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Abstract 

Background  Female fertility is an important trait in dairy cattle. Identifying putative causal variants associated 
with fertility may help to improve the accuracy of genomic prediction of fertility. Combining expression data (eQTL) 
of genes, exons, gene splicing and allele specific expression is a promising approach to fine map QTL to get closer 
to the causal mutations. Another approach is to identify genomic differences between cows selected for high and low 
fertility and a selection experiment in New Zealand has created exactly this resource. Our objective was to com-
bine multiple types of expression data, fertility traits and allele frequency in high- (POS) and low-fertility (NEG) cows 
with a genome-wide association study (GWAS) on calving interval in Australian cows to fine-map QTL associated 
with fertility in both Australia and New Zealand dairy cattle populations.

Results  Variants that were significantly associated with calving interval (CI) were strongly enriched for variants 
associated with gene, exon, gene splicing and allele-specific expression, indicating that there is substantial over-
lap between QTL associated with CI and eQTL. We identified 671 genes with significant differential expression 
between POS and NEG cows, with the largest fold change detected for the CCDC196 gene on chromosome 10. Our 
results provide numerous candidate genes associated with female fertility in dairy cattle, including GYS2 and TIGAR​ 
on chromosome 5 and SYT3 and HSD17B14 on chromosome 18. Multiple QTL regions were located in regions 
with large numbers of copy number variants (CNV). To identify the causal mutations for these variants, long read 
sequencing may be useful.

Conclusions  Variants that were significantly associated with CI were highly enriched for eQTL. We detected 671 
genes that were differentially expressed between POS and NEG cows. Several QTL detected for CI overlapped 
with eQTL, providing candidate genes for fertility in dairy cattle.

Background
Female fertility is an important trait in dairy cattle. In 
the recent past, fertility had declined because of its 
unfavourable genetic correlation with milk produc-
tion [1, 2]. The inclusion of fertility in selection indices 
has now reversed this trend [3, 4]. However, further 
improvements in fertility traits are desirable [4, 5]. 
Including sequence variants that are causal variants for 
fertility traits, or close to them, can help to improve the 
accuracy of genomic prediction [6, 7]. However, the low 
heritability and polygenic nature of many fertility traits 
reduce the power to detect variants that are associated 
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with quantitative trait loci (QTL) [4] and that  can be 
used as prediction markers. Furthermore, to improve 
prediction accuracy in multiple populations, predic-
tion markers need to be close to the causal mutations 
[8]. While various QTL have been detected for a range 
of fertility traits [9–11], identifying causal mutations 
is more challenging. Recently, Lee et  al. [12] com-
bined genome-wide association studies (GWAS) with 
gene expression data to identify a copy number vari-
ant (CNV) on chromosome 6 that is likely the causal 
mutation underlying a QTL associated with mastitis 
resistance, calving interval (CI) and milk yield. Simi-
larly, Littlejohn et al. [13] used gene expression data to 
fine-map a QTL associated with milk production traits, 
implicating MGST1 as the causal gene and identify-
ing candidate causal variants for this QTL. Xiang et al. 
[14] reported an eQTL within the IRAG1 gene at a site 
that is conserved across 100 vertebrates and could be a 
potential causal mutation for birth size via its effect on 
lipidomics. Hence, using expression data is a promising 
approach to fine-map QTL and get closer to the causal 
mutations.

Another approach consists in identifying differences 
between cows that are genetically divergent for fertil-
ity. Meier et al. [15, 16] selected two divergent lines of 
cows based on their genetic merit for fertility, resulting 
in a 10-percentage point divergence in the New Zea-
land fertility breeding value between positive (POS) 
and negative (NEG) groups. Several studies [15–18] 
have reported differences in various traits between 
these two groups, including age at puberty, pregnancy 
rate, uterine health, interval from calving to ovulation, 
submission rate, adaptive immune response ranking 
and peripartum metabolic status. Identifying genetic 
variants that cause differences between these high and 
low-fertility cows may aid the identification of causal 
mutations for fertility. For example, Juengel et  al. [19] 
reported that a missense variant in the HSD17B12 gene 
on chromosome 15 was associated with an earlier sub-
mission rate for seasonal breeding in these POS and 
NEG cows.

The breeding objective for fertility in Australia is 
obtained using a multi-trait model that includes CI, lac-
tation length, calving to first service, pregnancy at the 
end of the mating season and first-service non-return 
rate [20]. Among these traits, CI has the largest number 
of records, with more than 16 million records included 
in routine genetic evaluations by DataGene (personal 
communication, Gert Nieuwhof). Hence, CI has the 
greatest power for a GWAS. Our objective was to com-
bine expression data, fertility phenotypes and allele fre-
quencies in the POS and NEG cows with a GWAS on CI 
in Australia to fine-map QTL that are associated with 

fertility in both Australia and New Zealand dairy cattle 
populations.

Methods
Data
We used data from both Australian (AUS) and New 
Zealand (NZ) dairy cattle. Figure  1 summarises all data 
sources and analyses. The AUS data included 41,734 
Holstein cows, 5631 Holstein bulls, 8688 Jersey cows, 
1369 Jersey bulls and 2973 Australian Red cows that had 
imputed whole-genome sequence and (daughter) trait 
deviations [21] for CI. The NZ data consisted of 365 
Holstein–Friesian cows with imputed whole-genome 
sequence data, liver biopsies taken on day 7 post-calving, 
as well as a range of fertility traits measured on heif-
ers and during the first two lactations. Meier et  al. [15] 
described the NZ selection experiment that resulted 
in cows with a New Zealand fertility breeding value 
of + 5.0% and −  5.1%, respectively, corresponding to a 
difference of about 10% in the proportion of cows calved 
within the first six weeks of the seasonal calving period. 
A number of fertility traits was measured on these cows. 
For our analyses, we used traits measured on heifers, and 
traits measured during the first two lactations. Heifer 
traits were: age at puberty (agepub, d); submission rate 
at 3  weeks (sm3wk, binary); submission rate at 6  weeks 
(sm6wk, binary); pregnancy at 3 weeks (co3wk, binary); 
pregnancy at 6  weeks (co6wk, binary); time from the 
planned start of mating to first mating (tstai1, d); and 
time from planned start of mating to conception (tst-
conc, d), in a seasonally concentrated natural mating sys-
tem between October 4 2016 and January 10 2017. Traits 
measured during the first and second lactation were: 
co3wk; co6wk; pregnancy at 9  weeks (co9wk, binary); 
pregnancy at 12  weeks (co12wk, binary); postpartum 
anovulatory interval determined from twice weekly 
skim milk progesterone concentrations, using a cut-off 
of 0.55  µg/mL (ppai, d); ppai censored, where ppai was 
coded as 1 if ppai was reached by the end of sampling, 
and 1 otherwise, (ppaicens, binary); final pregnancy at 
the end of the breeding period (preg, binary); sm3wk; 
sm6wk; tstai1; tstconc; time from calving to first insemi-
nation (ttai1, d); time from calving to conception (ttconc, 
d); and time from calving to conception censored, coded 
as 0 for cows that conceived before the end of sampling, 
and 1 otherwise (conccens, binary). During lactations 1 
and 2, cows were managed in a seasonally concentrated 
breeding system with artificial insemination at 98 and 
76 days, respectively. Not all cows had records for all fer-
tility phenotypes (see Additional file  1: Table  S1). Cows 
that were not pregnant after six weeks of mating were 
synchronised as described by Meier et al. [16]. Based on 
the New Zealand fertility breeding value and sm6wk, the 
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cows were further split into three groups: 197 cows with 
a New Zealand fertility breeding value of + 5.0% (POS), 
91 cows with a New Zealand fertility breeding value of 
-5.1% that conceived after six weeks, and 77 cows with a 
New Zealand fertility breeding value of −  5.1% that did 
not conceive after six weeks (NEG). All procedures had 
prior approval from the Ruakura Animal Ethics commit-
tee (#13574 & #14200; Hamilton, New Zealand).

Genotypes
The AUS animals were genotyped with a range of single 
nucleotide polymorphism (SNP) panels, including vari-
ous low-density SNP panels, the Illumina Bovine 50K 
panel (50K) and the Illumina high-density panel (HD). 
The NZ cows were all genotyped with the GeneSeek 
Genomic Profiler Bovine 100K BeadChip. Individu-
als and variants for which the GeneCall score was lower 
than 0.6 for more than 10% of the genotype calls were 
discarded, and the remaining genotypes with a GenCall 
score lower than 0.6 were set to missing. All genotypes 
were mapped to the ARS-UCD1.2 reference genome 
[22]. The AUS animals genotyped at a low density were 
imputed to the 50K panel using the Fimpute v.3 software 
[23] and a reference population containing 14,722 Hol-
stein, Jersey and Australian Red cattle. Subsequently, the 
AUS animals were imputed from 50K to HD using Fim-
pute v.3 [23] with a reference population of 2700 animals, 

and the NZ animal genotypes were also imputed to the 
HD panel. Finally, both the AUS and NZ animal HD 
genotypes were converted to forward sequence format, 
phased using the Eagle v.2.4.1 software [24], and imputed 
up to whole-genome sequence with the Minimac 4 soft-
ware using default settings [25]. The reference population 
for whole-genome sequence imputation contained 4190 
Bos taurus cattle that were present in Run8 of the 1000 
Bull Genomes Project [26, 27]. After filtering out vari-
ants with a Minimac r2 < 0.40, a minor allele frequency 
(MAF) < 0.005 in the AUS and < 0.01 in the NZ animals, 
18,247,274 and 14,320,715 sequence variants remained in 
the AUS and NZ datasets, respectively. For our analyses, 
we used 13,710,843 variants that overlapped between the 
AUS and NZ datasets. We used a more stringent MAF 
filter for the NZ than the AUS data because of the differ-
ence in sample size.

Expression phenotypes
Liver samples used for RNA sequencing were collected 
from NZ cows at seven days post-calving during first lac-
tation, as described by Grala et  al. [18]. Total RNA was 
extracted from 30 to 150  mg of liver using the TRIzol 
Plus RNA Purification Kit (Thermo Fisher Scientific) 
according to the manufacturer’s instructions. Messenger 
RNA was isolated using NEXTFLEX Poly(A) Beads 2.0 
(PerkinElmer) according to the manufacturer’s 

Fig. 1  Overview of data used for analyses
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instructions. Sequencing libraries were prepared using 
the NEXTFLEX Rapid Directional RNA-Seq Library Prep 
Kit (PerkinElmer) according to the manufacturer’s 
instructions and run on a NovaSeq6000 genome analyser 
(Illumina Inc) in a 150 cycle paired-end run. The read 
quality of FastQ files was assessed using the FastQC pro-
gram [28], and FastQ files were trimmed and filtered 
using the QuadTrim algorithm with a minimum read 
length of 50, a maximum of five poor-quality bases and a 
minimum base cut-off quality of 20 [29]. Subsequently, 
STAR 2-pass mapping [30] was performed for alignment 
of the RNA reads to the ARS-UCD1.2 reference assembly 
that is merged with the Btau5 Y chromosome and the 
Ensembl annotation release 97. The SubRead-feature-
Counts software [31] was used to obtain gene, exon and 
intron count matrices, and a hit was called when an over-
lap was found between a read and a feature. The count 
matrices were then normalised using TMM normalisa-
tion [32] implemented in the edgeR package [33]. Only 
genes with at least three counts per million reads were 
retained for further analyses, using the cpm function in 
edgeR [33]. The LeafCutter software [34] was used to 
define clusters of introns and generate normalised intron 
counts per individual for each intron cluster. Introns that 
were present in less than 60% of the individuals and those 
that showed almost no variation were discarded. To 
obtain allele ratio counts for allele-specific expression 
analyses, we used the GATK software [35] to first gener-
ate a reference dictionary, followed by GATK Split-
NCigarReads to enable the recognition of split reads. The 
VCF files were then generated using the GATK Haplo-
type Caller and GATK GenotypeGVCFs. From the VCF 
files, we generated allele counts for the two most preva-
lent alleles, filtering out sites with a sum of allele counts 
less than 10, sites with a difference between read depth 
and sum of allele counts greater than 20%, and those for 
which the two most prevalent alleles did not match the 
reference and alternate alleles. The allele count pheno-
type that was used for downstream analyses was calcu-
lated as log 

(

nRef+10

nAlt+10

)

 , where nRef  is the allele count of 
the reference allele, and nAlt is the allele count of the 
alternative allele.

GWAS for fertility traits
GWAS were performed for CI in the AUS dataset and 
for fertility traits in the NZ dataset. For the AUS data-
set, first a within-breed and -sex GWAS was under-
taken using the mixed linear model association (MLMA) 
analyses in GCTA [36], by fitting a genomic relation-
ship matrix (GRM) based on HD genotypes. The GRM 
were constructed following Yang et  al. [37]. Subse-
quently, the five AUS within-breed/sex GWAS were 
combined in a multi-breed meta-analysis (AUS_CI) 

using the weighted Z-score model as implemented in 
the METAL software [38]. All GWAS on the NZ data 
were performed using GCTA [36]. We considered that 
all the variants with a p-value ≤ 10–6 in the AUS meta-
analysis were significantly associated with CI. The cor-
responding false discovery rate (FDR) was estimated as 
Qe = E(Q) = E{V /(V + S)} = E(V /R) [39], where Qe 
is the expectation of the proportion of false positives, V  
is the number of true null hypotheses that are declared 
significant (number of false positives), S is the number 
of non-true null hypotheses that are declared signifi-
cant (number of true positives), and R = V + S . With a 
threshold of 10–6, the expectation of V  equals the total 
number of tests × 10–6. To define QTL regions, first we 
ranked all the significant variants from the smallest to 
largest p-value, and then selected the most significant 
variants, grouping the variants that were within 1  Mb 
of a most significant variant as part of that QTL region. 
For the NZ fertility traits, we used the leave-one-chro-
mosome-out approach in GCTA [36], to maximise the 
power of the GWAS on the smaller NZ dataset. The 
GRM included in the model was constructed following 
Yang et  al. [37], using HD genotypes. Fixed effects and 
covariates fitted for the NZ fertility traits were calving 
age, calving month, and, for the traits measured after six 
weeks of mating, synchronisation. We made use of only 
the direction of the effect obtained from the GWAS for 
the NZ fertility traits and did not attempt to detect QTL 
because of the low power due to the small number of NZ 
animals recorded.

Differential expression analysis
We used the normalised gene counts and the exactTest 
function in edgeR [33] to detect genes that were differen-
tially expressed between the POS and NEG cows. Genes 
with a FDR < 0.05 were declared significant.

GWAS for expression phenotypes
GWAS were performed on the gene counts, exon counts, 
intron counts, and allele counts to detect gene expression 
QTL (geQTL), exon expression QTL (eeQTL), splicing 
QTL (sQTL) and allele specific expression QTL (ase-
QTL), respectively. The gene counts, exon counts, and 
intron counts were fitted as phenotypes in GCTA [36], 
with age fitted as a covariate and a GRM based on the HD 
genotypes fitted as a random effect. Only variants that 
were within 1 Mb of a gene, exon or intron were included 
in these GWAS. The detection of geQTL, eeQTL and 
sQTL was performed as described for the detection of 
QTL for CI. To detect allele-specific expression QTL 
(aseQTL), we tested the association between the driver 
SNP (dSNP) and the transcript SNP (tSNP), where the 
tSNP was the variant for which we estimated the allele 
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count phenotypes, and the dSNPs were all the variants 
that were within 1  Mb of the tSNP. We performed two 
association tests for each combination of tSNP and dSNP 
[40], using inhouse scripts. Both tests used only sam-
ples that were heterozygous at both the tSNP and dSNP. 
Because this reduced the sample size, we used a MAF 
threshold of 0.05 for the allele-specific expression (ASE) 
tests. The first ASE test was a linear model:

where y is a vector of the allele count phenotypes of the 
tSNP, x is a vector of the genotypes at the dSNP coded 
as 1 if the dSNP had the same phase as the tSNP and 
− 1 if the dSNP had an alternate phase, b is a vector of 
the effects of dSNP on tSNP, and e is a vector of random 
residuals. This linear model can lead to many false posi-
tives when the sample has a limited size. Therefore, we 
also performed a second, more stringent ASE test to fil-
ter cases for which the sample size was too small for the 
linear model test. The second ASE test was a Z-test, for 
which we first calculated:

•	 Mi = the number of counts of the reference allele at 
the tSNP for each individual i with the dSNP and 
tSNP genotypes having the same phase;

•	 Pi = the number of counts of the alternate allele at the 
tSNP for each individual i with the dSNP and tSNP 
genotype having the same phase;

•	 Nj = the number of counts of the reference allele at 
the tSNP for each individual j with the dSNP and 
tSNP genotype having alternate phases;

•	 Qj = the number of counts of the alternate allele at 
the tSNP for each individual i with the the dSNP and 
tSNP genotypes having alternate phases.

Subsequently, the Z-score was calculated as:

where A =
∑

Mi +
∑

Qj and T =
∑

Mi +
∑

Pi+
∑

Nj +
∑

Qj . The detection of aseQTL was done as 
described for CI, except that a variant had to have p-val-
ues ≤ 10–6 for both ASE tests to be declared significant, 
in order to have the aseQTL detection with the highest 
confidence.

Enrichment analyses
To estimate the enrichment of eQTL, first we calcu-
lated the percentage of all the variants that were eQTL 
( perceQTL_all ), for each type of eQTL (geQTL, eeQTL, 
sQTL, and aseQTL). Subsequently, we calculated the per-
centage of variants that were eQTL for those that were 

(1)y = xb+ e,

(2)Z =
(

A

T
− 0.5

)

×
√
4T ,

significantly associated with CI ( perceQTL_CI ). The enrich-
ment was then quantified as perceQTL_CI/perceQTL_all .  
We tested if the observed enrichment was significant 
using a chi-square test, using the chisq.test() function in 
R [41]. The enrichment analyses were performed using 
significance thresholds of 10–4, 10–6 and 10–8, to test how 
sensitive the enrichment was to the significance threshold.

Comparison of NZ fertility traits and AUS CI
To assess the link between CI in AUS cows and NZ fer-
tility traits, we estimated the percentage of variants for 
which the direction of effect for each of the NZ fertility 
traits was consistent with that of AUS CI, e.g., the allele 
that decreases CI in AUS improves the fertility trait in 
NZ, and the allele the increases CI in AUS reduces fertil-
ity in NZ. This was estimated for all the variants included 
in the analyses, for the variants that were significantly 
associated with CI, and for the variants that were signifi-
cantly associated with both CI and gene expression, exon 
expression, gene splicing or allele specific expression.

Overlap between QTL for CI and eQTL
We considered that the QTL detected for different phe-
notypes (e.g., QTL detected for CI and QTL detected 
for expression phenotypes) overlapped if variants were 
significant for both phenotypes. For those variants, we 
assumed that a variant was more likely to be the causal 
variant underlying the QTL and eQTL, if the direction of 
the effect was concordant for all the estimates (see Addi-
tional file 2: Fig. S1). E.g., if a QTL for CI overlapped with 
a geQTL, and if the allele that decreased CI increased 
gene expression, then we expected that, in the differen-
tial expression analyses, this gene would be upregulated 
in the high-fertility cows, and would have a favourable 
effect on the GWAS NZ fertility traits. Furthermore, we 
expected that this allele would have a higher allele fre-
quency in the POS than the NEG cows.

Results
RNA sequencing and enrichment analyses
The RNA sequencing pipeline resulted in an average 
of 24,513,204 read pairs per sample, of which 89.32% 
were uniquely aligned (see Additional file  3: Table  S2). 
The number of variants analysed and the FDR for the 
detection of variants associated with gene expression 
(GE), exon expression (EE), gene splicing (S) and ASE 
using significance thresholds of 10–6 are in Table  1. In 
total, 3412 variants were significantly associated with 
CI, corresponding to an FDR of 4.0 × 10–3. The vari-
ants that were significantly associated with CI were 
highly enriched for variants associated with all four of 
the expression phenotypes (Table 1). For example, while 
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7.43% of the variants analysed were significantly associ-
ated with the expression of at least one exon, 62.05% of 
these variants were also significantly associated with CI, 
corresponding to an enrichment fold of 8.3 (penrichment 
≈ 0). Enrichment folds were sensitive to the significance 
thresholds used (see Additional file 4: Table S3). Enrich-
ment for geQTL and eeQTL was highest with the more 
stringent significance thresholds (up to 8.6 and 15.6 fold 
enrichment, for geQTL and eeQTL, respectively), and 
was highly significant regardless of all the thresholds 
tested. Enrichment for sQTL was less sensitive to the 
significance thresholds (between 1.3 and 2.2 fold enrich-
ment), with a slightly higher level of enrichment using a 
less stringent significance threshold in the GWAS for CI. 

Enrichment for aseQTL varied widely with the different 
significance thresholds. For example, using a significance 
threshold of 10–8 in the GWAS for CI, a threshold of 10–6 
to detect aseQTL resulted in an enrichment factor of 11.5 
(p ≈ 0), but with a more stringent threshold of 10–8, there 
was no overlap between aseQTL and QTL associated 
with CI anymore, resulting in significant (p = 2.2 × 10–6) 
depletion.

Comparison of QTL and eQTL with New Zealand fertility 
traits
The percentage of the variants with the expected direc-
tion of effect on both CI in AUS and the NZ fertility traits 
measured during lactation 1  (%dirAUS,NZ ) ranged from 

Table 1  Enrichment of variants associated with calving interval (CI) for eQTL

FDR GWAS false discovery rate, ntotal total number of variants included in set, nsignCI number of variants significantly associated with calving interval (CI), GE variants 
significantly associated with gene expression, EE variants significantly associated with exon expression, S variants significantly associated with gene splicing, ASE 
variants significantly associated with allele specific expression, expressed in % of the 13,7 M variants included in the GWAS for CIa, or the 3412 variants significantly 
associated with CIb, enrichment = perceQTL_CI/perceQTL_all, penrichment = p-value of the Chi-square test enrichment

Set ntotal perceQTL_all FDR nsignCI perceQTL_CI Enrichment penrichment

All 13,710,843 – – 3412 0.02a – –

GE 1,196,131 8.72a 7.5 × 10–5 1719 50.38b 5.8 0

EE 1,019,185 7.43a 1.4 × 10–4 2117 62.05b 8.3 0

S 2,019,663 14.73a 2.5 × 10–4 813 23.83b 1.4 4.5 × 10–26

ASE 305,494 2.23a 4.4 × 10–4 604 17.70b 7.9 0

Table 2  Percentage of variants with a direction of the effect on fertility consistent between the Australian and New Zealand datasets

Trait = New Zealand fertility trait measured during lactation 1, co3wk/co6wk/co9wk/co12wk = pregnancy rate at 3/6/9/12 weeks, ppai = prolonged postpartum 
anovulatory intervals, ppaicens = ppai censored, preg = pregnancy rate, sm3wk/sm6wk = submission rate at 3/6 weeks, tstai1 = time from planned start of mating to 
1st AI, tstconc = time from planned start of mating to conception, ttai1 = time from calving to 1st AI, ttconc = time to conception, concsens = ttconc censored, ALL = all 
variants included in the study, CI = variants that were significantly associated (p ≤ 10–6) with calving interval in Australia, CI + GE/CI + EE/CI + SPLICE/CI + ASE = variants 
that were significantly associated (p ≤ 10–6) with calving interval in Australia and gene expression/exon expression/gene splicing/allele specific expression in New 
Zealand

Trait Variants

ALL CI CI + GE CI + EE CI + SPLICE CI + ASE

co3wk 51 80 94 96 75 99

co6wk 51 76 87 89 57 98

co9wk 51 57 77 69 51 90

co12wk 51 70 89 91 69 96

ppai 50 78 89 88 63 94

ppaicens 50 82 79 83 56 94

preg 51 70 89 91 69 96

sm3wk 50 79 76 82 41 98

sm6wk 50 65 73 80 25 98

tstai1 50 78 76 82 43 98

tstconc 51 71 88 91 62 97

ttai1 50 80 81 83 51 94

ttconc 51 71 92 94 69 95

conccens 51 70 89 91 69 96
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57% (for co9wk) to 82% (for ppaicens) for variants that 
were significantly associated with CI (Table  2). When 
the variants were associated with both CI and either GE, 
EE or ASE, %dirAUS,NZ increased up to 94, 96 and 99%, 
respectively. However, for all traits, %dirAUS,NZ was lower 
for the variants that were associated with both CI and 
gene splicing than for variants that were only associated 
with CI, with %dirAUS,NZ ranging from 25 to 75%. New 
Zealand fertility traits measured on heifers and during 
lactation 2 had %dirAUS,NZ < 50% for several traits, with 
%dirAUS,NZ of the variants that were associated with CI 
ranging from 27 to 79% for the traits measured on heif-
ers, and from 30 to 85% for those measured during lacta-
tion 2 (see Additional file 5: Table S4).

Differential expression
Six hundred and seventy-one genes displayed a signifi-
cant differential expression between the POS and NEG 
NZ cows (see Additional file  6: Table  S5) and among 
these, 295 and 376 were, respectively, upregulated and 
downregulated in the POS fertile cows. Eleven genes had 
a log2 fold change ≥ 1 (Table 3, Fig. 2). While none of the 
top variants that were associated with the expression of 
these genes was significantly associated with CI, for eight 
of these 11 genes the direction of the effect on CI was 
consistent with the expectation based on the fold change 
and effect on gene expression. For example, the coiled-
coil domain containing 196 (CCDC196) gene on chromo-
some 10 was downregulated in POS NZ cows. Therefore, 
the allele that increases expression of CCDC196 was 
expected to increase CI, which was the case. The only 
genes for which we found that the direction of effect on 
CI was not consistent with the expectation based on the 

fold change and effect on gene expression were: carboxy-
peptidase X, M14 family member 2 (CPXM2) on chromo-
some 26, ENSBTAG00000050861 on chromosome 4, and 
chitinase 3 like 2 (CHI3L2) on chromosome 3. Of all the 
671 significantly differentially expressed genes, 322 had 
a top variant for which the direction of effect on gene 
expression and CI were in line with the direction of the 
fold change.

Overlap between QTL for CI and eQTL
Figure  3 visualises all the overlaps between QTL for CI 
and geQTL, eeQTL, sQTL and aseQTL. Overlaps were 
detected on chromosomes 5, 6, 7, 13, 15, 18, 19, 23 and 
29. We provide more details for five QTL regions that 
are located on chromosomes 5, 6, 15 and 18 (see Table 4) 
and include the two most significant QTL detected for CI 
that overlap with eQTL.

On chromosome 5, there were two distinct peaks asso-
ciated with CI. The QTL located between 88,012,951 and 
90,491,717 bp, contained 58 variants that were associated 
with CI in the AUS data. Ten variants were associated 
with CI and alternative splicing of the glycogen synthase 
2 (GYS2) and pyridine nucleotide-disulphide oxidoreduc-
tase domain 1 (PYROXD1) genes. The most significant 
sQTL (p = 4.5 × 10–23) was associated with an intron of 
the GYS2 gene that is located between 88,636,100 and 
88,647,589  bp and for which nine variants overlapped 
with the QTL for CI (Fig.  4 and see Additional file  7: 
Table S6). Two of these nine variants had a direction of 
effect on CI that was consistent with the allele frequen-
cies in the POS and NEG cows, and the direction of effect 
on the first lactation traits in the NZ cows. These two var-
iants were located at 88,702,039 and 88,702,059 bp, in the 

Table 3  Differentially expressed genes with the largest fold change

Gene gene symbol, Chr chromosome, start start of gene in base pair (bp), end end of gene in bp, logFC logarithm of fold change, positive value means the gene was 
upregulated in the high fertile cows compared to the low fertile cows, NEG average expression in the very low fertile cows, POS average expression in the high fertile 
cows, topGE most significant variant in the gene expression GWAS (if there were more than one variant with the smallest p-value, we selected the variant that had the 
smallest p-value in the meta-analysis for calving interval), Allele allele for which GWAS results are reported, pGE p-value in the gene expression GWAS, dirGE direction 
of effect of allele on gene expression, pCI p-value in the meta-analysis for calving interval, dirCI direction of effect of allele on calving interval

Gene Chr Start End logFC NEG POS FDR topGE Allele pGE dirGE pCI dirCI

CCDC196 10 78,535,568 78,551,038 − 2.04 22 5 1.9 × 10–3 79,213,632 T 8.0 × 10–68 +  0.18 + 

CPXM2 26 43,495,815 43,632,754 − 1.50 121 42 7.7 × 10–8 43,153,598 G 1.9 × 10–10 +  0.44 –

ENSBTAG00000050861 4 112,184,180 112,196,007 1.46 17 34 2.8 × 10–5 111,932,109 T 4.5 × 10–5 − 0.12 −

ISG12(B) 21 58,715,675 58,727,005 1.38 18 34 1.2 × 10–3 58,743,545 T 4.1 × 10–6 +  0.35 −

CHI3L2 3 32,155,439 32,192,735 − 1.17 85 37 3.1 × 10–5 32,180,704 C 2.8 × 10–6 − 0.66 + 

ATP6V1C2 11 86,882,894 86,942,882 1.11 13 27 4.8 × 10–2 87,272,584 A 2.9 × 10–3 − 0.15 + 

MS4A3 15 83,149,879 83,159,312 − 1.10 10 16 5.2 × 10–3 83,092,648 C 5.1 × 10–7 +  0.36 + 

FAM184B 6 37,181,075 37,301,540 − 1.03 7 3 8.8 × 10–11 36,628,669 T 1.5 × 10–6 − 0.63 −

MEGF11 10 12,771,484 13,163,546 1.03 36 14 1.2 × 10–2 12,106,041 C 2.7 × 10–32 +  0.50 −

PTPRO 5 94,342,435 94,455,619 − 1.03 6 10 3.2 × 10–3 93,515,249 C 4.5 × 10–10 +  0.99 + 

C11H2orf74 11 59,794,837 59,822,193 1.02 4 2 1.7 × 10–2 59,666,616 T 3.3 × 10–39 +  0.60 –
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RecQ like helicase (RECQL) gene and were in complete 
linkage disequilibrium (LD) in the NZ dataset. In addi-
tion, the alleles that increased CI had an allele frequency 
of 0.79 and 0.88 in the POS and NEG cows, respectively, 
and reduced fertility for all first lactation traits. The 
second QTL on chromosome 5 was located between 
105,374,211 and 106,005,410 bp, with 82 variants signifi-
cantly associated with CI. In the same region, there were 
287 variants associated with the expression of the tumor 
protein 53 induced glycolysis regulatory phosphatase 
(TIGAR​) gene. Six variants were associated with both CI 
and TIGAR​ expression (Fig.  5 and see Additional file  7: 
Table  S6), with minimum p-values for CI and TIGAR​ 
expression of 2.2 × 10–9 and 2.1 × 10–9, respectively. For 
these six variants, the alleles that increased CI reduced 
the expression of TIGAR​. This agrees with the posi-
tive fold change of TIGAR​ expression in the differential 
expression analyses (not significant, p = 0.05, FDR = 0.21). 
For one of the six variants, the allele that increased CI 
and reduced TIGAR​ expression, was more common in 
the NEG (allele frequency = 0.53) than in the POS (allele 
frequency = 0.35) NZ cows and had an unfavourable 
effect on all first lactation traits. This variant was located 
at 105,732,916 bp, in the 3’UTR region of TIGAR​.

The second most significant QTL detected for CI 
(p = 3.5 × 10–17) was located between 86,594,473 and 
87,937,448  bp on chromosome 6. Of the 1667 variants 
that were significantly associated with CI, 1133, 1658 
and 528 were significantly associated with expression 

of the GC vitamin D binding protein (GC) gene (mini-
mum p-value = 7.7 × 10–11), exon expression of multiple 
exons in GC (minimum p-value = 1.1 × 10–23), and ASE 
within GC (minimum p-value = 1.5 × 10–8), respectively 
(Fig. 6 and see Additional file 7: Table S6). All the 1133 
alleles associated with an increased expression of GC 
were associated with increased CI, and GC was down-
regulated in the POS cows (not significantly, p = 0.07, 
FDR = 0.24). However, there were only five variants for 
which the allele that increased GC expression was more 
common in the NEG cows than in the POS cows and 
had an unfavourable association with the first lactation 
traits. These variants included an intronic variant of GC 
(86,996,470  bp), three intergenic variants (87,020,854, 
87,038,423 and 87,099,129  bp) and an intronic vari-
ant of the neuropeptide FF receptor 2 (NPFFR2) gene at 
87,257,944  bp. The most significant eeQTL was associ-
ated with an exon of GC, located between 86,968,870 and 
86,968,921  bp. In total, 1634 variants were significantly 
associated with this exon, and for all of these variants, the 
allele that was associated with an increased expression of 
this exon, increased CI. For 88 of these variants, the allele 
frequency and direction of effect on the first lactation 
traits in NZ cows were consistent with the direction of 
effect on CI in AUS cows. The largest difference in allele 
frequency was found for an intergenic variant located at 
87,020,854 bp, where the allele that was associated with 
increased CI had an allele frequency of 0.54 in the NEG 
cows and 0.45 in the POS cows. There was one tSNP for 

Fig. 2  Volcano plot of differentially expressed genes. ‘Down’ indicates variants with a FDR ≤ 0.05 and a log2 fold change (logFC) smaller than 1, ‘up’ 
indicates variants with a FDR ≤ 0.05 and a log2 fold change (logFC) larger than 1, ‘no’ indicates all other variants
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Fig. 3  Overlap between QTL for calving interval and eQTL. Y-axis = − log10(p) for the meta-analysis of calving interval (CI), red indicates variants 
that are significant (p ≤ 10–6) for both CI and (a) gene expression (gene), (b) exon expression (exon), (c) gene splicing (splicing) and (d) allele specific 
expression (ASE)

Table 4  Examples of QTL regions detected for calving interval that contain eQTL

Chr chromosome, start start of QTL region in base pair (bp), end end of QTL region in bp, nCI number of variants in QTL region associated with calving interval (CI), 
Freq_high average allele frequency of alleles that increase CI in high fertile cows, Freq_veryLow average allele frequency of alleles that increase CI in very low fertile 
cows, top location of the most significant variants in the QTL region, p p-value of the top variant for the association with CI, nGE/nEE/nSplice/nASE, number of variants 
associated both with CI and gene expression/exon expression/gene splicing/allele specific expression

Chr Start End nCI Freq_high Freq_veryLow Top p nGE nEE nSplice nASE

5 88,012,951 90,491,717 58 0.74 ± 0.21 0.76 ± 0.25 88,448,176 2.7 × 10–10 0 0 9 0

5 105,374,211 106,005,410 82 0.25 ± 0.14 0.26 ± 0.13 105,874,904 6.4 × 10–10 6 0 0 0

6 86,594,473 87,937,448 1667 0.54 ± 0.13 0.50 ± 0.13 87,070,486 3.5 × 10–17 1133 1658 0 528

15 76,536,678 77,769,100 38 0.23 ± 0.14 0.19 ± 0.16 76,536,678 3.8 × 10–9 9 38 18 26

18 55,331,602 60,178,330 1310 0.77 ± 0.18 0.78 ± 0.16 57,689,072 3.2 × 10–35 545 429 690 0
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which significant dSNPs overlapped with significant vari-
ants for CI, and which was a synonymous variant of GC 
located at 86,989,953 bp. Five hundred and twenty-eight 
dSNPs were significantly associated with ASE and CI, 
including 14 variants for which the allele that was asso-
ciated with increased CI was more common in the NEG 
cows than in the POS cows. For these 14 variants, the 

direction of effect was not consistent for all first lactation 
traits in NZ cows.

A QTL region located between 76,536,678 and 
77,769,100 bp on chromosome 15 overlapped with mul-
tiple geQTL, eeQTL, sQTL and aseQTL (Fig. 7 and see 
Additional file 7: Table S6). The most significant geQTL 
(p = 1.8 × 10–15) was associated with the expression of 
the olfactory receptor family 4 subfamily B member 1G, 

Fig. 4  Overlap between a QTL for calving interval on chromosome 5 and GYS2 splicing. a y-axis = − log10(p) for the meta-analysis of calving interval 
(CI), and (b) y-axis = − log10(p) for the intron in GYS2 located between 88,636,100 and 88,647,589 bp, red indicates variants that are significant 
(p ≤ 10–6) for both CI and gene splicing

Fig. 5  Overlap between a QTL for calving interval on chromosome 5 and TIGAR​ expression. a y-axis = − log10(p) for the meta-analysis of calving 
interval (CI), and (b) y-axis = − log10(p) for TIGAR​ expression, red indicates variants that are significant (p ≤ 10–6) for both CI and gene expression
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pseudo (OR4B1GP) gene. In total, nine variants were sig-
nificantly associated with CI and geQTL, including five 
variants that were associated with the expression of the 
Rho GTPase activating protein 1 (ARHGAP1) and CAMP 
responsive element binding protein 3 like 1 (CREB3L1) 
genes, and three variants associated with the expres-
sion of the olfactory receptor family 4 subfamily X mem-
ber 17 (OR4X17), olfactory receptor family 4 subfamily 
A member 47V (OR4A47V) and OR4B1GP genes. None 
of these genes were significantly differentially expressed 
between the POS and NEG NZ cows. However, the direc-
tion of the fold change was consistent with the estimated 
directions of the effect on CI and gene expression for 
the ARHGAP1 and OR4A47V (upregulated in the POS 

cows, and the alleles that were associated with increased 
gene expression were associated with reduced CI) and 
CREB3L1 genes (downregulated in the POS cows, and 
alleles that were associated with increased gene expres-
sion were associated with increased CI). However, this 
was not the case for the OR4B1GP and OR4X17 genes 
(upregulated in POS cows, but the alleles that were 
associated with increased gene expression were associ-
ated with increased CI). Allele frequencies in the POS 
and NEG cows were not in agreement with the direc-
tion of the estimated effects on CI and gene expres-
sion. Significant eeQTL were detected for exons of the 
CREB3L1, ARHGAP1 and OR4X17 genes, with the 
most significant eeQTL (p = 7.7 × 10–11) detected for 

Fig. 6  Overlap between a QTL for calving interval on chromosome 6 and multiple types of eQTL. a y-axis = − log10(p) for the meta-analysis 
of calving interval (CI), (b) y-axis = − log10(p) for GC expression, (c) y-axis = − log10(p) for exon expression of exon of GC located between 86,968,870 
and 86,968,921 bp, and (d) y-axis = − log10(p) for allele expression of tSNP located at 86,989,953 bp, red indicates variants that are significant 
(p ≤ 10–6) for both CI and expression phenotype
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an exon of ARHGAP1, located between 76,627,377 and 
76,627,508 bp. The most significant sQTL (p = 8.2 × 10–11) 
in the region was associated with a splice region between 
77,959,141 and 77,997,756  bp located in a copy num-
ber variant (CNV) that encompassed seven genes of 
the olfactory receptor family 4 (subfamily B member 1F 
(OR4B1F), olfactory receptor family 4 subfamily X mem-
ber 5 (OR4X5), OR4X17, olfactory receptor family 4 sub-
family X member 16 (OR4X16) and OR4B1GP) [42]. All 
the significant ASE variants that overlapped with the 
QTL for CI were associated with a tSNP that is located in 
the 3’UTR region of ARHGAP1 at 76,623,841 bp (mini-
mum p-value = 2.9 × 10–9).

Chromosome 18 contained the QTL with the strong-
est association with CI, located between 55,331,602 and 
60,178,330  bp. This QTL overlapped with significant 
geQTL, eeQTL and sQTL (Fig. 8). The QTL region con-
tained 545 variants that were significantly associated with 
both CI and a geQTL (see Additional file  7: Table  S6). 
The most significant geQTL (p = 3.7 × 10–32) was associ-
ated with the expression of the synaptotagmin 3 (SYT3) 

gene. Many variants were associated with the expres-
sion of multiple genes (see Additional file  8: Table  S7). 
Forty-two variants were located between 55,816,529 and 
55,937,694 bp, associated with the expression of both the 
Fms related receptor tyrosine kinase 3 ligand (FLT3LG) 
and solute carrier family 6 member 16 (SLC6A16) genes. 
For all these 42 variants, the alleles that were associated 
with increased CI were associated with increased expres-
sion of FLT3LG and decreased expression of SLC6A16. 
Another group of 53 variants, located between 56,556,940 
and 57,152,300 bp, were associated with both the expres-
sion of SYT3 and ENSBTAG00000037537; 43 and two of 
these variants were also associated with the expression of 
the DNA polymerase delta 1, catalytic subunit (POLD1) 
and chromosome 18 C19orf81 homolog (C18H19orf81) 
genes, respectively. For these variants, the alleles that were 
associated with increased CI were associated with reduced 
expression of SYT3, ENSBTAG00000037537, POLD1 and 
C18H19orf81. The largest group of genes for which an 
overlap of eQTL was detected contained seven genes (zinc 
finger protein 350 (ZNF350), ENSBTAG00000050420, 

Fig. 7  Overlap between a QTL for calving interval on chromosome 15 and multiple types of eQTL. a y-axis = − log10(p) for the meta-analysis 
of calving interval (CI), b y-axis = − log10(p) for OR4B1GP expression, c y-axis = − log10(p) for exon expression of exon of ARHGAP1 located 
between 76,627,377 and 76,627,508 bp, d y-axis = − log10(p) for the splice region between 77,959,141 and 77,997,756 bp, and (e) y-axis = − log10(p) 
for allele expression of tSNP located at 76,623,841 bp, red indicates variants that are significant (p ≤ 10–6) for both CI and expression phenotype
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ENSBTAG00000019227, ENSBTAG00000038903, ENS-
BTAG00000033523, ENSBTAG00000053131 and ENS-
BTAG00000017651) for which we detected 277 variants, 
located between 57,873,772 and 58,735,393 bp, that were 
each associated with the expression of at least two of the 
genes in this group. The largest overlap was found between 
ENSBTAG00000038903 and ENSBTAG00000033523, 
with 273 variants significantly associated with the expres-
sion of both genes. For variants associated with the 
expression of genes in this group, the alleles that were 
associated with increased CI increased the expression 
of ENSBTAG00000038903, ENSBTAG00000033523 
and ENSBTAG00000053131, reduced the expression of 
ZNF350 and ENSBTAG00000017651, while the direction 

of effect was not consistent for ENSBTAG00000050420 
and ENSBTAG00000019227 (i.e., for some the variants, 
the alleles that increased CI increased gene expression, 
while for others the alleles that increased CI decreased 
gene expression). The last group of genes with over-
lapping geQTL included ENSBTAG00000047761 and 
ENSBTAG00000015899. Thirteen variants were asso-
ciated with the expression of both these genes, located 
between 58,665,839 and 58,695,910  bp. For these vari-
ants, the alleles that were associated with increased CI 
increased the expression of ENSBTAG00000047761 and 
decreased the expression of ENSBTAG00000015899. 
The same QTL region included 429 variants associ-
ated with both CI and the expression of exons of the 

Fig. 8  Overlap between a QTL for calving interval on chromosome 18 and multiple types of eQTL. a y-axis = − log10(p) for the meta-analysis 
of calving interval (CI), b y-axis = − log10(p) for SYT3 expression, c y-axis = − log10(p) for exon expression of exon of ENSBTAG00000038903 located 
between 58,342,620 and 58,343,553 bp, and (d) y-axis = − log10(p) for the splice region between 55,443,019 and 55,445,791 bp in in HSD17B14, 
red indicates variants that are significant (p ≤ 10–6) for both CI and expression phenotype. Expression associations were only tested for variants 
within 1 Mb of the gene/exon/splice region; the gaps on the gene/exon/splice graphs fall outside these boundaries
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FLT3LG, C18H19orf81, ENSBTAG00000037537, ZNF350, 
ENSBTAG00000050420 ,  ENSBTAG00000019227 , 
ENSBTAG00000038903 ,  ENSBTAG00000033523 
and ENSBTAG00000017651 genes. The most signifi-
cant eeQTL (p = 9.5 × 10–23) was associated with the 
exon between 58,342,620 and 58,343,553  bp in ENS-
BTAG00000038903. Several of the variants associ-
ated with the expression of this exon were located in the 
same CNV, between 58,172,482 and 58,285,235  bp [43], 
that encompassed five genes (ENSBTAG00000049460, 
ENSBTAG00000050064, ENSBTAG00000050488, ENS-
BTAG00000054038 and ENSBTAG00000054547). Six 
hundred and ninety variants were associated with both CI 
and the expression of at least one of the 243 splice regions. 
The most significant sQTL (p = 5.7 × 10–44) was associated 
with a splice region in the hydroxysteroid 17-beta dehy-
drogenase 14 (HSD17B14) gene between 55,443,019 and 
55,445,791 bp.

Discussion
We identified multiple QTL associated with fertility in 
dairy cattle that overlap with eQTL. Variants that are sig-
nificantly associated with CI are highly enriched for vari-
ants associated with gene expression, exon expression, 
gene splicing and ASE. This enrichment is substantially 
larger than previously reported for production and fer-
tility traits in Australian dairy cattle [44]. The increased 
enrichment may be explained by the larger number of 
samples with expression data used in our study, the dif-
ference in the tissues used, and the difference in the pop-
ulations analysed.

Differential expression
We identified 671 genes that were differentially expressed 
between the POS and NEG cows. While we also detected 
geQTL for several of these genes, none of these geQTL 
overlapped with QTL detected for CI. This may be 
because CI does not capture all the genetic variance asso-
ciated with fertility, and the POS and NEG cows were 
selected based on traits other than CI. A number of the 
differentially expressed genes detected in our study have 
previously been reported in similar studies. For example, 
28 of the differentially expressed genes were reported as 
significantly differentially expressed between the endo-
metrium of fertile and subfertile New Zealand dairy 
cows during early pregnancy [45]. However, only 13 of 
these 28 had a consistent direction of effect (i.e., upregu-
lated in the POS cows in our study, and upregulated in 
the fertile cows studied by Walker et al. [45]). The largest 
overlap was found with Moran et al. [46]: we detected 96 
differentially expressed genes that were also differentially 

expressed in liver or muscle tissue of Irish Holstein cows 
with high or low genetic merit for fertility, at three dif-
ferent time points (late pregnancy, early lactation and 
mid-lactation). The overlap between our study and 
Moran et  al. [46] includes several of the genes with the 
largest fold changes in our analyses: CCDC196, CPXM2, 
ISG12(B), CHI3L2, ATP6V1C2 and MS4A3. However, 
similar to the overlap with Walker et al. [45], the direc-
tion of the fold change did not always correspond 
between our results and those of Moran et  al. [46]. We 
found a greater concordance with Moran et  al. [46] for 
the genes that were differentially expressed in liver tissue 
and during early lactation (e.g., the same tissue and clos-
est time period in our study), than in the muscle tissue or 
during the other time periods. Moran et al. [46] reported 
several genes for which the direction of fold change dif-
fered between the three time periods. For example, the 
ISG12(B) gene was upregulated in the POS NZ cows 
and in the liver samples from Moran et  al. [46] dur-
ing early lactation, but downregulated during late preg-
nancy and mid lactation. The two genes with the largest 
fold change in our study, CCDC196 and CPXM2, were 
both downregulated in the POS NZ cows, but not sig-
nificantly differentially expressed during early lactation 
and upregulated during late pregnancy and mid lacta-
tion in the study of Moran et al. [46]. The CCDC196 gene 
has also been reported to be upregulated in endometrial 
samples of beef heifers after mating [47]. The CPXM2 
gene was found to be downregulated in the endome-
trium of non-lactating Japanese Black cows that failed 
to conceive after at least three inseminations, e.g., cows 
with reduced fertility [48], and in dairy sheep, its expres-
sion increased substantially during lactation [49]. Hence, 
while several studies report the same genes as candidate 
genes for various fertility traits, their impact on fertility 
appears to depend on pregnancy stage. Hence, to better 
understand how the differentially expressed genes impact 
fertility, further studies that would include samples taken 
throughout lactation and in tissues directly related to 
reproduction are necessary.

Overlap between QTL for CI and eQTL
The overlap between QTL for CI and eQTL identified 
several candidate genes for fertility. The GYS2 gene 
on chromosome 5 has previously been reported to be 
upregulated in dairy cows with imbalanced metabolic 
profiles in early lactation [50]. In humans, GYS2 has 
been associated with glycogen storage disease type 0 
[51], obesity and polycystic ovary syndrome [52]. The 
QTL region, including a second candidate gene, TIGAR​
, on chromosome 5, has previously been reported to be 
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associated with age at puberty in New Zealand Hol-
stein-Friesidan dairy cattle [53], and a range of traits in 
various cattle populations, including adaptation to high 
altitude, response to hypoxia, body size and stature in 
Swedish dairy cattle [54], milking speed in French Hol-
stein cows [55], multiple body weight traits in Hereford 
cattle [56] and metabolic body weight in Holstein cows 
[57]. Furthermore, Liu et  al. [58] reported colocalisa-
tion of an eQTL in TIGAR​ expression in muscle and loci 
identified by GWAS associated with strength in cattle. 
The QTL region detected on chromosome 6, associated 
with the expression of GC, is a well-known pleiotropic 
QTL in dairy cattle, associated with production traits, 
mastitis resistance, mammary gland morphology and 
fertility [59–62]. Recently, Lee et  al. [12] provided evi-
dence that the causal mutation underlying this QTL in 
Dutch Holstein Friesian cattle is likely to be a ~ 12  kb 
multi-allelic CNV. Five of the six variants that tagged 
the CNV in the study by Lee et al. [12] were present in 
our study, and all five were significantly associated with 
both CI and GC expression. A QTL region on chromo-
some 15 contained multiple genes from the olfactory 
receptor gene family. Several of the variants associ-
ated with this QTL were located within a CNV. Both in 
humans [63] and cattle [64], the olfactory receptor gene 
family region is known to contain a large number of 
CNV. Other genes associated with this QTL included 
ARHGAP1, for which the endometrial expression has 
been found to increase in beef cattle during early preg-
nancy [65], and CREB3L1, which has been associated 
with heat tolerance in Holstein cows [66]. On chro-
mosome 18, the most significant QTL region is a well-
known QTL for fertility [67–69], and contains many 
CNV [43]. This QTL overlapped with a large number of 
eQTL, and many of the genes associated with the eQTL 
are novel genes with little to no functional annotation 
available. The most significant sQTL was associated 
with a splice region of the HSD17B14 gene, which has 
functions that include the oxidisation of oestradiol and 
testosterone and is expressed in the breast, ovary and 
testis in humans [70]. Interestingly, this gene is a mem-
ber of the same gene family as HSD17B12 (chromosome 
15) that was associated with submission rate by day 21 
of the breeding season in NZ cows in a previous study 
[19]. However, the missense mutation in HSD17B12 
that was detected by Juengel et al. [19] was not associ-
ated with CI in AUS (p = 0.04) and we did not detect an 
eQTL associated with this variant. The lack of associa-
tion with CI may be explained by the difference in traits: 
while both relate to female fertility, they are different 
traits and are not necessarily expected to share all QTL.

Several QTL for CI that overlapped with eQTL were 
detected in regions that contained one or more structural 

variants such as CNV [42, 43]. In particular, the region 
on chromosome 18 that has the most significant QTL for 
CI contains multiple structural variants [43, 71]. Hence, 
it is likely that the causal variants for some of the QTL in 
our study are structural variants, such as the QTL asso-
ciated with GC expression [12]. However, because we 
imputed only SNPs and small INDELs from a short read 
sequence reference set, our dataset does not include the 
structural variants that may be the causal mutations. This 
could explain why for some QTL regions, none of the 
variants present had a consistent effect in the AUS and 
NZ data because they may tag the absent causal mutation 
and the LD phase may differ. Further fine mapping of the 
QTL regions spanning CNV, such as on chromosome 18, 
may be required using long read sequencing to identify 
the causal mutation underlying the QTL.

While we found significant enrichment for almost all 
the significance thresholds tested, the enrichment fold 
depended on the significance threshold used. The higher 
enrichment of geQTL and eeQTL using more stringent 
thresholds are likely highly influenced by the most sig-
nificant QTL for CI on chromosomes 6 and 18. Both 
these QTL overlapped with eQTL, and because our 
enrichment analyses did not account for LD, many vari-
ants contributing to the enrichment analyses are likely 
associated with the same causal mutation. Hence, while 
approximately 50% of significant variants for CI were also 
associated with gene expression, this does not mean that 
50% of all causal mutations of CI were expected to also 
be causal mutations of geQTL. Because we used differ-
ent datasets for the GWAS for CI and the eQTL analyses, 
we did not attempt colocalisation, as it would be chal-
lenging to fit LD estimates appropriate for both popula-
tions. Therefore, further analyses are required to confirm 
whether the identified overlapping regions between QTL 
and eQTL are caused by the same or different causal 
mutations. While this was a disadvantage of using differ-
ent datasets for the GWAS for CI and the eQTL analy-
ses, using these different datasets did allow us to combine 
the largest (e.g., most power for QTL detection) available 
dataset for a fertility trait with the NZ selection experi-
ment, and detect regions that are likely to impact fertility 
in both AUS and NZ dairy cattle populations.

Conclusions
We combined a powerful meta-analysis for fertility with 
gene expression results in cattle that were divergently 
selected for high and low fertility to identify putative 
candidate genes associated with fertility traits. Variants 
that were significantly associated with CI were highly 
enriched for geQTL, eeQTL, sQTL and aseQTL. We 
detected 671 genes that were differentially expressed 
between POS and NEG cows, with the largest fold change 
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detected for the CCDC196 gene on chromosome 10. Sev-
eral QTL detected for CI overlapped with eQTL, provid-
ing candidate genes for fertility in dairy cattle. Multiple 
QTL regions were located in regions with large numbers 
of CNV. To identify the causal mutations underlying 
these QTL, long read sequencing may be required.
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