
Anglhuber et al. Genetics Selection Evolution           (2024) 56:43  
https://doi.org/10.1186/s12711-024-00913-7

RESEARCH ARTICLE Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Definition of metafounders based 
on population structure analysis
Christine Anglhuber1,2*   , Christian Edel1, Eduardo C. G. Pimentel1, Reiner Emmerling1, Kay‑Uwe Götz1 and 
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Abstract 

Background  Limitations of the concept of identity by descent in the presence of stratification within a breeding 
population may lead to an incomplete formulation of the conventional numerator relationship matrix ( A ). Combining 
A with the genomic relationship matrix ( G ) in a single-step approach for genetic evaluation may cause inconsistencies 
that can be a source of bias in the resulting predictions. The objective of this study was to identify stratification using 
genomic data and to transfer this information to matrix A , to improve the compatibility of A and G.

Methods  Using software to detect population stratification (ADMIXTURE), we developed an iterative approach. 
First, we identified 2 to 40 strata ( k ) with ADMIXTURE, which we then introduced in a stepwise manner into matrix A , 
to generate matrix AŴ using the metafounder methodology. Improvements in consistency between matrix G and AŴ 
were evaluated by regression analysis and through the comparison of the overall mean and mean diagonal values 
of both matrices. The approach was tested on genotype and pedigree information of European and North American 
Brown Swiss animals (85,249). Analyses with ADMIXTURE were initially performed on the full set of genotypes (S1). In 
addition, we used an alternative dataset where we avoided sampling of closely related animals (S2).

Results  Results of the regression analyses of standard A on G were – 0.489, 0.780 and 0.647 for intercept, slope 
and fit of the regression. When analysing S1 data results of the regression for AŴ on G corresponding values were 
– 0.028, 1.087 and 0.807 for k=7, while there was no clear optimum k . Analyses of S2 gave a clear optimal k=24, 
with − 0.020, 0.998 and 0.817 as results of the regression. For this k differences in mean and mean diagonal values 
between both matrices were negligible.

Conclusions  The derivation of hidden stratification information based on genotyped animals and its integration 
into A improved compatibility of the resulting AŴ and G considerably compared to the initial situation. In dairy 
breeding populations with large half-sib families as sub-structures it is necessary to balance the data when applying 
population structure analysis to obtain meaningful results.

Background
In genomic predictions, especially when using the single-
step approach for genomic predictions, it is important to 
adjust the standard numerator relationship matrix A and 
the genomic relationship matrix G , so that both matrices 
refer to the same genetic base and can consequently be 
regarded as covariance matrices with the same genetic 
variance [1]. Differences in the underlying assumptions 
for the construction of these matrices lead to different 
properties of these matrices that might be a source of bias 
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when they are combined in a single model. For example, 
identity by descent (IBD) is the underlying concept in the 
construction of the numerator relationship matrix A , and 
inbreeding describes the decrease in heterozygosity ini-
tially presumed to be at maximum for a group of n base 
animals (the base population comprises an infinite num-
ber of independent loci, each with 2 n unique alleles [2]). 
This concept cannot be easily transferred to a matrix G 
that is calculated from m biallelic SNP markers, irrespec-
tive of the way G is calculated. Moreover, in calculating 
G (e.g., VanRaden [3]), the distribution of genotypes and 
aspects like population subdivision or crossbreeding may 
additionally affect the structure of the matrix. This might 
lead to a situation, where the differences between both 
covariance matrices become critical, eventually leading 
to biased and/or unreliable estimates of genetic merit [4].

Several studies made suggestions how to best adjust G 
to fit A [5–8], accounting for genotyping strategies [9] or 
differences in assumptions about the implied base of the 
matrices [10]. Christensen [11] proposed to calculate G 
like in VanRaden [3], but assuming a homogeneous base 
population of maximum average heterozygosity under 
Hardy–Weinberg equilibrium (e.g., base allele frequen-
cies of 0.5 for all biallelic loci involved in the calculation). 
This method of calculating G preserves important con-
ceptual similarities with A , e.g., a cumulative decrease in 
heterozygosity (all diagonal elements being > 1, given the 
population is homogeneous). However, in this situation G 
and A do not refer to the same base population and to 
the same genetic variance without further adjustments. 
To align both matrices Christensen [11] introduced the 
scaling parameter γ , which is a function of the (assumed) 
average heterozygosity of the pedigree base. This γ is 
then used to scale A and its genetic variance so that 
it matches G . This first attempt to harmonize a model 
based on pedigree information and a model based on 
genomic information was later on elaborated by Legarra 
et  al. [12] to allow for several interbreeding conceptual 
base populations (metafounders). In its present state the 
metafounder concept is an elaborated methodological 
framework providing a general and consistent formula-
tion of the genetic model underlying single-step genomic 
evaluations even in the presence of population subdivi-
sion, introgression, and crossbreeding. It has been tested 
so far in several applications for single breeds [13–15], 
multibreed [16–18] and crossbreed cattle [19–21] as well 
as in plants [22].

Admixed or structured populations show a separation 
into two or more subpopulations, that can be character-
ized based on their specific allele frequencies. Admixed 
populations may be well defined, e.g., in the case of 
model animals with well-documented pedigrees. On the 
other hand, many livestock populations are characterized 

by incomplete pedigrees and poorly documented intro-
gression, making it difficult to properly define meta-
founders based on pedigree data alone. Several studies 
have used ADMIXTURE to investigate population strati-
fication in human, animal (both wildlife and domestic) 
and plant populations [23–33]. It has successfully been 
used in domestic cattle populations to discover impor-
tant steps in the history of domestication [24], to reveal 
the genetic background of northern red dairy cattle 
breeds [34] or to assess genetic diversity in conservation 
schemes [27, 32]. ADMIXTURE identifies anonymous 
stratification (i.e., stratifications not necessarily traceable 
to information available from pedigree data of an indi-
vidual) from a set of genotyped animals by using a max-
imum-likelihood approach [35]. The European Brown 
Swiss breed is an example of a highly admixed population 
[36, 37]. First attempts to define metafounders based on 
the existing pedigree information did not lead to satisfac-
tory results. Therefore, we are looking into approaches to 
derive population stratification directly from genotype 
data. The objective of this paper was to derive stratifica-
tion information directly from genomic data using popu-
lation structure analysis, and to transfer this information 
to the submatrix of genotyped animals ( Ag ) by using the 
theoretical framework of the metafounder concept, to 
improve the compatibility between Ag and G . We illus-
trated our approach on genotype and pedigree data from 
the European Brown Swiss population and examined dif-
ferent methods to evaluate the compatibility of Ag and G.

Methods
Basic concepts of the investigation
In our approach strata (metafounders) are abstract enti-
ties that may coincide with a real source of genetic vari-
ation (e.g., an ancestral breed). We derived the relevant 
information about the strata directly from genomic data 
using the ADMIXTURE software [35]. All other steps 
were performed using in-house scripts. To investigate 
the feasibility of the approach we developed an iterative 
workflow where we increased the number of strata ( k ) 
in a stepwise manner and introduced this information 
into matrix Ag using metafounder methodology to cre-
ate matrix AŴ , a relationship matrix where founders can 
be related and inbred [12]. We then evaluated improve-
ments in consistency between G and the resulting matrix 
AŴ by visual inspection of graphs from principal com-
ponent analyses, by regression analysis and through the 
comparison of overall means and mean diagonal values 
of both matrices.

In our approach we assigned genotyped animals 
directly to the strata via an estimated matrix Q , which 
describes the gene-flow from these strata across the 
founders to the genotyped animals. This approach 
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circumvents the need to assign a pedigree founder exclu-
sively to one or two specific strata and each animal of 
the pedigree base may represent a complex mixture of 
genomic strata. This is different to the original meta-
founder approach, where pedigree founders are directly 
assigned to metafounders, based on registration or pedi-
gree information [12].

Detection of stratification information
ADMIXTURE had several advantages over other soft-
ware available to identify population stratification. For 
instance, it did not need representatives of the ancestral 
origin in the data, and it was able to handle larger data 
sets [35]. ADMIXTURE estimates the n x k matrix Q 
describing the contributions of the k strata to each of the 
n genotyped individuals. The number of strata must be 
provided by the user. ADMIXTURE additionally provides 
an m x k matrix PA of estimated strata-specific allele fre-
quencies, where m stands for the number of provided 
marker loci.

ADMIXTURE offers two options, a supervised and an 
unsupervised mode. In the supervised mode, the inves-
tigator assigns individuals perceived as unadmixed, i.e., 
as representatives of a distinct origin, to a specific stra-
tum. These individuals are used as reference in the analy-
sis of genotypes. For this approach reliable information 
on the genetic background of assigned animals is crucial 
and each stratum must be represented by some animals. 
In the unsupervised mode, only the genotype data and 
the chosen number of strata ( k) is supplied to ADMIX-
TURE for detection of stratification. ADMIXTURE 
does not provide an estimate of the optimum number of 
genomic strata characterizing the sample. However, by 
using the ‘cv’ option, ADMIXTURE performs a tenfold 
cross-validation and the results of this cross-validation 
can be used as a criterion to choose an optimum value 
for k [35]. This approach has some limitations. It has fre-
quently been reported that ADMIXTURE is sensitive to 
familial structures in the material. Especially if the data 
comprises large half-sib groups no clear optimum value 
for k from cross-validation can be discerned [24–26], 
which makes application in cattle populations difficult. 
Since our focus was to detect sources of stratification 
beyond the information already reflected by the standard 
relationship matrix A , most of the familial information 
recovered by ADMIXTURE may be redundant, because 
pedigrees of the animals are usually available. However, 
there is no way to know beforehand which newly added 
stratum will provide information beyond the informa-
tion already included in the pedigree, because ADMIX-
TURE provides no interpretation of the identified strata. 
To investigate the effect of close relationships in the 
data, we followed two different strategies in a strictly 

unsupervised manner. In strategy 1 we provided all gen-
otyped animals to ADMIXTURE. In strategy 2 we pro-
vided ADMIXTURE with a dataset that minimized the 
degree of relationships of genotyped animals by sam-
pling only one member of each half-sib family. For details 
of the selection process please refer to the data section. 
However, if ADMIXTURE is provided with a smaller 
sample, the estimated matrix Q no longer contains rows 
for all genotyped animals. Chiang et al. [38] developed a 
simple approach to derive admixture proportions based 
on allele frequencies and genotype data. To derive rows 
of Q for the remaining animals, we regressed one half of 
the genotype of each animal on the matrix PA [38, 39]:

where qi′ is the vector of estimated strata k contributions 
to animal i and zi′ is a vector of length m of genotypes 
coded as 0,1,2 (allele counts for the reference allele) for 
animal i . In cases where the sum of estimated strata con-
tributions to an animal exceeded 1 it was rescaled to 1 
[40]. Matrix PA can be augmented by a column to esti-
mate a global intercept. A non-zero intercept-estimate 
can then be interpreted as twice the contribution of a 
stratum not considered so far [38]. A non-zero intercept 
for many animals in the analysis indicates that k is not 
enough to detect all relevant strata.

Matrix G
In this investigation we constructed the genomic rela-
tionship matrix G as the cross-product of a matrix of 
recoded numeric genotype counts M (e.g., VanRaden’s 
approach 1 [3]). In this approach, the scaled genotype 
count of a homozygote for the reference allele at an 
arbitrary locus is 2− 1− 2(pB − 0.5) = 2− 2pB = 2qB , 
where pB is the frequency of the reference allele at that 
particular locus in the base population and qB = 1− pB . 
The resulting matrix is finally divided by a scaling param-
eter c =

∑m
j=1 2pBjqBj , which is the sum of expected gen-

otype-frequencies of heterozygotes calculated from base 
population allele frequencies across all m markers under 
the assumption of Hardy–Weinberg equilibrium (HWE). 
Therefore, recoded genotype counts as well as the final 
scaling parameter are functions of base allele frequen-
cies that are assumed to be known. To simplify formu-
lae in what follows we used HB = 2pBqB for the average 
expected heterozygosity over all m markers in the base 
population, hence c = m ∗HB.

Different methods to calculate the genomic relation-
ship-matrix G have been described in literature [3, 41, 
42]. No matter how G is calculated, it should preserve 
fundamental conceptual properties, e.g., it should be 
a valid coefficient matrix describing the covariance of 

(1)qi
′
= (PA

′PA)
−1PA

′(0.5zi
′),
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Mendelian sampling terms. For the following considera-
tions, we particularly require that a diagonal element of 
G must be proportional to 1+ FT ,B , where FT ,B is the 
inbreeding coefficient of an animal T  relative to base 
population B . More formally, the diagonal element cor-
responding to animal T  should fulfill

where HT is the average observed heterozygosity of animal 
T (number of all heterozygous loci relative to all loci) and 
PT ,B = HT /HB is commonly referred to as the panmictic 
index of animal T  relative to the base B [2], thus relating 
the individual heterozygosity of animal T  to the overall 
expected heterozygosity of the base population.

Assuming a fixed base population frequency of 0.5 for 
all loci in VanRaden’s approach 1 [3] when constructing G 
is a convenient way to guarantee that the above expecta-
tion (2) holds [3, 6, 11, 12]. This can be shown by equat-
ing (2) to its expectation under the assumption of a fixed 
base allele frequency of 0.5. Assuming a fixed base pop-
ulation allele frequency of 0.5 for all loci, results in the 
diagonal element of animal T  being equal to the number 
of homozygote loci it carries divided by c . This can equiv-
alently be expressed as m(1−HT )/c and hence:

Therefore, the resulting diagonals fulfill (2) if HB = 0.5 . 
If not otherwise indicated, in what follows, genomic rela-
tionship matrices are assumed to be calculated assuming 
pB = 0.5 for all markers involved in the calculation.

Rescaling
If an individual inbreeding coefficient was calculated 
by relating an individual’s heterozygosity to the overall 
expected heterozygosity of a certain base population, it 
is possible to express it referring to another base popu-
lation with different heterozygosity. In this case standard 
formulations based on panmictic indices can be used to 
transform individual inbreeding coefficients calculated 

(2)

GT ,T = 1+ FT ,B = 1+
(

1− PT ,B

)

= 1+

(

1−
HT

HB

)

= 2−
HT

HB
,

GT ,T = 1+ FT ,B

m(1−HT )

m ∗HB
= 2−

HT

HB

(1−HT )

HB
− 2+

HT

HB
= 0

2 ∗HB = 1

HB = 0.5

with reference to a particular base heterozygosity ( HB ) to 
any other base population heterozygosity ( HX ) by [2]

This approach can be extended to rescale complete 
relationship matrices, e.g., to transform a relationship 
matrix AB relating to a defined average base-group hete-
rozygosity B to another base-group with a different aver-
age heterozygosity X using

In cases where X refers to a hypothetical base popu-
lation of maximum heterozygosity ( HX = 0.5 ), which 
implies a base allele frequency of 0.5 for all loci, this 
expression simplifies to

An equivalent formulation was derived by Christensen 
[11] and has been further elaborated by Legarra et al. [12] 
within the general framework of the metafounder con-
cept. Both publications used the rescaling term γ , which 
can be interpreted as a single metafounder representing a 
base with inbreeding of γ

/

2 [11] relative to a hypothetical 
base

If rescaling is to a base population of maxi-
mum heterozygosity ( HX = 0.5 ), this simplifies to 
γ = 2(1− 2HB) = 4(0.5−HB) . Note, that when rela-
tionship matrices are used as coefficient matrices of an 
additive-genetic variance parameter, for each rescaling 
step the associated parameter estimate has to be rescaled 
accordingly [12].

Strata allele frequencies and the calculation of Ŵ
Several methods have been proposed in literature to esti-
mate the matrix of ‘self-relationships’ of Metafounders 
Ŵ either directly or via the estimation of strata-specific 
allele frequencies [43]. Although ADMIXTURE provides 
estimates for strata allele frequencies, these are estimated 
from correlated observations that are not corrected for 
trivial sources of stratification like family structures that 
are already represented by the known pedigree. Add-
ing this redundant stratification information to A would 
result in double counting of information. To compensate 
for this effect, we estimated allele frequencies based on 
both, the estimated matrix Q provided by ADMIXTURE, 

FT ,X = 1− PT ,BPB,X = 1−
HT

HB

HB

HX
,

AX = PB,X (AB − 2)+ 2,

AX = 2HB(AB − 2)+ 2,

γ

2
= FB,X = 1− PB,X

γ = 2
(

1− PB,X
)

= 2

(

1−
HB

HX

)
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and the known pedigree represented by the numerator 
relationship matrix of genotyped animals Ag , with the 
method presented by Gengler et al. [44] and further elab-
orated by Aldridge et al. [45] and Plieschke et al. [36].

where pj is a vector of estimated allele frequencies for 
marker j and A−1

g  is the inverse of the submatrix of the 
genotyped animals and zj is a vector of genotypes coded 
as 0,1,2 for all animals at marker j . Generalized least 
squares (GLS) approaches to estimate allele frequencies 
like (3) have been shown to provide unbiased estimates 
under quite general conditions [43]. Finally, Ŵ was con-
structed as described in [43] with allele frequencies esti-
mated with Eq.  (3) and relating to a base population of 
maximum heterozygosity under HWE [43]:

where P is a m x k matrix of strata-specific allele 
frequencies.

Approximation of AŴ

Founders defined as unrelated in A are considered to 
be related and inbred in AŴ [12]. Established meth-
ods to transfer the information in Ŵ to the full relation-
ship matrix of genotyped and non-genotyped animals 
use Ŵ as a kernel and develop AŴ by uniquely assigning 
pedigree-founders to one or two metafounders using 
standard algorithms to set up relationship matrices 
(e.g., the ‘tabular method’ in [12]). Legarra et  al. [12] 
proposed an approximation of AŴ , by assigning found-
ers to metafounders and tracing contributions based on 
the pedigree. Since we estimated matrix Q directly from 
genomic data, it was not straightforward to assign found-
ers which are typically non-genotyped animals, directly 
to genomic strata. A simple calculation of matrix AŴ 
using standard algorithms was therefore not possible. 
To investigate whether ADMIXTURE was successful in 
recovering latent stratification and whether the introduc-
tion of this stratification information into Ag leads in fact 
to an improved concordance between conventional and 
genomic relationships, we calculated an approximation 
of AŴ for genotyped animals only.

In our approach to approximate AŴ we tried to sepa-
rate the introduction of stratification information into Ag 
from the process of rescaling the relationship matrix to a 
different genetic base. This stepwise approach elucidates 
some aspects of the metafounder approach that are not 
immediately obvious otherwise.

(3)pj = 0.5 ∗ [(Q′A−1
g Q)

−1
Q′A−1

g zj],

(4)
Ŵ = 8 ∗

(

P
′

− 0.5
)

∗ (P− 0.5)

m
,

To approximate AŴ , we first calculated a pivotal γ , 
representing the overall self-relationship of the pedi-
gree base relative to a hypothetical base of maximum 
heterozygosity. This pivotal γ can for example be 
directly estimated using matrices Ag and G via [12]

when G was calculated with base allele frequencies of 
0.5. Note that this pivotal γ directly provides an estimate 
of the overall heterozygosity of the pedigree base ( HB ) 
given that HB = 0.5− 0.25γ (assuming homogeneity and 
HWE).

If the matrix Ŵ of ‘self-relationships’ of metafounder 
has been calculated as described in (4), its implicit 
reference is a base of maximum heterozygosity with a 
base allele frequency of 0.5 ( HX = 0.5 ) under HWE. We 
have indicated this with subscript X , using ŴX in the 
following. Such a ŴX cannot readily be combined with 
a standard relationship (sub-) matrix Ag in an additive 
manner, since Ag is referring to the actual heterozygo-
sity of the pedigree base ( HB ). Therefore ŴX , must be 
rescaled to refer to the same base as Ag by calculating

Matrix ŴB then refers to the same genetic base as 
matrix Ag but it is not in the standard form of a rela-
tionship matrix. To achieve this, we calculated

where I is an identity matrix, and DB is a diagonal matrix 
containing the diagonal elements of ŴB multiplied by 0.5. 
Stratification information as represented by ŴB

∗ is then 
combined with the standard relationship matrix Ag to 
give an approximate AŴ

B by calculating

Matrix AŴ

B includes information on stratification but 
still refers to the heterozygosity of the pedigree base 
(indicated by subscript B ). To compare or combine it 
with a matrix G calculated referring to a base of maxi-
mum heterozygosity it has to be rescaled to finally give 
AŴ

X or simply AŴ (in concurrence with [12])

(5)γ =
G− Ag

1− Ag/2
,

ŴB = PX ,B(ŴX − 2)+ 2 =

HX

HB
(ŴX − 2)+ 2 =

1

2HB
(ŴX − 2)+ 2,

ŴB
∗
= (I−DB)+ ŴB,

(6)AŴ

B ≈ Ag +Q
(

ŴB
∗
− I

)

Q
′

,
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Evaluation of results
We used several evaluation criteria to test the improve-
ment of the compatibility of the derived AŴ and G as 
compared to the compatibility of Ag and G . Legarra et al. 
[12] recommended the comparison of overall means and 
mean diagonal values of AŴ and G as evaluation criteria. 
If no difference in overall means exists, this indicates 
that both matrices refer to the same overall heterozy-
gosity and no further scaling is necessary (pivotal γ of 
zero). For the comparison of means we computed the 
difference in means of all matrix elements ( G− A

Ŵ ) 
and the difference in the means of the diagonal elements 
( diag (G)− diag (A

Ŵ
) ). Both criteria have optimum val-

ues of 0.
Additionally, we regressed elements of AŴ on G , and 

calculated intercept ( a ), slope ( b ) and fit (R2) of the 
regression [3, 42]. Using this form of regression has the 
advantage of keeping the independent variable constant 
throughout the optimization process. When evaluating 
AŴ , R2 should be at least as high as for the regression of A 
on G . However, the expectations of a and b are not intui-
tively obvious. Authors of [42] used a similar regression 
of standard coancestry coefficients derived from matrix 
A on genomic coancestries derived from covariance like 
versions of the genomic relationship matrix G, similar to 
those proposed here. They argued that the estimates of 
intercept and slope in this form of regression should be 
close to 0 and 1 if A ( AŴ ) and G are properly scaled to 
same genetic base [42]. They confirmed this expectation 
by dropping 10,000 unlinked loci through a pedigree of 
ten discrete generations using uniform founder allele fre-
quencies of 0.5. When introducing linkage in the simula-
tion they found however, that estimated slopes tended to 
be generally lower than 1, indicating that the dispersion 
of relationships in G with linkage should be larger than 
the dispersion of corresponding coefficients in A [42]. 
Transferring this result to our situation we argue that an 
upper limit of 1 for the slope should be a reasonable cri-
terion in the evaluation of the dispersion in AŴ.

Principal components analysis (PCA) of SNP-geno-
types is an established method to uncover and visualize 
population stratification [46]. PCA was performed using 
the eigen() function in R v.3.5.2 [47] on AŴ and G , respec-
tively, and the first two principal components were plot-
ted with the ggplot2 package [48] to visualize the effect 
of an increased number of strata ( k ) on the composi-
tion of AŴ . In all plots, eigenvectors were multiplied by 
their respective eigenvalues to reflect the proportion of 
total variance associated with the respective principal 
component.

(7)AŴ
≈ 2HB

(

AŴ

B − 2
)

+ 2,
Dataset
To investigate the feasibility of our approach we used 
genotype and pedigree data of the Brown Swiss breed. 
Earlier studies on Brown Swiss showed that this popula-
tion exhibits a considerable degree of stratification due to 
its breeding history [36, 37, 49]. In short, the Brown Swiss 
breed originates from Switzerland. Export of breeding 
animals began in the nineteenth century [50]. Some of 
these animals founded the US Brown Swiss population 
[51]. In Europe and the US different breeding goals were 
pursued (multipurpose vs. dairy focused). Starting in 
the 1960s, US semen was used extensively in the Euro-
pean Brown Swiss population to adapt the breed to the 
changing demands. On the other hand, there was only a 
marginal contribution of European populations to the US 
population after the initial phase in the nineteenth cen-
tury. In the 1980s Original Braunvieh (OBV) herdbooks 
were established to preserve the original multipurpose 
type of the breed. These herdbooks excluded the registra-
tion of animals with US contributions [52]. Today most 
Brown Swiss animals in Europe have a very high propor-
tion of the US breed and coexist with small populations 
of OBV.

Analyses were performed on the genotypes used in the 
joint Single-Step breeding value estimation of the Ger-
man and Austrian Brown Swiss population in April 2022. 
Additionally, 1180 OBV animals with genotypes were 
included in this set. These are currently not considered in 
the routine genetic evaluation. Declaration of OBV status 
differs slightly between countries, most OBV genotypes 
come from Switzerland (1114). In total, 85,249 genotypes 
were available. These include historic bulls born before 
2000, bull dams and selection candidates born from 2000 
to 2010 and genotypes of cows and selection candidates 
from birthyear 2010 onwards. Of the 85,249 genotyped 
animals, 100 had a missing sire, 363 a missing dam. There 
were no animals with both parents missing. In 1630 cases 
there was only one genotyped offspring per sire, three 
sires had more than 1200 genotyped offspring each. The 
standard pedigree used in routine breeding value esti-
mation for these 85,249 animals consisted of 316,579 
animals, which are the ancestors of the genotyped ani-
mals. Table 1 displays the distribution of the genotyped 
animals across countries of origin and sex. In the defi-
nition of country of origin, animals from Germany and 
Austria were grouped into ‘DEA’ and animals from USA 
and Canada were grouped into ‘USACAN’. Apart from 
those groups, Switzerland (CHE) and Italy (ITA) were 
countries of origin with larger animal numbers. The 
remaining eleven countries were grouped into ‘OTHER’. 
Foreign (i.e., not DEA) genotypes mainly came from AI-
bulls, whereas for the DEA population most of the geno-
types were from cows. Genotypes were predominantly 
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available for recent birth years, only a few bulls with birth 
years before 2000 were genotyped. A similar structure 
could be observed for the OBV group (see Additional 
file  2 Table  S1). From the Intergenomics initiative, gen-
otypes of foreign ancestors of DEA bulls were in many 
cases available. The available genotypes were checked for 
parental assignment and corrected, if necessary. Because 
of ADMIXTURE’s sensitivity to familial structure, addi-
tional samples of genotyped animals were constructed, 
by a simple rule-based approach:

•	 For every paternal half-sib group select one member
•	 For every maternal half-sib group select one member
•	 For every animal with both parents genotyped, 

remove its offspring
•	 Keep all animals with unknown parents

Following these rules, two samples were drawn, one 
selecting only the offspring with the highest call-rate 
(S2), the other one selecting one random member of each 
group (S3). This resulted in 4152 and 4150 animals for 
S2 and S3, respectively. To test the effect of sample size 
on the results, 4152 animals (S4) were randomly selected 
from all genotyped animals. The structure of these addi-
tional samples is also outlined in Table 1.

In routine genotyping of DEA animals, an Illumina 
Bovine BeadChip (Illumina Inc., San Diego, CA) with 
approximately 43K SNPs customized for the DEA 

population was used. From animals genotyped with 
other chips, only these 43K markers were retained. For 
all animals, after the initial edits (i.e., exclusion of mark-
ers with call-rate < 0.95, minor allele frequency < 0.01 
or redundancy with another locus), 42,384 SNPs mark-
ers remained for the computation of G . For the estima-
tion of allele frequencies only annotated SNPs were used 
(41,950). ADMIXTURE assumes linkage equilibrium 
between SNPs [35]. Calus et  al. [53] reported a loss of 
accuracy in ADMIXTURE results when SNP selection is 
either too stringent or lenient. We considered only every 
other SNP on each chromosome, to reduce LD while 
retaining enough SNPs to achieve accurate estimates, 
resulting in 20,983 SNPs in the ADMIXUTRE analyses.

Results
Comparison of initial Ag and G
Using the submatrix of genotyped animals taken from 
a standard numerator relationship matrix based on the 
existing pedigree ( Ag ) the pivotal γ was calculated to be 
0.694 corresponding to an average heterozygosity of the 
pedigree base of 0.5− 0.25γ = 0.327 (Table 2). In the ini-
tial situation G and Ag therefore refer to different average 
base heterozygosities (0.5 vs. 0.327) and are not directly 
comparable. This is also indicated by a highly negative 
value for the intercept when regressing Ag on G (Table 2).

When Ag was scaled by the pivotal γ to match G , the 
mean and mean-diagonal values of resulting Aγ and G 
were identical. Values for slope and R2 were identical to 

Table 1  Number of genotyped animals for each sample and distribution across country of origin

N Number of animals in sample, assignment was done by country of origin, CHE Switzerland, DEA Germany and Austria, ITA Italy, OBV Animals recorded as Original 
Braunvieh, USACAN United States of America and Canada, OTHER Other country of origin

N Sex CHE DEA ITA OBV OTHER USACAN

S1 85,249 Male 4929 22,166 2530 1177 1721 2131

Female 18 50,505 5 3 49 15

S2 4152 Male 598 900 252 455 186 228

Female 0 1530 0 1 2 0

S3 4150 Male 468 759 183 445 155 170

Female 1 1963 0 1 5 0

S4 4152 Male 261 1047 133 63 114 100

Female 0 2428 0 0 3 2

Table 2  Results of the regression of Ag and Aγ on G

a = intercept, b = slope of the regression, R2 = fit of the regression, G = genomic relationship matrix, Ag=submatrix of genotyped animals of the numerator relationship 
matrix, Ay = Ag rescaled by γ, G− A=Difference of means of respective matrices, diag (G)− diag(A)=Difference of the means of the diagonals of respective matrices

Matrix a b R2
G − A diag(G)− diag(A) Pivotal γ

G 0.694

Ag − 0.489 0.780 0.647 0.657 0.330

A
γ 0.375 0.509 0.647 0 0
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the initial Ag , but the intercept was still comparably large. 
Comparing PCA plots of Aγ and G confirmed both to be 
on a similar scale, as opposed to the initial situation with 
Ag  (Fig. 1). Differences between the numerator relation-
ship matrix and the genomic relationship matrix are vis-
ible in Fig. 1. Along the first principal component (PC), 
Aγ and Ag underestimated the distance between OBV 
and Brown Swiss subpopulations which is apparent in the 
PCA of G . Information on variation within the OBV clus-
ter was also missing from Aγ and Ag . All three matrices 
( Ag , Aγ and G ) showed a gradient along PC2 differentiat-
ing USACAN and OTHER from DEA.

Detecting stratification and Ŵ
ADMIXTURE assigns anonymous stratifications based 
on the input data. To interpret ADMIXTURE’s strategy 
of assignment, animals in PCA plots of G were colored 
according to the identified dominant stratum (V1 to V10) 
for k = 2 to 10 (e.g., an animal with at least 33% assign-
ment to stratum V1 for k = 3, is assigned to V1) (Figs. 2 
and 4).

Full sample (S1)
For S1 and k = 2, ADMIXTURE detected the groups of 
DEA and USACAN as the most important sources of 
stratification. Only for k ≥ 7 OBV was detected as a rel-
evant stratum (Fig. 2).

For illustration purposes the matrix Ŵ for k = 7 was 
rescaled to the heterozygosity of the pedigree base using 
the pivotal γ of 0.694 and presented in the form of a con-
ventional relationship matrix (Table  3) (for details see 
"Approximation of AŴ" in "Methods" section). Stratum 
6 showed large negative relationships (range –  0.223 to 
– 0.190) to all other strata and a diagonal value less than 
1 (0.963). All other strata had a diagonal value larger than 
1 and relationships between strata ranged from –  0.005 
(3 to 7) to 0.144 (1 to 4). Closer inspection of the strata 
showed that V6 corresponded to the OBV group while 
all other strata comprised large half-sib families (Fig. 3). 
Sires V and VI were important US sires, and although 
Sire IV was registered with a Swiss ISO code, its pedigree 
contained many US animals. Sires I, II, and III were sires 
registered in Germany. The 10 most influential sires in 
our dataset had more than 800 offspring each. Sires V, III, 
and I each had more than 1200 offspring in the data. For 

Fig. 1  PCA Plot of Ag , Aγ and G matrix. All comparisons are done based on a random subsample of ~ 10% of the genotyped animals. Animals are 
colored according to country of origin taken from ISO number, except for registered OBV which are all in black
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PC3 and PC4 the separation of US-influenced half-sib 
groups was clearer (See Additional file 1 Fig. S1).

Reduced relationships sample (S2)
ADMIXTURE is sensitive to familial structures in the 
data. This was described by several authors [25, 26, 53] 
and can also be seen from the results of the analysis of 
S1 which showed that many strata correspond to pater-
nal half-sib families. This makes it more difficult to 
detect the underlying structure of the base population. 

Information on familial structures on the other hand 
was in many cases available from pedigree data. There-
fore, we reduced the relationships between genotypes 
used in the analysis by sampling unrelated individuals 
(S2). In this sample ADMIXTURE identified OBV as a 
relevant stratification already from k = 2 on, splitting 
the population along the x-axis as expected (Fig.  4). 
Along the y-axis, k = 3 shows a first separation, roughly 
corresponding to DEA and USACAN subpopulations.

Fig. 2  PCA Plot of G , color according to identified stratification for ADMIXTURE run in full set of genotypes (S1)

Table 3  Ŵ rescaled using pivotal γ and displayed as a relationship matrix, for k = 7 for full set of genotypes (S1)

For the sake of readability only the lower triangular matrix is displayed

Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5 Stratum 6 Stratum 7

Stratum 1 1.208

Stratum 2 0.074 1.195

Stratum 3 0.037 0.062 1.170

Stratum 4 0.144 0.132 0.073 1.145

Stratum 5 0.089 0.100 0.049 0.132 1.164

Stratum 6 − 0.218 − 0.190 − 0.202 − 0.212 − 0.223 0.963

Stratum 7 0.108 0.061 − 0.005 0.128 0.094 − 0.205 1.232
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Adjusting Ag to G : evaluation of AŴ

Results of the process of adjusting Ag to G by increasing k 
from 2 to 40 for the full (S1) and reduced sample (S2) are 
presented in Tables 4 and 5. Results for additional control 
samples S3 (without half-sib structure) and S4 (with half-
sib structure) are presented in Additional file 2 Tables S2 
and S3, respectively.

Full sample (S1)
For S1 a strong increase in R2 (0.706 to 0.807) was 
observed from k = 6 to k = 7, and k = 7 was the first k 
to identify OBV as a distinct stratum (Fig. 2). Beyond k 
= 7, R2 fluctuated around 0.810 but estimates of slopes 
indicated an increasing overdispersion of AŴ between k 
= 7 and k = 11 and in addition, larger mean differences 
(globally and diagonally) were observed. For k ≥ 11, R2 
remained high with only minimal fluctuations, and no 
further improvements in a or b were observed. Over-
dispersion remained more or less constant. However, 
for k between 20 and 30 the global mean difference 
reached values very close to zero (pivotal gamma of zero) 

indicating that the adjustment with respect to global het-
erozygosity might be ideal somewhere in this range. As 
indicated by a b-value larger than 1, overdispersion for k 
= 7 was also visible in the PCA plot (Fig. 5).

Reduced relationships sample (S2)
For k = 2 in sample S2 all parameters showed a much 
better fit than in S1. Only for k ≥ 10 R2 increased to val-
ues greater than 0.802. Global mean differences were at 
a minimum for k = 15 and k = 16, but values for a and 
b were not within optimum range. The investigation 
sequence revealed a relatively clear approach to a maxi-
mum R2 that was found for k = 23 to 25 with a value of 
0.818 which was noticeably larger than the maximum 
value found in sample S1. The estimated slope for k = 
24 to 25 was below 1, with intercepts and mean differ-
ences acceptably small. The plot of PC for k = 24 overall 
showed a good agreement with a slight shift of AŴ to the 
right as compared to Ag and G which is a consequence of 
the slightly positive mean difference (Fig. 6 and Table 5). 
The OBV group showed a slightly larger spread than 
observed in G.

Fig. 3  PCA of large half-sib families corresponding to stratification identified by ADMIXTURE in the full set of genotypes (S1). Separable groups 
within modern Brown Swiss relate to specific sires. Shape indicates parentage of a specific sire. Larger Shapes indicate the specific sires themselves. 
Registered OBV are all one shape. Color is according to assigned stratification of specific animal
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Additional samples (S3 and S4)
To investigate the effect of our sampling strategy, two 
additional samples were drawn (for details see ‘Dataset’ 
in Methods). For computational reasons ADMIXTURE 
analysis on S3 and S4 was performed only for k = (2–10, 
15, 20–25, 30, 35, 40). Results for S3 were similar to 
results obtained from S2. For k = 24 values close to opti-
mum were found, confirming the results from analyses of 
S2. Evaluation criteria for S3 showed a very similar trend 
in approaching an optimal value as observed for S2 (See 
Additional file 2 Table S2). Results of S4 were comparable 
to those obtained from S1. When OBV was identified as 
a distinct stratum, there was an increase in R2 (for k = 8, 
0.721 vs. 0.809). Maximum R2 was found for k = 22, val-
ues for intercept and slope were close to optimal for k = 
8, although a b of 1.033 already indicated a slight overdis-
persion. As observed with S1, R2 might be better for addi-
tional k , but intercept and slope indicated an increase 
in overdispersion in AŴ (See Additional file 2 Table S3). 
Overall, an optimal range for k could be identified con-
sistently for the ‘unrelated’ samples S2 and S3, since the 
optimum values for intercept, slope and R2 occurred in 
the same range of k . Analysis of samples S1 and S4 con-
sidering all evaluation criteria gave no conclusive range 

for the optimal number of strata. An important difference 
between S2 and S3 as compared to S1 and S4 was that R2 
for S2 and S3 increased towards a stable plateau before 
it began to decrease, whereas S1 and S4 both showed a 
noticeable increase when OBV was detected as a distinct 
stratum, followed by inconclusive fluctuations in R2.

Discussion
Our study was performed on genotypes from Brown 
Swiss animals to test an approach to improve the com-
patibility of Ag and G by identifying present stratifica-
tions in the population using software for population 
structure analysis and by transferring this information 
to Ag using metafounder methodology. We showed that 
close relationships, which are common in populations 
under selection, lead to unexpected results from pop-
ulation structure analysis using ADMIXTURE. Nev-
ertheless, identifying anonymous stratifications and 
transferring this information to Ag using Legarra et al.’s 
[12] approach and the presented alternative, yielded 
considerable improvements in the compatibility of AŴ 
and G as indicated by the evaluation criteria.

Fig. 4  PCA plot of G , color according to identified stratification for ADMIXTURE run in a sample with reduced relationship (S2)
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Detection of population stratification
Initial PCA confirmed a subdivision within the European 
Brown Swiss population already described by authors 
from our group [36, 37]. This subdivision into OBV, DEA, 
and USACAN clusters could be detected in the Ag and 
G matrices. However, Ag lacked information on variation 
within the OBV group and underestimated the distance 
between the modern Brown Swiss population and OBV 
(Fig. 1).

ADMIXTURE frequently identified half-sib groups as 
strata when analysis was run on a typical cattle breeding 
population (S1). Because of the implemented maximum 
likelihood model, a small error in assignment to a specific 
stratum for many animals may have more impact than 
a large error for only few animals. This seemed evident 
by the order of detected stratifications in S1, where the 

OBV group was identified only for k ≥ 7 ( k ≥ 8 in S4). 
This indicates that, given the number of genotypes in the 
various groups, relationships and gradients of drift within 
the modern Brown Swiss population had stronger influ-
ence on the discriminant statistics of ADMIXTURE than 

Table 4  Results for full set of genotypes (S1)

k = number of stratifications considered, a = intercept, b = slope of the 
regression, R2 = fit of the regression, G=genomic relationship matrix, AŴ

=numerator relationship matrix amended by stratification information, G− AŴ

=Difference of means of both matrices, diag (G)− diag(AŴ)=Difference of the 
means of the diagonals of both matrices

k a b R2
G − AŴ diag(G)− diag(AŴ)

2 0.340 0.530 0.637 0.019 0.015

3 0.250 0.668 0.690 0.003 − 0.001

4 0.245 0.674 0.689 0.004 − 0.002

5 0.218 0.710 0.701 0.004 − 0.005

6 0.196 0.738 0.706 0.005 − 0.006

7 − 0.028 1.087 0.807 − 0.038 − 0.049

8 − 0.058 1.128 0.808 − 0.040 − 0.054

9 − 0.078 1.150 0.808 − 0.037 − 0.053

10 − 0.074 1.141 0.808 − 0.034 − 0.051

11 − 0.076 1.139 0.810 − 0.030 − 0.050

12 − 0.069 1.123 0.807 − 0.025 − 0.047

13 − 0.065 1.115 0.804 − 0.023 − 0.046

14 − 0.068 1.114 0.807 − 0.019 − 0.044

15 − 0.091 1.147 0.807 − 0.022 − 0.048

16 − 0.068 1.108 0.808 − 0.014 − 0.042

17 − 0.086 1.133 0.804 − 0.017 − 0.045

18 − 0.082 1.124 0.806 − 0.012 − 0.042

19 − 0.087 1.126 0.808 − 0.010 − 0.041

20 − 0.082 1.117 0.806 − 0.008 − 0.040

21 − 0.095 1.134 0.809 − 0.008 − 0.040

22 − 0.081 1.113 0.804 − 0.005 − 0.039

23 − 0.083 1.115 0.805 − 0.004 − 0.038

24 − 0.087 1.117 0.806 − 0.003 − 0.038

25 − 0.090 1.120 0.806 − 0.001 − 0.037

26 − 0.087 1.113 0.807 0.001 − 0.036

27 − 0.094 1.122 0.805 0.001 − 0.036

35 − 0.093 1.107 0.801 0.012 − 0.032

40 − 0.100 1.112 0.803 0.015 − 0.031

Table 5  Results for sample with reduced relationship (S2)

k = number of stratifications considered, a = intercept, b = slope of the 
regression, R2 = fit of the regression, G=genomic relationship matrix, AŴ

=numerator relationship matrix amended by stratification information, G− AŴ

=Difference of means of both matrices, diag (G)− diag (AŴ)=Difference of the 
means of the diagonals of both matrices

k a b R2
G − AŴ diag(G)− diag(AŴ)

2 − 0.032 1.068 0.802 − 0.020 − 0.025

3 − 0.021 1.074 0.783 − 0.035 − 0.037

4 − 0.050 1.108 0.793 − 0.033 − 0.039

5 − 0.055 1.111 0.795 − 0.030 − 0.038

6 − 0.056 1.109 0.798 − 0.027 − 0.037

7 − 0.058 1.110 0.798 − 0.026 − 0.037

8 − 0.072 1.126 0.802 − 0.024 − 0.038

9 − 0.070 1.118 0.801 − 0.020 − 0.035

10 − 0.068 1.109 0.805 − 0.015 − 0.032

11 − 0.069 1.106 0.809 − 0.012 − 0.030

12 − 0.073 1.109 0.809 − 0.011 − 0.029

13 − 0.068 1.099 0.807 − 0.008 − 0.026

14 − 0.068 1.095 0.809 − 0.005 − 0.024

15 − 0.069 1.093 0.811 − 0.002 − 0.022

16 − 0.066 1.084 0.811 0.002 − 0.019

17 − 0.065 1.079 0.811 0.005 − 0.017

18 − 0.061 1.072 0.812 0.006 − 0.016

19 − 0.061 1.069 0.812 0.008 − 0.014

20 − 0.065 1.072 0.812 0.010 − 0.012

21 − 0.062 1.064 0.811 0.013 − 0.010

22 − 0.059 1.059 0.812 0.014 − 0.009

23 − 0.045 1.038 0.818 0.015 − 0.008

24 − 0.020 0.998 0.817 0.021 − 0.003

25 − 0.020 0.995 0.817 0.024 − 0.001

26 − 0.018 0.989 0.815 0.027 0.003

27 − 0.019 0.986 0.815 0.029 0.004

28 − 0.016 0.981 0.814 0.031 0.006

29 − 0.015 0.975 0.813 0.034 0.008

30 − 0.029 0.992 0.813 0.035 0.011

31 − 0.028 0.989 0.814 0.037 0.012

32 − 0.035 0.996 0.813 0.039 0.014

33 − 0.028 0.982 0.812 0.042 0.016

34 − 0.027 0.978 0.811 0.044 0.018

35 − 0.027 0.975 0.809 0.045 0.020

36 − 0.025 0.970 0.806 0.048 0.022

37 − 0.026 0.969 0.810 0.050 0.024

38 − 0.027 0.968 0.808 0.051 0.025

39 − 0.027 0.965 0.808 0.054 0.027

40 − 0.026 0.960 0.806 0.056 0.029
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the graphically more intuitive separation between mod-
ern Brown Swiss and OBV. In total, only 1180 animals 
were registered as OBV, whereas the three most influ-
ential Brown Swiss sires have > 1200 offspring each. The 
challenge to account for familial structure in ADMIX-
TURE analysis has been addressed by other authors [25, 
26]. In preliminary tests we found the KING approach as 
suggested by Manichaikul et al. [26], where kinship coef-
ficients are inferred while considering population struc-
ture, not suitable for our objective.

Our simple approach where we selected one indi-
vidual from each half-sib family was easy to implement 
but interpretation is a challenge, because the sampling 
changed also the relative importance of the OBV group 
in our data. We observed that OBV was detected much 
earlier than in the full dataset, but it cannot be excluded 
that this is due to the relatively larger size of OBV in S2. 
However, given the fact that only one genotype per half-
sib group was included, it seems obvious that OBV will 
be detected already for a smaller k. The results for S3 
were consistent with those from S2. However, due to the 
familial structure of the data 2366 out of 4152 animals 
were included in both samples. The importance of the 

familial structure can also be concluded from the com-
parison of the results of S1 and S4 which showed similar 
tendencies despite the large difference in sample size. We 
conclude that sampling one animal per half-sib family is 
preferrable to the analysis of the whole dataset, because 
there is less redundancy between the identified strata and 
the information contained in Ag.

ADMIXTURE’s CV-option was not able to detect an 
optimal value of k , as indicated by a clear minimum, for 
any of the four samples. This trend was also observed 
by Decker et  al. [24] in an analysis of the world cattle 
population. A steadily decreasing CV-criterion implied 
that ADMIXTURE continued to find additional strati-
fication in the population. This was most likely due to 
groups of animals with close relationships in the sample. 
Even when large half-sib groups were removed (S2 and 
S3), the remaining animals shared some degree of rela-
tionship typical for a modern breeding population under 
selection.

Regression
ADMIXTURE only provided rows in Q for animals, 
which were part of the ADMIXTURE analysis. When 

Fig. 5  PCA of Ag , G and AŴ from the full set of genotypes (S1) for k = 7. AŴ shows more variation between Brown Swiss and OBV, and within Brown 
Swiss cluster than seen in G
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the sample size was reduced (as in S2, S3, and S4), 
rows in Q from ADMIXTURE were only available for 
the 4152 animals in the respective samples. A regres-
sion analysis has been successfully applied to estimate 
genomic breed contributions in scenarios, where allele 
frequencies of base groups were available [39, 54]. Since 
ADMIXTURE also provided a matrix PA , with allele 
frequencies for each stratum, the two approaches can 
be combined to expand Q to comprise all genotyped 
animals. A beneficial side effect of a smaller sample 
size was the reduction in computing time for ADMIX-
TURE. Additional investigations showed that estimates 
from ADMIXTURE Q for S2 to S4 and estimates from 
regression Q for these animals based on the respective 
PA show only small differences in assignments (results 
not shown). The combination of ADMIXTURE and 
regression could also be helpful for situations where 
genotypes are constantly added to the data pool, as 
it is common for genomic breeding value estimation 
systems in dairy cattle, because it circumvents the 
computation of all strata every time an evaluation is 
conducted.

The inclusion of an intercept in the regression of gen-
otypes on strata-allele-frequencies could be used as a 

quality control. According to Chiang et  al. [38] a non-
zero intercept can be interpreted as an indication of 
missing strata in the analysis (value for k too low). For all 
the investigated samples, animals with an intercept > 0.1 
were found. For each additional k , less animals showed 
an intercept > 0.1, but even for k = 40, a small group of 
57 to 89 (S2: 57, S3: 64, S4: 89) animals showed an inter-
cept > 0.1. However, our intention was not to detect 
every possible stratification in the data, but to identify 
stratification that was not already captured by pedigree 
data ( Ag ) and that could be a source of inconsistencies 
between Ag and G.

Metafounder concept
The Metafounder concept can be visualized by four lay-
ers and the links between them (Fig. 7). The first layer is 
a hypothetical unrelated base population with maximum 
heterozygosity. This base is connected to the layer of 
metafounders (Layer 2) which is also a conceptual one. 
Metafounder allele frequencies are necessarily differ-
ent from the base allele frequencies which implies that 
metafounders are already partially inbred and related to 
each other [12]. The metafounder-layer is followed by a 
first layer consisting of real animals: the pedigree base 

Fig. 6  PCA Ag , G , AŴ for ADMXITURE a sample with reduced relationship (S2) and k = 24. Shift of AŴ to the right, somewhat larger variaton in OBV 
group, but overall distance between OBV and Brown Swiss is closer to G than estimates for S1
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(Layer 3). Because animals of the pedigree base are in 
most cases not identical with strata-founders, they can-
not be considered as part of the metafounders-layer. The 
fourth layer consists of genotyped animals. This layer 
provides the information required to estimate the charac-
teristics at the metafounder-layer (i.e., allele frequencies). 
To be able to consistently transfer this information across 
all layers, the genotyped animals need to be connected 
to the pedigree base (link 3) and there should be some 
degree of knowledge of the pedigree base’s relationship to 
the metafounders (link 2).

Applying the metafounders concept in a population 
with a long history of crossbreeding and admixture like 
the European Brown Swiss population lead to some 
obstacles. The information needed to define metafound-
ers was only available from the genotyped animals. When 
assuming two metafounders for Brown Swiss (European 
and US origin), pedigrees would need to be traced back 
to the 1960s, before admixture started. Most pedigrees of 
the current Brown Swiss population could not be traced 
back to that period, thus no information regarding the 
admixture level of the pedigree base was available. With-
out this information, an assignment of the pedigree base 
to the metafounders remained arbitrary. Because of that 
missing link, the information regarding metafounder 
allele frequencies could not be passed on from the geno-
typed animals via the pedigree base to the metafounder 
(links 3 and 2 fail).

In current literature, metafounders are defined similar 
to unknown parent groups (UPG) [12–15, 17, 18, 55], by 
assigning pedigree-founders to metafounders based on 
information on birth-years and/or known or assumed 
origin. This approach showed in previous studies vary-
ing results on bias. When modelling the same number 
of metafounders and UPG in routine evaluation, Kudi-
nov et  al. [17] found only slight improvements in bias. 
Macedo et  al. [14] found that only a combination of 
metafounders and a systematic data cut gave unbiased 

results in ssGBLUP. Other authors reported bias due to 
unbalanced definition of metafounders [56] or UPG [55]. 
Fikse [57] addressed considerations in establishing UPG 
and problems with assigning UPG based on incorrect 
information. Using data from Lacaune sheep, Macedo 
et al. [14] reported ~ 8% missing pedigrees. In dairy cat-
tle especially dam information is frequently missing [58]. 
In a situation where genomic information of animals in 
a population is readily available, defining metafounders 
based on (incomplete) pedigree information alone seems 
to be insufficient and might lead to a situation where the 
existing stratification of the population is not sufficiently 
detected. In a worst-case scenario, the information rep-
resented by one true metafounder might be divided 
into several UPG/metafounder and be greatly diluted 
or eventually be lost. In our case, animals registered as 
OBV were not part of the routine breeding value estima-
tion. If OBV animals would be included in the genomic 
evaluation, based on their ISO-Codes, they would be 
assigned to an UPG comprising unknown parents from 
Switzerland. This would not reflect the true stratification 
that requires a separate group for OBV. When estimating 
allele frequencies for those Swiss groups, the resulting 
estimates would most likely miss the relevant aspects of 
the OBV group, working instead with a mean of modern 
Brown Swiss and OBV animals. This situation would be 
comparable to the situation found in the analysis of S1, 
where k = 2 did not identify Brown Swiss and OBV, but 
a stratification within the Brown Swiss cluster, clustering 
OBV together with US-influenced animals. This yielded 
no improvements compared to the initial situation, only 
the detection of OBV as a distinct stratum improved the 
compatibility of AŴ and G considerably (Table 4).

In this context, it is interesting that PCA and ADMIX-
TURE both identified individuals in the data as OBV that 
were registered as members of the modern Brown Swiss. 
Again, this information would have been lost in the usual 
metafounder approach. This might at least partly explain 

Fig. 7  Visualization of Metafounder concept – revisited. In the original Metafounder concept, all layers and the connections between them are 
relevant (in blue). In our approach we go directly from Layer 4 to Layer 2 (red arrow), skipping Layer 3, the pedigree base
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why models using metafounders showed no conclusive 
improvements in ssGBLUP compared to approaches with 
UPG [12–15, 17, 18, 55].

Estimation of Ŵ
We were not able to find any reference using informa-
tion from population structure analysis to define meta-
founders and estimate characteristic allele frequencies. 
Legarra et al. [12] proposed two methods to estimate Ŵ : a 
maximum likelihood method and a method of moments 
based on summary statistics. Garcia-Baccino et  al. [43] 
presented a GLS method to yield unbiased results. We 
used a Q matrix estimated from an analysis of popula-
tion structure in combination with an approach to esti-
mate base allele frequencies proposed by Gengler et  al. 
[44] and adapted as proposed by Aldridge et al. [45]. To 
establish a homogenous base population, only animals 
with at least 85% of their ancestry traceable to a base set 
to 1985 were used for the estimation of allele frequencies. 
When k increased, we observed an increasing number of 
estimates outside the parameter space. This was consist-
ent with population genetic theory, as far as in divergent 
lines alleles become fixed [2]. However, this could also 
be a consequence of reducing effective sample sizes for 
the estimation of metafounder frequencies. Neverthe-
less, since the elements of Ŵ are functions of summary 
statistics across many markers (e.g., average expected 
heterozygosity across 42k markers) we assume that 
decreasing sample sizes did not have a strong impact on 
the results.

Transfer of Information
We presented an approximate approach to construct AŴ , 
with separate steps for the introduction of stratification 
information into Ag and the rescaling of the relationship 
matrix to a different genetic base. This way, we detangled 
two fundamental aspects that were somewhat obscure in 
Legarra et al.’s [12] original description of the approach. 
When comparing our approach to the corresponding 
submatrix derived by the approximation given in Legarra 
et al. [12] we found our approximation to be more com-
prehensible, and slightly more precise with respect to 
inbreeding coefficients but otherwise providing similar 
results (see Additional file 3). In contrast to the conclu-
sions of Legarra et al. [12], we conclude that a consistent 
approximation of AŴ using a general expression of the 
form AŴ ≈ Ag +QŴQ′ is reasonable, when aspects of 
rescaling are correctly taken into account, as we showed 
in the "Methods". A model, where strata-effects are ran-
dom effects with covariance-matrix Ŵ like for exam-
ple proposed in [36], would be an appropriate choice 
in such a situation. Moreover, deriving information for 
Ŵ from genotypes and adding this information to Ag to 

improve the compatibility to G would in reverse suggest 
that matrix G in the presence of stratification is approxi-
mately of the form GA +QŴQ′ , where GA is a genomic 
relationship matrix free of stratum information [36].

Shortcomings
An evaluation of the performance of our optimum AŴ 
in routine genetic evaluation was beyond the scope of 
this paper. Whether the obtained AŴ improves ssGB-
LUP will be subject of further research. Since we esti-
mated Q only for genotyped animals, the implementation 
of our approach in ssGBLUP is not straightforward. To 
achieve an implementation, different sources of informa-
tion must be connected: animals with phenotypes only, 
animals with genotypes and phenotypes, and animals in 
their pedigree. Assigning animals at the end of a pedi-
gree to UPG/metafounders (and tracing contributions 
through the pedigree) using traditional strategies is not 
directly applicable to our approach. In order to achieve 
that, matrix Q would have to be extrapolated to non-
genotyped animals in the pedigree. At present we do not 
see a feasible way to extrapolate Q to non-genotyped ani-
mals beyond a quite general projection based on pedi-
gree information. Another aspect is in line with concepts 
developed by Plieschke et al. [36]. In their study, instead 
of adding information to A , G was manipulated to match 
Ag by subtracting stratification information. However, 
this stratification information might better be modeled 
independently. Both of these important aspects were 
beyond the scope of the current investigation and will 
hopefully be addressed in future investigations.

Conclusion
The goal of this study was to improve the compatibility 
of matrices Ag and G by using stratification information 
directly derived from genotype data. We used ADMIX-
TURE to identify strata and we used methodology 
described in the metafounder concept to introduce this 
information into Ag . Evaluation of this process was based 
on the realized improvements obtained by visual inspec-
tion of graphs from PCA, by regression analysis and 
through the comparison of the mean and mean diagonal 
values of both matrices.

Adding stratification information to Ag improved the 
compatibility of resulting AŴ and G considerably com-
pared to the initial situation. An interpretation of the 
optimum k as identified by the evaluation criteria ( k = 
24 for S2 and S3) was not straightforward and was not 
the aim of this study. For our purpose, we considered 
each stratification to be relevant as long as it improved 
the compatibility of Ag and G . ADMIXTURE can be a 
helpful tool to identify such stratification in the data, 
but restriction of data in analysis is necessary when 
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applying ADMIXTURE in modern dairy populations 
which are made up of large half-sib groups.

An alternative approach to approximate AŴ was suc-
cessfully applied and gave results that were consistent 
with the original approach of Legarra et al. [12], finding 
a clear optimum for the compatibility of both matrices. 
Moreover, this study gives a clear and comprehensible 
explanation of the theoretical background of meta-
founders, illustrated by analysis of stratification pre-
sent in the European Brown Swiss population. Future 
work will focus on the implementation of this unsuper-
vised approach of defining metafounders into routine 
evaluation.
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