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Abstract 

Background  Genome sequence variants affecting complex traits (quantitative trait loci, QTL) are enriched in func‑
tional regions of the genome, such as those marked by certain histone modifications. These variants are believed 
to influence gene expression. However, due to the linkage disequilibrium among nearby variants, pinpointing 
the precise location of QTL is challenging. We aimed to identify allele-specific binding (ASB) QTL (asbQTL) that cause 
variation in the level of histone modification, as measured by the height of peaks assayed by ChIP-seq (chromatin 
immunoprecipitation sequencing). We identified DNA sequences that predict the difference between alleles in ChIP-
seq peak height in H3K4me3 and H3K27ac histone modifications in the mammary glands of cows.

Results  We used a gapped k-mer support vector machine, a novel best linear unbiased prediction model, and a mul‑
tiple linear regression model that combines the other two approaches to predict variant impacts on peak height. 
For each method, a subset of 1000 sites with the highest magnitude of predicted ASB was considered as candidate 
asbQTL. The accuracy of this prediction was measured by the proportion where the predicted direction matched 
the observed direction. Prediction accuracy ranged between 0.59 and 0.74, suggesting that these 1000 sites are 
enriched for asbQTL. Using independent data, we investigated functional enrichment in the candidate asbQTL set 
and three control groups, including non-causal ASB sites, non-ASB variants under a peak, and SNPs (single nucleo‑
tide polymorphisms) not under a peak. For H3K4me3, a higher proportion of the candidate asbQTL were confirmed 
as ASB when compared to the non-causal ASB sites (P < 0.01). However, these candidate asbQTL did not enrich 
for the other annotations, including expression QTL (eQTL), allele-specific expression QTL (aseQTL) and sites con‑
served across mammals (P > 0.05).

Conclusions  We identified putatively causal sites for asbQTL using the DNA sequence surrounding these sites. Our 
results suggest that many sites influencing histone modifications may not directly affect gene expression. However, 
it is important to acknowledge that distinguishing between putative causal ASB sites and other non-causal ASB sites 
in high linkage disequilibrium with the causal sites regarding their impact on gene expression may be challenging 
due to limitations in statistical power.
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Background
Sequence variants affecting complex traits (here called 
quantitative trait loci or QTL, meaning the causal vari-
ant) are enriched in functional regions of the genome 
such as transcription factor (TF) binding sites, promot-
ers, and enhancers [1, 2]. One way a QTL or functional 
variant could influence phenotypes of a complex trait 
is by regulating gene expression (i.e., expression QTL; 
eQTL) [3]. cis eQTL are regulatory variants affecting 
gene expression that are located nearby the gene they 
regulate on the same chromosome, and they may be iden-
tified by exploring the association between the variation 
in the level of gene expression and the nearby sequence 
variants. However, due to linkage disequilibrium (LD) 
with numerous nearby variants, it remains challenging to 
pinpoint them [4, 5].

ChIP-seq (chromatin immunoprecipitation followed 
by sequencing) is a technique that enables the iden-
tification of functional genomic regions e.g., histone 
modifications in a specific tissue or cell-type. The tech-
nique involves utilizing antibodies to capture the DNA 
or genome regions marked by histone modifications, 
isolating, and subsequently sequencing them [6]. When 
the resulting DNA sequences are aligned to the genome, 
they form peaks that serve as a feature. This feature (i.e., 
height of the peak) is indicative of the level of histone 
modification. According to [7], variants that are puta-
tively causal for differences in ChIP-seq peak height are 
typically found within the peaks whose height they affect. 
The same authors also found that eQTL were enriched as 
histone modification QTL (hQTL), thus providing evi-
dence that non-coding functional regions regulate gene 
expression [7]. Therefore, identifying sequence variants 
affecting histone modification peak height can potentially 
aid in the discovery of cis eQTL. If an individual is het-
erozygous at an hQTL that operates in cis, it will cause 
a difference between the homologous chromosomes in 
the ChIP-seq peak height. Another way to describe this 
is that the ratio of the two alleles in the ChIP-seq reads 
mapped to this position will differ from 1:1. This phe-
nomenon is referred to as allele-specific binding (ASB) 
[7, 8], and the heterozygous site putatively causing this 
event as an ASB QTL (asbQTL). There is also a possibil-
ity that a heterozygous site under a peak will show ASB 
because it is in LD with a causal site, in which case it is 
here called non-causal ASB.

Identifying causal variants within regulatory regions 
continues to pose a significant challenge, primarily due 
to the presence of LD, which complicates the differentia-
tion of a true causal variant from other variants within 
the same regulatory region. However, if an hQTL can 
be predicted from the underlying DNA sequence, this 
removes the ambiguity caused by LD. To this aim, several 

sequence-based computational methods have been pro-
posed [9–12]. gkmSVM (gapped K-mer support vector 
machine) is a machine learning algorithm developed by 
[9]. The gkmSVM algorithm takes advantage of gapped 
k-mers, which are short DNA sequence patterns with 
gaps, to capture important motifs and patterns in the 
DNA sequence [9], for example underlying a genomic fea-
ture, such as a ChIP-seq peak. Its ability to handle gapped 
k-mers and find intricate sequence patterns makes it valu-
able in deciphering the regulatory code of the genome. 
It has been used in genomics research to prioritize and 
interpret the functional effects of genetic variants [13, 14]. 
Although gkmSVM is trained to distinguish sequences 
under peaks from other sequences, it can be used to pre-
dict the effect of a polymorphism on peak height and 
hence the magnitude of ASB. It does this by comparing 
the probability that the two allelic sequences occur under 
a peak.

gkmSVM offers an advantage by predicting asbQTL 
even in the absence of ASB data because it compares 
sequences beneath ChIP-seq peaks with other sequences. 
However, in cases where ASB data exists, we should be 
able to use this information to predict asbQTL and dis-
tinguish them from those non-causal ASB. We, therefore, 
developed a novel BLUP (best linear unbiased prediction) 
model, to predict ASB at heterozygous sites using the 
flanking DNA sequences and phenotype of ASB variants.

Genome regions with histone modification are likely 
to include enhancers and promotors of gene expres-
sion. Consequently, variants that affect the height of 
the ChIP-seq peak may also affect gene expression. This 
study has two main aims: (1) predict potential causal 
variants responsible for ASB at ChIP-seq peaks (i.e., 
asbQTL), and (2) investigate whether these candidate 
asbQTL play a causal role in gene expression varia-
tion within the mammary gland of lactating cows. The 
novel analysis uses DNA sequences that contain the 
same heterozygous site and occur in multiple places in 
the genome. If it is the same allele at the heterozygous 
site that is usually associated with the higher ChIP-seq 
peak, this implies that the heterozygous site is causing 
the difference in peak height.

Methods
ChIP‑seq peaks and ASB of ChIP‑seq peaks
The ChIP-seq peak data utilized in this study originates 
from an experiment conducted on mammary gland sam-
ples from 98 lactating cows, assayed for histone modifica-
tions H3K4me3 (trimethylated Histone3 Lysine4), and 37 
of these cows were also assayed for H3K27ac (acetylated 
Histone3 Lysine27) (Table 1). This data was described by 
[7]. Raw fastq data are publicly available at https://​www.​
ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​52456. Peaks were 

https://www.ebi.ac.uk/ena/browser/view/PRJEB52456
https://www.ebi.ac.uk/ena/browser/view/PRJEB52456
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called by [7], in reference to the ARS-UCD1.2 [15] bovine 
genome. Figure  1 depicts a schematic overview of this 
study.

In addition, we used ASB data that are heterozy-
gous sites under ChIP-seq peaks [7] where the num-
ber of ChIP-seq reads mapped to either reference or 
alternate allele is significantly different from the num-
bers mapped to the other allele (Fig. 2). Reference and 
alternate alleles could only be defined if there were 
heterozygous sites in the ChIP-seq peak [7]. Summary 
statistics including number of peaks and SNPs under 
peaks per individual are presented in Additional file 1.

Heterozygous sites under ChIP-seq peaks were 
removed from the data if (see Table 1):

(1)	 The difference between the number of reads 
mapped to reference and alternate alleles was insig-
nificant (i.e., non-ASB variants; P > 0.05). The P 

value was based on the statistic x =
(ref−alt)2

N  , in 
which x follows a χ2 distribution with 1 degree of 
freedom; N is the total number of reads; and ref & 
alt represent the number of reads mapped to refer-
ence & alternate alleles.

(2)	 They showed ASB but appeared in less than 5% of 
cows.

(3)	 They were not biallelic SNPs.

Table 1  Summary of the ChIP-seq peaks and allele-specific 
binding (ASB) data for histone modifications H3K4me3 and 
H3K27ac

a Peaks that appeared in at least 50% of the biological samples; bPeaks located 
on non-autosomes or were of length > 2000 bp; cPositive sequences used to 
train gkmSVM; dNegative sequences used to train gkmSVM; eASB and non-ASB 
sites under peak

Data H3K4me3 H3K27ac

ChIP-seq peaks

 Number of animals 98 37

 Number of consensus peaksa 10,211 9469

 Number of Excluded peaksb 3740 2836

 Remaining consensus peaksc 6471 6633

 Random DNA sequenced 32,211 32,841

Allele-Specific Binding sites

 Total number of animals 98 37

 Total number of SNPs under peake 974,837 1,748,824

 ASB sites (with χ2 P < 0.05) 492,370 630,726

 ASB in at least 5% of cows 66,121 61,881

 SNPs removed (tri-allelic) 9 0

 ASB sites used for the analyses 66,112 61,881

Fig. 1  Schematic overview of the study
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We then aggregated ASB events per site, by summing 
up the number of ASB reads across cows. This proce-
dure resulted in a new dataset with only one ASB record 
(aggregated) per site, where the read counts for the ref-
erence and alternate alleles now representing the total 
counts across cows. Therefore, we defined a phenotype 
for each ASB site as follows: y = altN − 0.5 , where the phe-
notype (y) represents the observed difference between 
ChIP-seq peak height on homologous chromosomes (i.e., 
the magnitude of ASB), the sign of y indicates the direc-
tion of ASB and the -0.5 results in y = 0 if there is no ASB.

These ASB data were used to train a predictor of ASB 
from the DNA sequence surrounding the heterozygous 
sites (i.e., BLUP model).

BLUP training and prediction of ASB
Aggregated phenotypes from 66,112 H3K4me3 ASB 
sites and 61,881 H3K27ac ASB sites were used separately 
(Table 1) to train a prediction of ASB using the 5 bp on 
either side of the heterozygous site. The surrounding 
DNA sequences of 11  bp (i.e., five bp from either side 
with the variant allele in the middle) were extracted for 

all the ASB sites from ARS-UCD1.2 [15], using gen-
NullSeqs function [16].

The following steps were conducted to predict variant 
impact for a given ASB (target) site:

(1)	 For each target ASB site, we generated a training set 
consisting of all other ASB sites that had the same 
genotype as the target site and the flanking 10 bases 
matched, in at least seven positions, to the flanking 
10 bases of the target site.

(2)	 Now, we have a target ASB site and a subset of other 
ASB sites as a training set. For training sites, the 
phenotype is modelled as ytrain = 1u+ e , where u 
is the average phenotype across the training set, and 
ytrain and e are vectors containing phenotypes and 
residuals for the training sites, respectively. There-
fore, R = I( 1

4N
+ σ2s ) , and R−1

= I 4N

4Nσ2s+1
 , where R 

represents var (e), I is the identity matrix, N is the 
total number of reads for each training ASB site, and 
σ2s represents variance of ytrain that is not explained 
by binomial sampling of N sites.

(3)	 To predict the target ASB phenotype, we can now 

use the BLUP equation û =

∑
R−1y∑

R−1+σ−2
u

 , where û is 

Fig. 2  Overview of a allele-specific binding (ASB) and b non-ASB phenomena within a ChIP-seq peak region
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the predicted phenotype for the target ASB site and 
σ−2
u  is the inverse of var (u).

(4)	 We used a diverse range of grid values for σ2s and σ2u 
to find the best values that maximizes the correla-
tion between ytarget (observed phenotype for ASB) 
and û (predicted phenotype for ASB using the other 
ASB sites).

gkmSVM training with ChIP‑seq peak data
On average, we had ~ 104,000 H3K4me3 peaks and 
~ 303,000 H3K27ac peaks per cow (see Additional file 1). 
The gkmSVM is trained using labelled sets of sequence 
data, where positive and negative training sets corre-
spond to functional (e.g., ChIP-seq peaks) and non-func-
tional (random) DNA sequences, respectively. Therefore, 
training data for gkmSVM was prepared as follows:

(1)	 only peaks with − Log10 P value > 200 obtained by 
MACS2 [17] were retained. The logic behind this 
is that classification performance of gkmSVM was 
low when applying less stringent P value.

(2)	 we extracted peaks that appeared in at least 50% of 
the biological samples through consensus voting 
[18].

(3)	 peaks located on non-autosomes or > 2000  bp in 
length were excluded from downstream analyses. 
These steps retained 6471 H3K4me3 peaks and 
6633 H3K27ac peaks, labelled as positive sequences 
required for training gkmSVM models (Table 1).

(4)	 The genNullSeqs function from the R gkmSVM 
package [16] was used to extract a five times larger 
set of equally sized and GC content matched 
sequences from ARS-UCD1.2 [15] for the negative 
training set (Table 1).

A kernel matrix was then computed using the gkmsvm_
kernel function with positive and negative training sets as 
input. Subsequently, the gksvm_train function was used 
to train gkmSVM models for the two histone modifica-
tions. This resulted in a prediction or weight for every 
10  bp sequence, which represents the probability of it 
being under a peak.

To evaluate the classification performance of gkmSVM, 
a five-fold cross validation was performed, where 20% of 
the training data was masked each time to test the model 
trained on the other 80%.

Prediction of ASB using the trained gkmSVM
For a given ASB site, we extracted the 19 bp length (i.e., 
L× 2− 1 ; here L = 10 refers to the sequence length used 
for training gkmSVM) flanking sequences for each ASB 
site (Table  1) from ARS-UCD1.2 [15], masked the mid-
dle position, and duplicated the masked sequence. The 

masked position of one duplicate was filled with the ref-
erence allele, while the other was filled with the alternate 
allele, enabling exploration of the effect of variant altera-
tion in the regions of interest. Therefore, we had two lists 
of 19 bp length sequences that only differed by one base 
in the middle position. Then the gkmsvm_delta function 
was used to calculate deltaSVM [13] as follows:

where s represents sliding windows of 10 bp length (step 
size = 1) in the 19 bp paired sequences that contain ref-
erence and alternate alleles, and wialt and wiref  represent 
SVM weights predicted for the corresponding ith sliding 
windows.

Multiple linear regression
We fitted a multiple linear regression (MLR) model by 
combining the predictions of gkmSVM and BLUP as 
follows:

where y is a vector of response variables (i.e., ASB phe-
notypes), 1 is a vector of ones, û (from BLUP) and 

̂deltaSVM (from gkmSVM) are predictor variables, and 

β1 and β2 are regression coefficients of the y on predic-
tors, β0 is the intercept term, and e is the residual.

Identifying candidates asbQTL and assessing prediction 
accuracy
Once the impact of the ASB variants on the histone 
modifications were predicted, a subset of 1000 ASB sites, 
based on the magnitude of the predicted scores, were 
considered as candidate asbQTL for each of the three 
methods used. The accuracy of prediction on the direc-
tion of the candidate asbQTL was calculated. The accu-
racy is defined as the proportion of SNPs in which the 
predicted ASB direction matches the observed direction 
i.e., if it is negative, the count of the reference allele is 
higher than that of the alternate allele.

Validation of the candidate asbQTL using independent 
data
To validate our result, we used independent ASB data, 
from a study of mammary tissue of 3 lactating Austral-
ian Holstein cows (validation data) [19]. In this dataset, 
a heterozygous site under a peak was considered allele-
specific binding (ASB) if a significant difference was 
observed (P < 0.01) in allelic ratio of the reads mapped to 
the site.

deltaSVM =

s=10∑

i=1

[
wi (alt) − wi (ref )

]
,

y = 1β0 + β1û + β2 ̂deltaSVM + e,
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Then, the proportion of ASB (validation) in each of the 
four different groups of genomic sites (listed below) was 
compared to that in the next group.

(1)	 The 1000 sites with the highest magnitude of pre-
dicted ASB from each of our methods of identifying 
asbQTL from sequence.

(2)	 non-causal ASB (i.e., ASB sites that were NOT pre-
dicted as asbQTL).

(3)	 sites under a peak that were not ASB.
(4)	 sites that were not under a peak.

We used a χ2 test and considered results with P < 0.01 
as statistically significant.

Do the candidate asbQTL affect gene expression?
We investigated if SNPs from the four categories of 
genomic sites were enriched in different functional anno-
tations, including eQTL, aseQTL, and evolutionary con-
served sites across mammalian species. eQTL (cis) were 
taken from CattleGTEx [20, 21] where they were signifi-
cant across 16 tissues. aseQTL from blood and mammary 
gland [19] where variants with P < 5E−6 in any tissues 
were used. The choice of this P value threshold is based 
on experiences in single-tissue mapping CattleGTEx data 
[20]. Also, conserved sites including (1) those conserved 
across 30 mammals (obtained from http://​hgdow​nload.​
cse.​ucsc.​edu/​golde​npath/​hg38/​phast​Cons3​0way); and (2) 
those conserved across 100 vertebrates (obtained from 
http://​hgdow​nload.​cse.​ucsc.​edu/​golde​npath/​hg38/​phast​

Cons1​00way) were used. The definition of being con-
served was a PhastCons score > 0.9 as described in [22]. 
Finally, the proportion of eQTL, aseQTL, and Conserved 
sites in each of the four different groups of genomic sites 
(listed above) were compared to that in the next group.

Results
Optimizing BLUP model parameters to predict causal ASB 
sites
To predict ASB variants using the BLUP model, we 
tried a diverse range of grid values for σ2u and σ2s to 
find the best predictions that maximized the correla-
tion between y and û . The correlations for H3K4me3 
ranged from + 0.118 to + 0.192, and for H3K27ac ranged 
from + 0.120 to + 0.151. The highest correlation for 
H3K4me3 was obtained with σ2u = 0.001 and σ2s = 0.035 , 
and for H3K27ac with σ2u = 0.003 and σ2s = 0.07 . There-
fore, we used these values to predict ASB with the BLUP 
model.

Ability of gkmSVM to predict sequences under ChIP‑seq 
peaks
As shown in Table  1, about 6.5K peaks (positive 
sequences) and a 5 times larger set of negative sequences 
were used for gkmSVM training of each histone modi-
fication. The performance of gkmSVM five-fold cross 
validation with training data is shown in Fig. 3. The area 
under curve (auROC) and precision recall curve (auPRC) 
for H3K4me3 was 0.935 and 0.728, and for H3K27ac 
0.869 and 0.608, respectively. This shows that gkmSVM 

Fig. 3  auROC and auPRC representing five-fold cross validation using gkmSVM training on histone modifications a H3K4me3 and b H3K27ac

http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons30way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons30way/
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way
http://hgdownload.cse.ucsc.edu/goldenpath/hg38/phastCons100way


Page 7 of 11Ghoreishifar et al. Genetics Selection Evolution           (2024) 56:50 	

could discriminate sequences that are under peaks from 
those that are not.

Prediction accuracy for the candidate asbQTL set
The ability of the three methods to predict the direc-
tion of ASB in the candidate asbQTL set from the two 
histone modifications (H3K4me3 and H3K27ac) is 
shown in Fig.  4. Accuracy of prediction for H3K4me3 
with gkmSVM, BLUP and MLR was 0.62, 0.72, and 
0.74, respectively. In addition, prediction accuracy for 
H3K27ac was 0.59, 0.62 and 0.63 for the same mod-
els, respectively. This result suggests lower predictabil-
ity for H3K27ac compared to H3K4me3, confirmed by 
both gkmSVM and BLUP models. Prediction accuracy 
of BLUP for histone modification H3K4me3 was signifi-
cantly higher than that for gkmSVM (P < 0.01), but the 
difference was not significant for H3K27ac (P > 0.05). The 
impact of ASB variants on the histone modifications pre-
dicted with the three models are presented in Additional 
files 2 and 3.

Multiple linear regression (MLR)
Prediction accuracy of the MLR model for the two his-
tone modifications is shown in Fig.  4. The MLR model 

was fitted using both gkmSVM and BLUP scores as pre-
dictors to increase the power of prediction. Details of 
the fitted models are presented in Table  2. Regression 
coefficients of both predictors on the phenotype of ASB 
variants were significant, however, the adjusted R2 of the 
models were 0.039 and 0.024 for H3K4me3 and H3K27ac, 
respectively. This result suggests that despite the statisti-
cally significant effect of both predictors on ASB pheno-
types (response variable), only a small proportion of the 
variance of ASB is explained by the predictors.

Functional annotation of the candidate asbQTL set 
and the other genomic sites
Table  3 presents the proportion of the candidate 
H3K4me3 asbQTL set and the 3 other categories of 
genomic sites that were annotated as ASB, eQTL, ase-
QTL, and conserved sites in the validation data. For 
instance, of the 1000 sites classified by our BLUP method 
as asbQTL, 16.9% were confirmed in independent data, 
compared to 13.5% of other ASB sites, 2.3% of sites under 
ChIP-seq peaks that are not ASB and 0.2% of sites not 
under ChIP-seq peaks. (All these differences are sig-
nificant at P < 0.01). This result suggests that we have, to 
some extent, successfully identified genetic variants caus-
ing changes in allele specific binding in H3K4me3 his-
tone modification peaks.

However, the asbQTL showed no further enrichment 
for eQTL/aseQTL or conserved sites compared to the 
other ASB sites under a peak (P > 0.05). This result sug-
gests that causal variants affecting asbQTL do not affect 
gene expression. We also found that ASB sites compared 
to non-ASB sites, and the latter compared to the ran-
dom SNPs outside peak, are enriched in eQTL/aseQTL 
(Table 3).

For histone modification H3K27ac, there were no sig-
nificant differences in any of the annotations between 
the four categories of genomic sites (Table  4). This can 
be attributed to the poorer predictability of sequences 
causing histone modification H3K27ac peaks as shown in 
Fig. 4.

Fig. 4  Accuracy for candidate asbQTL variants predicted by gkmSVM, 
BLUP and multiple linear regression (MLR) for the two histone 
modifications

Table 2  Multiple linear regression (MLR) model using BLUP and 
gkmSVM as predictor variables for two histone modifications

The adjusted R2 for the H3K4me3 model was 0.039 and for the H3K27ac was 
0.024

Coefficient H3K4me3 H3K27ac

Estimate (SE) P value Estimate (SE) P value

Intercept − 0.003 (0.0005) 9E−10 − 0.006 (0.0007) 2E−16

BLUP 1.274 (0.02) 2E−16 0.980 (0.026) 2E−16

gkmSVM 0.010 (0.0009) 2E−16 0.008 (0.001) 6E−12
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Discussion
Mutations occurring within functional regions, such as 
enhancers or promoters, have the potential to disrupt 
the regulation of gene expression and consequently affect 
the phenotype of complex traits. These mutations can be 
identified by assays designed to detect functional regions 
in DNA such as ChIP-seq peaks [7], which were used 
in this study. However, genomic sites may be associated 
with complex traits, gene regulation, or functional assays 
because they are in LD with the site causing the change 
in phenotype, making the search for causal variants more 
difficult [7, 10, 13]. The primary objective of this research 
was to use sequence-based computational methods to 
pinpoint SNPs causing variation in the level of allele spe-
cific binding in histone modification peaks (i.e., asbQTL) 
in the mammary gland of dairy cattle while distinguish-
ing these causal variants from non-causal variants associ-
ated with variation in peak height due to LD.

If histone modifications mark sites of TF binding, we 
expect that there will be some similarity between the 
sequences underlying these histone modifications, and 
therefore, the possibility to predict which sequences 
underly ChIP-seq peaks marking histone modifications. 
gkmSVM [9] has been designed to do this by comparing 

sequences under functional marks with other sequences. 
In most cases gkmSVM has been used to predict 
sequences under DNase hypersensitivity regions [13, 14, 
23], but it was also used to predict sequences under his-
tone modification ChIP-seq peaks [10]. We determined 
how well gkmSVM and our new method (an adaption of 
BLUP) could predict the effect of an allelic difference on 
the height of the ChIP-seq peak.

In the search for causal mutations underlying peak 
height, evidence of causality unaffected by LD would be 
greatly beneficial [7, 10, 13]. A heterozygous site which 
is under a ChIP-seq peak can show ASB for one of two 
reasons—it causes the ASB, or it is in LD with the causal 
site. If the direction of ASB can be predicted from the 
surrounding sequence, this is strong evidence that the 
site causes the ASB because there is no reason that the 
sequence surrounding a linked site would be consistent. 
gkmSVM does not need data on ASB sites to train its 
prediction of ASB. However, when data on ASB exists it 
can be used to train a predictive model. Hence, we devel-
oped a novel BLUP model which exploits the phenotype 
of ASB sites within ChIP-seq peaks as well as their flank-
ing DNA sequences to predict mutations affecting peak 
height. We hypothesized that if multiple ASB sites with 
the same SNP genotype (e.g., AG) share similar DNA 
sequences, and the ASB direction is consistent across 
these sites (e.g., A > G), then they might be causal muta-
tions affecting ChIP-seq peak height, independent of LD, 
because they are consistent across multiple sites. In other 
words, causal sites with similar sequences are expected to 
show consistent ASB direction, whereas sites that show 
ASB due to LD may not share similar sequences or have 
consistent direction of ASB. Therefore, the BLUP model 
predicts an ASB site based on the other ASB sites, and 
their flanking DNA sequences. Alternatively, gkmSVM 
weights kmers based on their enrichment under peaks 
compared to the random DNA sequences. These two 
methods have the same objective with different strategies 
and inputs.

Table 3  The proportion of functionally annotated (H3K4me3) variants within each category, including candidate asbQTL, non-causal 
ASB sites, non-ASB variants under peak and SNPs from outside peaks

a The top 1000 ASB variants based on the magnitude of the predicted scores by each method were considered as candidate asbQTL

An asterisk (*) indicates statistical significance (P < 0.01) when the values in the current column are statistically greater than those in the next column

Functional annotation Candidate asbQTLa non-causal ASB sites 
(N = 59,682)

Non-ASB variants under 
peak (N = 44,021)

SNPs not under 
peak (N = 37,801)

MLR gkmSVM BLUP

ASB 0.161 0.154 0.169* 0.135* 0.023* 0.002

eQTL 0.522 0.531 0.522 0.637* 0.334* 0.157

aseQTL 0.507 0.503 0.507 0.560* 0.295* 0.171

Conserved sites 0.08 0.104 0.08 0.117* 0.085* 0.071

Table 4  The proportion of functionally annotated (H3K27ac) 
variants within each category, including candidate asbQTL, and 
non-causal ASB sites

a The top 1000 ASB variants based on the magnitude of the predicted scores by 
each method were considered as candidate asbQTL. Candidate asbQTL for the 
histone modification H3K27ac did not show enrichment for ASB, nor did they for 
the other functional annotations, compared to the non-causal ASB sites

Functional annotation Candidate asbQTLa non-causal ASB 
sites (N = 57,802)

MLR gkmSVM BLUP

ASB 0.119 0.135 0.122 0.128

eQTL 0.544 0.507 0.522 0.578

aseQTL 0.48 0.471 0.46 0.525

Conserved sites 0.093 0.084 0.088 0.09
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We validated our result by comparing putatively causal 
ASB (i.e., asbQTL) and non-causal ASB in independent 
data. That is, ASB from independent data was signifi-
cantly more frequent (P < 0.01) in the predicted asbQTL 
than in the non-causal ASB variants. Therefore, we were, 
to some extent, successful in identifying functional vari-
ants causing peak height of H3K4me3 because predict-
ing ASB at the target site based on data from other sites 
was successful. Both gkmSVM and the BLUP method 
were successful, and they were correlated to a small 
extent. However, combining the two methods via a mul-
tiple regression gave accuracies very little higher than the 
BLUP method.

If the asbQTL is also causal for gene expression, then it 
should show enrichment for eQTL/aseQTL. Our results 
show that eQTL/aseQTL (eQTL from 16 different tis-
sues; see Methods) are more common under ChIP-seq 
peaks than elsewhere and more common at sites that 
show ASB than at sites that do not show ASB but are 
under ChIP-seq peaks. However, eQTL/aseQTL (eQTL 
from 16 different tissues; see Methods) were not more 
prevalent at the predicted causal ASB sites (i.e., asbQTL) 
compared to the non-causal ASB sites. The same result 
was also obtained when only using mammary gland cis 
eQTL data (results not shown). This last result suggests 
the alternative explanation, that is, sites that cause ASB 
are not often causal sites for eQTL/aseQTL. For instance, 
presence of a specific TF can impact the height of mul-
tiple peaks, but most of these peaks do not impact gene 
expression.

If the height of a peak correlates positively across tis-
sues with expression of a gene, this might suggest that a 
SNP that alters the height of the peak would affect the 
expression of the linked gene. Prowse-Wilkins et al. [24] 
found that even when the height of a peak was positively 
correlated across 22 tissues with expression of a gene, 
ASB of the peak couldn’t predict ASE of the gene. This 
result suggests that the correlations between peak height 
and gene expression do not always indicate that the 
height of the peak causes the extent of gene expression. 
Our result and those of [24] could both reflect the same 
underlying biology that height of the histone modifica-
tion peak does not directly drive expression of the gene it 
is correlated with. However, our study differs from those 
of [24], that is, they knew which exon-peak pairs to look 
at but didn’t care about which ASB site is causal. Contra-
rily, we predicted putatively causal ASB sites and tested if 
they do affect any of the nearby genes.

It is possible that our result that ASB sites do not nec-
essarily cause ASE, is influenced by a lack of statistical 
power due to LD. Indeed, non-causal sites which show 
ASB must be in LD with sites that do cause ASB. Con-
sequently, if the causal site is also an eQTL/aseQTL then 

the non-causal site will also be associated with gene 
expression to some extent. That is, we may lack power 
to distinguish between our putatively causal ASB sites 
and other non-causal ASB sites with respect to gene 
expression.

It has been reported that DNase-seq (DNase I Hyper-
sensitive sites sequencing) or DNase-seq flanked by 
histone modification ChIP-seq are more predictive of 
gene expression than histone modifications alone. For 
instance [13] trained a gkmSVM model using DNase-
seq data on human lymphoblastoid GM12878 cell lines. 
The trained model could moderately discriminate 574 
highly confident dsQTL (SNPs associated with DNase 
hypersensitivity) versus a 50 times larger set of non 
dsQTL SNPs (auROC = 0.75; auPRC = 0.19). Beer [23] 
reported that training gkmSVM on DNase-seq peaks 
flanked by histone modification peaks for H3K27ac or 
H3K4me1 in human K562 cell lines is more predictive of 
MPRA (Massively Parallel Reporter Assays) expression 
(auROC = 0.83) than DNase-seq alone (auROC = 0.79). 
One of the limitations of the current study in cattle is 
that we do not have any DNase-seq data, or an equivalent 
assay. The variation seen between histone modification 
and DNase-seq could possibly be attributed to a combi-
nation of biological and technical factors. The biological 
process measured by these assays vary. DNase-seq peaks 
mark open chromatin, indicating the presence of proteins 
interacting with the DNA in a relatively narrow region of 
~ 300–500  bp. Therefore, the DNase signal is primarily 
influenced by the nearby DNA sequence, particularly the 
binding of TFs. Histone modification ChIP-seq provides 
a more intricate assessment of chromatin state, indicating 
the presence of H3K4me3 at active promoters, H3K27ac 
at active promoters and enhancers, and H3K4me1 at 
active enhancers [10]. Sequence-based prediction of his-
tone modification can therefore be less accurate due to 
spatial histone modification spreading over a broader 
region of chromatin, the influence of trans-factors, and 
the greater width of these marks [10], sometimes up to 
2000  bp. Another possible reason is that many variants 
that change histone modification are regulatory dead 
ends. This means they do not result in a change in gene 
expression, at least at the time point or tissue they are 
being measured in. Regulation of gene expression is time 
and cell type dependent, so the effect of a single genetic 
variant is not constant.

Genomic sites under ChIP-seq peaks, including ASB 
sites and putatively causal ASB sites, are only slightly 
enriched for sites that are conserved across mammals 
(Table  3). This implies that these regulatory regions are 
not greatly constrained in evolution.
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Conclusions
This research aimed to pinpoint SNPs responsible for 
variation in allele specific binding at histone modifica-
tion peaks and explore whether these variants are also 
causal in regulating gene expression. To achieve this, 
we developed a novel BLUP model and used gkmSVM 
to predict causal mutations. We showed that the sur-
rounding sequence could identify variants causing ASB 
at H3K4me3 peaks. However, intriguingly, the can-
didate asbQTL variants did not exhibit significantly 
greater enrichment for eQTL/aseQTL compared to the 
other ASB sites under a peak. This suggests that many 
sites influencing histone modification peak height may 
not directly impact gene expression. Nevertheless, it 
is important to acknowledge that our ability to distin-
guish between causal and non-causal ASB sites that are 
in LD with causal sites regarding their impact on gene 
expression, may be limited by statistical power. In con-
clusion, this research highlights the challenges involved 
in identifying causal variants underlying histone modi-
fication peak height and their relationship with gene 
expression. Integrating additional datasets such as 
DNase-seq with histone modification may enhance our 
understanding of the functional implications of genetic 
variants on gene regulation mechanisms.
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