time, distance 
traveled, and laterally laying time, are phenotypically 
and genetically associated with ADG, BF, and LD. The 
behavior of animals 2 to 3  weeks before the off-test 
date had the strongest genetic correlations with the 
production traits. Digital phenotyping is promising for 
enhancing the efficiency, profitability, and rate of genetic 
gain in pig production.
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