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Abstract 

Background The objective of this study was to introduce a genome-wide association study (GWAS) in conjunction 
with segregation analysis on monogenic categorical traits. Genotype probabilities calculated from phenotypes, mode 
of inheritance and pedigree information, are expressed as the expected allele count (EAC) (range 0 to 2), and are 
inherited additively, by definition, unlike the original phenotypes, which are non-additive and could be of incomplete 
penetrance. The EAC are regressed on the single nucleotide polymorphism (SNP) genotypes, similar to an additive 
GWAS. In this study, horn phenotypes in Merino sheep are used to illustrate the advantages of using the segrega-
tion GWAS, a trait believed to be monogenic, affected by dominance, sex-dependent expression and likely affected 
by incomplete penetrance. We also used simulation to investigate whether incomplete penetrance can cause predic-
tion errors in Merino sheep for horn status.

Results Estimated penetrance values differed between the sexes, where males showed almost complete pen-
etrance, especially for horned and polled phenotypes, while females had low penetrance values for the horned status. 
This suggests that females homozygous for the ‘horned allele’ have a horned phenotype in only 22% of the cases 
while 78% will be knobbed or have scurs. The GWAS using EAC on 4001 animals and 510,174 SNP genotypes 
from the Illumina Ovine high-density (600k) chip gave a stronger association compared to using actual phenotypes. 
The correlation between the EAC and the allele count of the SNP with the highest –log10(p-value) was 0.73 in males 
and 0.67 in females. Simulations using penetrance values found by the segregation analyses resulted in higher cor-
relations between the EAC and the causative mutation (0.95 for males and 0.89 for females, respectively), suggesting 
that the most predictive SNP is not in full LD with the causative mutation.

Conclusions Our results show clear differences in penetrance values between males and female Merino sheep 
for horn status. Segregation analysis for a trait with mutually exclusive phenotypes, non-additive inheritance, and/
or incomplete penetrance can lead to considerably more power in a GWAS because the linearized genotype prob-
abilities are additive and can accommodate incomplete penetrance. This method can be extended to any monogenic 
controlled categorical trait of which the phenotypes are mutually exclusive.
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Background
Genome-wide association studies (GWAS) for appar-
ently monogenic traits can be obscured by complex 
genetic models including effects of dominance, epista-
sis, sex dependent gene expression, and incomplete 
penetrance. An example of such a trait is the polled-
horn phenotype in sheep. A variety of horn pheno-
types occurs within various sheep breeds and this can 
be sex-dependent. Horn phenotypes in sheep are gen-
erally represented in three groups, horned, scurred 
or knobbed (abnormal horn development) and polled 
(absence of any horn formation). The genetic back-
ground of the horn phenotype has been discussed for 
many years and is still under debate. The first hypo-
thetical model proposed for the inheritance in sheep 
was nominated by Dolling [1], with three alleles con-
trolling horn formation, which are Ho+ (normal horns), 
HoL (sex-limited horns), and HoP (polled), which they 
had compared with a model with two loci, each with 
two alleles. Their proposed model was also confirmed 
by Coltman and Pemberton [2]. Montgomery et al. [3] 
were the first to perform a linkage analysis using micro-
satellites and they showed horn status is controlled by 
a single locus on OAR 10 (OAR for Ovis aries). Follow-
ing studies further narrowed down to a region near the 
gene RXFP2 [4–6]. Finally the region was fine-mapped 
to a 1.78-kb insertion in the 3ʹ-UTR of the RXFP2 gene 
[7].

The quantitative trait locus (QTL) on OAR10 explains a 
large proportion (~ 76%) of the heritable genetic variation 
for horn size and base circumference in Soay sheep [5]. 
Genome-wide association studies so far have not found 
any other significant signals besides tagging the insertion 
at OAR10, indicating that the horn phenotypes could be 
controlled by a single locus. However, the RXFP2 inser-
tion does not fully explain the phenotype, as reported 
by Lühken et  al. [8] and Duijvesteijn et  al. [9]. Differ-
ent models have been investigated, especially in breeds 
which have variable horn status and/or where differences 
in expression between sexes are observed, e.g., in Merino 
and in breeds from Southern Europe and Africa, and 
phenotype patterns seem not fully consistent with a sin-
gle locus model [8]. Currently, the most accepted mode 
of inheritance of horns is additive in ewes and complete 
dominance in rams [5]. In further studies on Merinos, 
statistical evidence for sex-dependent differences in the 
additive and dominance effect for horned and polled 
phenotypes was provided [9], although the model still did 
not fully explain the variation in phenotypes observed. 
A possible explanation could be incomplete penetrance, 
where not all sheep carrying the ‘horn-causing’ genotype 
show the associated phenotype (horns). In the example 
of horns, assuming only one locus involved, the level of 

penetrance would indicate the maximum prediction 
accuracy that could be achieved using genomic informa-
tion for prediction of the phenotype.

A method based on segregation analysis described by 
Kerr and Kinghorn [10] was extended to detect a single 
locus mutation that determines a categorical trait with 
incomplete penetrance [11]. Information from pedigree 
and phenotypes is first used to calculate genotype prob-
abilities at a putative QTL, given starting assumptions on 
allele frequency and pattern of penetrance (the probabil-
ity of each horn phenotype within each QTL genotype). 
These genotype probabilities are then used to estimate 
allele frequency, and together with the phenotypes, to 
estimate the pattern of penetrance. This process is iter-
ated until convergence is reached.

These genotype probabilities, when expressed as the 
probable number of alleles carried, or expected allele 
count (EAC, range 0 to 2), are inherited additively, by 
definition, unlike the original phenotypes, which are 
non-additive, categorical, and potentially of incomplete 
penetrance. This means that a classical additive GWAS 
on the probabilities could increase power to detect sin-
gle nucleotide polymorphisms (SNPs) that are associated 
with the phenotype compared to a GWAS on the original 
phenotypes.

The objective of this study is to introduce a method 
that performs a GWAS in conjunction with segregation 
analysis on monogenic categorical traits. We apply this 
method to real horn phenotypes using a genetic model 
which includes parameters for sex-dependent expres-
sion, dominance, and incomplete penetrance, and these 
parameters can be estimated. A GWAS is then run on 
the EAC. We also used simulation with a known causa-
tive mutation to test the extent in which incomplete pen-
etrance causes prediction error in Merino sheep for horn 
status.

Methods
Phenotypes
Background information on phenotype collection and 
genotypes has been given in more detail in Duijvesteijn 
et al. [9]. Briefly, 4001 Merino sheep born between 2007 

Table 1 Number of observed phenotypes for male and female 
Merinos

Horn status Female Male (wether)

Polled 1123 511

Knobs/scurs 1237 561

Horned 88 481

Total 2448 1553
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and 2011 from eight research flocks have horn status 
recorded (Table  1). All male sheep where castrated at 
marking (six weeks of age) and before horn scoring which 
was postweaning, at around four months of age. The ped-
igree consisted of 12,482 animals with 186 sires and 2733 
dams having progeny with phenotypes.

Use of genotype probabilities
In this section we describe a method to find the best-
fitting genotype–phenotype model, calculating QTL 
genotype probabilities assuming a monogenic inherit-
ance with incomplete penetrance for a categorical trait 
(step 1). A genome-wide association analysis regressing 
the probable number of QTL alleles on individual SNP 
genotypes was used to identify markers that can predict 
horn status (step 2). Step 2 is expected to show increased 
power compared to traditional genome-wide associa-
tion analysis where observed phenotypes are regressed 
on individual SNP genotypes, because, unlike the phe-
notypes, the genotype probabilities are linear and could 
accommodate information about incomplete penetrance.

Step 1: calculate genotype probabilities
In first instance, genotype probabilities for genotypes aa, 
Aa or aA, and AA at a single putative QTL were calcu-
lated for all animals, females only or males only, based 
on horn phenotypes (Table 1), pedigree, and starting val-
ues for penetrance using the program Geneprob, which 
implements the method of Kerr and Kinghorn [10]. We 
will refer to these as genotype 0 for aa, genotype 1 for Aa 
and aA and genotype 2 for AA.

In a subsequent Maximization-step, penetrance values 
(example in Table 2) from each of the three QTL geno-
types to each horned phenotype were estimated con-
ditional on the genotype probabilities, as well as allele 
frequencies. We iterated with these expectations and 
maximisation steps to converge on penetrance values, 
allele frequency and genotype probabilities.

After convergence, each animal has three genotype 
probabilities, and a genotype probability index (GPI) as 
calculated based on Kinghorn [12]. The GPI, ranging 

from 0 to 100 %, is a measure of utility of these prob-
abilities for an individual. Animals whose genotypes are 
known with complete certainty have a GPI of 100 and 
animals with no useful information to infer genotype 
have probabilities equal to Hardy–Weinberg frequencies 
and a GPI of 0. The mean GPI across the population is a 
simple measure of utility. The relationship between mean 
GPI and the correlation between true and predicted gen-
otype status is suggested to be approximately linear [12].

Following convergence of Geneprob, the estimated geno-
type probabilities were used to calculate the EAC using 
the following equation:

where p(x) is the genotype probability for the genotype 
class x . The value of EAC lies between 0 and 2, similar to 
a SNP genotype.

Step 2: Genome‑wide association study (GWAS)
For the GWAS, EAC was regressed on the SNP geno-
types. Similar to a traditional GWAS, −  log10(p-values) 
can be plotted to indicate a possible QTL region. All 
GWA analyses were performed for four subsets which 
were (i) only females, (ii) only males, (iii) a combined 
dataset with EAC values from a segregation analysis on 
a combined dataset or (iv) a combined dataset with EAC 
values from separate analyses of the data sets on males 
and females. Correlations between the allele count of the 
most significant SNP and the EAC were then calculated 
to indicate a minimal value for the underlying correlation 
between putative QTL and phenotype.

For comparison, we also included the results of the 
GWAS where the original phenotypes were used. The 
original phenotypes were used for two GWAS. First, 
horned (0) and non-horned (1) animals were classified 
and secondly, polled (0) and non-polled (1) animals were 
classified. These binary phenotypes where regressed on 
the SNP genotypes using a logistic function. These classi-
fications were chosen in order to not have to assume that 
knobs or scurs are an intermediate phenotype between 
horned and polled. Results from these analyses have been 
published in an earlier study [9].

Genotypes
In total 293 sheep were genotyped with the Illumina-
Ovine 12k, 3708 sheep were genotyped with the 
OvineSNP50 BeadChip and 454 sheep were genotyped 
with the Illumina Ovine HD (HD). Quality control per 
chip were the same; individual SNP genotype records 
were removed if the average SNP call rate was less than 

EAC = 0 ∗ p(aa)+ 1 ∗ p(Aa)+ 1 ∗ p(aA)+ 2 ∗ p(AA),

Table 2 Starting penetrance values for a gene with incomplete 
penetrance

a Polled = absence of horn formation, scurs/knobs = abnormal formation of horn, 
horned = normal horn development

Phenotypea Genotype class

0 1 2

0 = Polled 1.00 0.25 0.00

1 = Scurs/knobs 0.00 0.75 0.00

2 = Horned 0.00 0.00 1.00
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90%, the GC (GenCal) score was less than 0.6, strong 
deviation from Hardy–Weinberg equilibrium (χ2 > 600), 
the minor allele frequency < 0.01 and only autosomes 
were selected. The 12K chip resulted in 11,377 SNPs, the 
50K chip in 48,559 SNPs and the HD in 510,174 SNPs 
after applying the quality control. Genotypes from the 
12K chip animals were imputed up to 50K using Beagle 
software v3.2 [13] and the 50K genotypes were imputed 
up to HD using FImpute v2.2 [14], and for both programs 
default settings were used. For both imputation steps, all 
data from genotyped animals from INF and the Sheep 
Genomics Flock were used [15, 16], to increase imputa-
tion accuracy (22,684 animals for 50k and 2450 for HD). 
Accuracy of imputation was tested elsewhere [15, 16] 
and was generally high (average imputation accuracy was 
0.98).

Simulation
Simulation was used to estimate the maximum correla-
tion that can be achieved between a causative mutation 
and the EAC given varying levels of penetrance. PopSNP, 
as described by van Eenennaam and Kinghorn [17] was 
used for simulating SNP data into the existing pedigree 
(see paragraph Phenotypes). One chromosome was sim-
ulated with a founding population size of 100 and a burn-
in of 100 generations. One thousand candidate bi-allelic 
SNPs (alleles 1 and 2) were generated of which 50% of loci 
have only a single mutation in the whole population (all 
animals genotype 0, except for a single mutant individual 
with genotype 1). Those loci are candidates as QTL. After 
the burn-in, a gene-drop through the real pedigree is 
performed, where in our case one randomly chosen seg-
regating SNP is selected as the causative mutation. The 
minor allele frequency of the causative mutation was on 
average 0.49. Ten replicates were performed where no 
linkage was simulated between SNPs to guarantee inde-
pendence across replicates. A phenotype is assigned ran-
domly to each individual conditional on the penetrance 
matrix estimated from the real phenotypes of the animals 
in the pedigree. Three different sets of penetrance matrix 
values (Table 3) were used to investigate its effect on the 
sensitivity of the correlation between the EAC and the 

simulated true causative mutation. For example, using 
scenario 2, an animal with genotype 0 has 100% assign-
ment of phenotype 0, where animals with genotype 1 will 
have a 25% chance to be assigned phenotype 0 and 50% 
chance to be assigned phenotype 1 and a 25% chance to 
be assigned phenotype 2 and a 100% assignment of phe-
notype 2 with genotype 2 (Table 3). Genotype probabili-
ties for three phenotype classes (polled, knobs/scurs and 
horned) were calculated per individual after Geneprob 
converged. The correlation between the allele count at 
the true causative mutation and the EAC derived from 
the genotype probabilities is a measure of the maximum 
correlation that can be expected for a certain degree of 
penetrance. Average correlation across replicates will 
be reported with standard error. A lower correlation for 
the allele count of a predictive SNP would indicate that 
the SNP is not in full LD with the causative mutation. 
The correlation should approximately match the average 
(across replicates) Genotype Probability Index (GPI) as 
the relationship is approximately linear [12].

Results
Estimated penetrance matrices are reported in Table  4 
for males, females and the combined dataset for horned 
phenotypes. Note that these results involve no use of 
SNP genotype data. Results were stable using different 
sets of starting values. The results show clear differences 
between males and females. Males with genotype 2 will 
be horned, while for females with genotype 2 only 22% 
will be horned and otherwise have scurs or knobs. All 
males and females with genotype 0, will be polled. Knobs 
and scurs are more observed in females, where genotype 
1 will result in knobs and scurs in 92% of the females. The 
combined analysis shows an intermediate pattern, where 
genotype 1 and 2 will give 50% knobs and scurs and 50% 
horns, where genotype 0 will give a polled phenotype.

The results of GWAS for EAC are shown in Fig. 1. The 
most significant SNP for males, females and the com-
bined dataset was OAR10_29546872.1 (rs426516358) 
when the EAC were regressed on the SNP genotypes. 
The significance of SNP OAR10_29546872.1 resulted in 
a level beyond the smallest number possible to report 

Table 3 Simulated penetrance values for each genotype class for each of the three phenotype classes for three scenarios

Phenotype value Scenario1 Scenario2 Scenario3

Genotype values Genotype values Genotype values

0 1 2 0 1 2 0 1 2

Phenotype 0 1.00 0.00 0.00 1.00 0.25 0.00 0.50 0.25 0.00

Phenotype 1 0.00 1.00 0.00 0.00 0.50 0.00 0.50 0.50 0.50

Phenotype 2 0.00 0.00 1.00 0.00 0.25 1.00 0.00 0.25 0.50
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(−  log10P values > 321) for all analyses, except for the 
GWAS for females only of which the −  log10 p-value 
was 178. To be able to further discuss the model fit using 
EAC, the  R2 of the model was used to determine which 
SNP explained the most variance of the model. The high-
est  R2 value was 0.53 in males, 0.44 in females, 0.53 in the 
combined analyses and 0.47 in the analyses combining 
the separate male and female analyses.

To compare the method using a binary trait (horned/
non-horned or polled/non-polled) with the newly pro-
posed method using segregation analysis, we can com-
pare the results from the different GWAS. The GWAS for 
the binary traits are presented in Additional file 1 Figure 
S1 and Additional file  2 Figure S2. The most significant 
SNP was either OAR10_29546872.1 or OAR10_29458450 
(rs426516358). The two SNPs are 0.5 Mb apart, located 
upstream of the insertion and in high LD  (r2 = 0.985). 
The significance levels (– log10 p-value) achieved were 

206, 17 and 169 (males, females and combined dataset 
respectively) for horned/non-horned and 122, 224 and 
260 (males, females and combined dataset respectively) 
for polled/non-polled. The signal where genotypes were 
associated with the EAC (newly proposed method) was 
notably larger than in any of the GWAS using the phe-
notypes. Especially in females, where incomplete pen-
etrance values are high, the significance of the association 
using the EAC was much higher (− log10 P-value of 178 
compared to 17 when using actual phenotypes).

Correlations between the most significant SNP (real 
data), or the true simulated causative mutation using the 
penetrance matrix obtained from real data (Table 4), and 
the EAC are reported in Table 5.

Correlations for the real data are consistently lower 
than from simulated data. The dataset where only phe-
notypes of the females were used, showed the low-
est correlation using the real data. The correlation for 

Table 4 Predicted penetrance values for each genotype class for each of the three phenotype classes and datasets

Phenotype value Males Females Males and females

Genotype values Genotype values Genotype values

0 1 2 0 1 2 0 1 2

Polled 1.00 0.23 0.00 1.00 0.07 0.00 1.00 0.48 0.00

Knobs/Scurs 0.00 0.76 0.00 0.00 0.92 0.78 0.00 0.52 0.59

Horned 0.00 0.01 1.00 0.00 0.02 0.22 0.00 0.00 0.41

Fig. 1 Genome-wide association for the EAC. a males (N = 1553), b females (N = 2448), c combined analyses of males and females together 
(N = 4001) and d combined outputs from the separate males and females analyses (N = 4001). The different chromosomes are indicated 
with different iterating colors. The significance in –log10(p-value) is indicated on the y-axis
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the combined dataset is higher than might be expected 
from the low mean GPI involved. However, this might 
reflect the wider range in phenotypes, and hence geno-
type probabilities, across the two sexes. Moreover, when 
the QTL was simulated, the smallest correlation was 
observed in the combined dataset. The maximum cor-
relation in simulated data was 0.95 in males using pen-
etrance values as reported in Table  5. The correlations 
obtained from the real phenotypes with the causative 
mutation are consistently lower than the correlation 
using the EAC. Especially in females, where being horned 
has a small chance even when the genotype probability 
for genotype 2 is high (Table 4), the correlation between 
the real phenotype and true causative mutation was close 
to zero (0.006). Using the EAC, which incorporates non-
additivity and incomplete penetrance, the correlation for 
females is much higher (0.89).

Correlations for the three additional penetrance values 
for the three phenotype classes are reported in Table 6. 
Obviously when complete penetrance values (scenario 1) 
were simulated, correlation between the EAC and true 
causative mutation was 1. The more the penetrance val-
ues deviated from 1, the lower the correlation between 
the true causative mutation and the EAC.

Discussion
Incomplete penetrance values per sex were estimated and 
indicated clear differences between males and females 
for horn status in sheep. Furthermore, a model which 
assumed a monogenic inheritance with incomplete pen-
etrance for a categorical trait (horned phenotype), was 
highly associated with the most significant SNP. How-
ever, the correlation between the EAC and the most sig-
nificant SNP was lower than the correlation resulting 
from a scenario where the true causative mutation was 
modelled. This is expected where the most significant 
SNP is not the true causative mutation and/or where the 
mutation it marks is not the only genetic influence on the 
phenotypes observed.

Methodology
The methodology used in this study to detect the QTL 
underlying a categorical monogenic trait with incomplete 
penetrance consists of two steps: first, the EAC based 
on pedigree and phenotypes is established, followed by 
running a GWAS. We showed increased significance in 
detecting the associated SNP (e.g. − log10 p-values of the 
segregation analyses were larger than when using the real 
phenotypes). Due to the categorical nature of the trait, 
performing a GWAS is less efficient, as linearity between 
classes is quickly assumed or data is split in binary traits. 
Both are not optimal; therefore, we present a new and 
alternative method where all data can be used without 
making assumptions on linearity between the classes of 
the phenotype.

This study shows the results for the horn pheno-
type in sheep, but the method could be applied to other 
monogenic categorical traits affected by incomplete 
penetrance, which are widely present in other livestock 
species [18, 19] and humans [20]. Using the proposed 
‘Segregation GWAS’ method to determine the most likely 
causative mutation and to help determine the prediction 
accuracy that can be expected given incomplete pen-
etrance could be valuable information when providing 
genetic testing.

Optimization of this method where the segregation 
analyses and the GWAS inform each other could result in 
more power to detect the QTL. A further development, 
given that the trait is affected by sex, could be to catego-
rize the trait by sex and horn status, in which horn status 
of males and females inform each other. Even though the 
method used in this study already shows good potential 
to perform a GWAS for a trait with a mutually exclusive 
phenotype affected by one locus, improvements could be 
made which were beyond this study. One path to explore 
further is the monogenic assumption in the inheritance 
model. One possible explanation of incomplete pene-
trance is the effect of modifier genes. Segregation analysis 

Table 5 Correlation between the EAC and the most significant 
SNP, and the mean genotype probability index (GPI), for the real 
and simulated data split by males and females and males and 
females combined

EAC expected allele count
a Penetrance values used are shown in Table 4, obtained from the real data
b Standard error in brackets

Males Females Combined

Real data Correlation 
EAC

0.73 0.67 0.73

Mean GPI 87.77 43.93 41.57

Simulated 
 dataa

Correlation 
EAC

0.95 (0.002)b 0.89 (0.002) 0.82 (0.002)

Mean GPI 92.7 (0.21) 80.09 (0.78) 67.1 (0.39)

Table 6 Correlation between the EAC and true causative 
mutation and mean genotype probability index (GPI) for the 
simulated data using varying penetrance values

a The penetrance values for each scenario are shown in Table 3

EAC  expected allele count

Scenarioa Correlation EAC–SNP Mean GPI

1 1 (0.0) 100 (0.0)

2 0.89 (0.002) 80.00 (0.30)

3 0.66 (0.004) 47.30 (0.57)
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based on a monogenic model but a simulation model 
with more causative loci might test the sensitivity of our 
approach to the monogenic assumption of segregation 
analysis. It is interesting to note here that the GWAS 
based on EAC revealed a second peak on chromosome 
6. Although much smaller than the peak on chromosome 
10, with a probability that is orders of magnitude big-
ger, it is significant and was not seen in a regular GWAS 
study [9]. Therefore, it is possible that our method is also 
powerful in detecting segregation at any modifier loci.

The question has arisen whether the current procedure 
is prone to creating secondary peaks due to some form of 
artifact. The EAC score is calculated without any depend-
ence on genotypic data. This means that, as for normal 
traits such as body weight, any artifacts are due to phe-
nomena such as linkage disequilibrium in the genetic 
markers within and/or across chromosomes. Accord-
ingly, such secondary peaks for EAC are argued to be as 
important as they might be for GWAS on standard trait 
data.

One possibility for further investigation is to correct 
the EAC scores for the main peak effect, then re-run the 
GWAS to see the impact on the secondary peak. This 
correction could be done by estimating the effect on EAC 
at the main peak for each animal, according to its geno-
types, and subtracting that from its EAC score.

Further study with additional causative loci acting 
under various plausible genetic models could demon-
strate any power to pick up modifier loci, but also inves-
tigate the possibility of the segregation method leading to 
more false positives due to linkages across the genome.

Penetrance values related to sex and RXFP2
The level of penetrance reflects the proportion of individ-
uals in a given population with a specific ‘horn-causing’ 
genotype that expresses the corresponding horn pheno-
type. Reduced or incomplete penetrance indicates the 
proportion within the population of animals carrying 
the horn genotype and not expressing the correspond-
ing horn phenotype. Discussed mechanisms underlying 
incomplete penetrance are modifier genes, copy number 
variants, age, sex and others. Especially in the case of the 
horned phenotype in Merino sheep where large differ-
ences between sexes are observed, incomplete penetrance 
due to the influence of sex is interesting. Low penetrance 
values in women for hypokalemic periodic paralysis 
compared to men have been observed due to different 
effects of sex hormones [21]. The discussed underlying 
mechanism is differential gene regulation in males and 
females, specifically in relation to sex steroid-responsive 
genes [22, 23]. Horn formation in sheep is influenced by 
hormones and environment (seasonal change stimulates 
horn development). Castrated sheep (wethers) will stop 

the formation of horns once castrated [24]. A study in 
Soay sheep observed a similar pattern where 1-day-old 
lambs were castrated and horn development was simi-
lar to those of females [25]. This suggests that sex hor-
mones play a role in horn development. The role of the 
gene RXFP2, where the causative mutation (1.8-kb inser-
tion) is mapped to [7], is to function as a receptor for 
hormones associated with male primary sex characteris-
tics. Mutations in the RXFP2 gene have been associated 
with human cryptorchidism, indicating its involvement 
in sex-related phenotypes. Therefore, we hypothesize 
that different expression levels of RXFP2 between ewes, 
rams and wethers, could cause different sizes and possi-
bly also formations of horns (scurs and knobs). Although, 
we recognize that the presence of the insertion (homozy-
gous, genotype class 0) in Merino sheep, is to the best of 
our knowledge, resulting in a polled phenotype, reflected 
by the penetrance values reported in Table 4 (full pene-
trance). Genotype classes different than 0, result in vari-
able horn status per sex due to reasons discussed.

Real vs. simulated QTL
The results of this study indicated that the model where 
incomplete penetrance is included, resulted in a high 
association between the EAC and the best-fitting SNP. 
However, the correlation was not one. This best-fitting 
SNP is known to tag the 1.7-kb insertion, but it is not in 
the insertion itself. Therefore, linkage disequilibrium (LD) 
between the insertion and the SNP OAR10_29546872.1, 
could be less than one. Previously published estimates of 
LD depended on the animals sequenced, and the LD esti-
mated as  R2 was 0.49 based on 72 sequenced Merino ani-
mals [9]. Similar low values for breeds with variable horn 
status and possible sex-dependent horn phenotype were 
observed in Lühken et  al. [8], where  R2 between a SNP 
on the intron of the RXFP2 gene (OAR10_29511510.1) 
and the insertion was 0.194. In breeds from completely 
polled or horned breeds, the value was much higher with 
 R2 = 0.635. In a breed which is polled (e.g. Poll Dorset, 
N = 10) the  R2 was 1.

These relatively low  R2 values could explain why the 
correlation between the real data with the SNP genotype 
was so much lower than the correlation from the simu-
lated true causative mutation (0.73 vs. 0.95 for males and 
0.67 vs. 0.89 for females respectively). The ratio between 
the correlations (0.73/0.96 and 0.67/0.89) was very sim-
ilar for males and females (0.76 and 0.75 for males and 
females respectively), which could indicate a common 
‘absence’ of a better predictor (e.g., the insertion). A more 
complete picture of the role of penetrance in the genetic 
model would have been obtained if the samples used in 
this study had been assayed for genetic variance that tar-
get the actual genetic variants in the RXFP2 gene, but 



Page 8 of 9Duijvesteijn et al. Genetics Selection Evolution           (2024) 56:61 

this was not possible due to the time since sample collec-
tion. It would be interesting in future work to employ our 
proposed method in data that includes these genotypes 
along with phenotypic data.

Influence of other genes has been tested before, and 
was not found to be likely [9], where association studies 
for polled/non-polled and horned/non-horned correct-
ing for the SNP OAR10_29546872.1, did not show any 
other region to be significantly associated. Similar to cat-
tle, where a range of mutations in a region on chromo-
some 1 cause polledness, sheep polledness could also be 
caused by different mutations in the region of RXFP2. 
This is also discussed by Lühken et al. [8], where in some 
breeds the 1.8-kb insertion was not causative for the 
polledness. As noted earlier, our current method showed 
some evidence of at least one additional region that could 
be involved, i.e., on chromosome 6, and the GWAS based 
on genotype probabilities potentially reveals more clearly 
such regions with modifier genes. Whether that could 
explain some of the differences between breeds in pen-
etrance could be further explored with data that includes 
more detailed genotype information in the actual RXFP2 
region.

Implications
Given the different penetrance values for males and 
females, and without a method to properly handle both 
of these values, it is necessary to analyze polledness in 
Merino sheep separately for the two sexes and not as a 
combined dataset. A simple combined analysis will dilute 
the differences observed between sexes. This is reflected 
in the analyses with the true simulated causative muta-
tion, where the GPI for the combined analyses is the low-
est observed (67%).

In previous studies by Dolling [1, 26, 27] in Merino 
sheep, scurs or knobs are discussed as closely linked 
alleles to polledness or were considered identical to the 
allele causing polledness. The penetrance values show 
scurs and knobs can be the intermediate phenotype 
between horns and polledness assuming one common 
genetic mechanism. A similar mechanism has been pro-
posed in cattle where scurs and horned/polledness have 
been described as two separate traits [28], but a recent 
study by Wiedemar et  al. [29] showed that all scurred 
animals in their study were heterozygous for one of the 
polled mutations.

Given the penetrance values per sex for Merino sheep 
we were able to better understand why prediction of the 
phenotype is not 100% accurate [9], and we are now bet-
ter able to understand the underlying mechanism. Fur-
ther functional studies would need to be conducted to 
investigate the influence of sex hormones in males and 

females on the development of horns. In the absence of 
a good model organism, this will be challenging given the 
relatively small investments in the sheep industry for fun-
damental questions like the development of horns.

Conclusions
We have clearly shown different penetrance values for 
males and females for horn status. Genotype probabilities 
from a segregation model, which assumed a monogenic 
inheritance with incomplete penetrance for horn status, 
were more significantly associated with the most signifi-
cant SNP from the Ovine Infinium® HD chip compared 
to using real phenotypes. GWAS fitting the expected 
allele count gave a much better fit than GWAS using real 
phenotypes. Functional studies are needed to investigate 
whether differences in levels of sex hormones cause dif-
ferences in horn status and whether more mutations in 
the RXFP2 region are present which alter the transcrip-
tion with a possible influence on horn development. In 
addition, we have demonstrated that segregation analysis 
of a trait with mutually exclusive phenotypes, non-addi-
tive inheritance, and/or incomplete penetrance can lead 
to considerably more power in a GWAS. This is because 
the linearized genotype probabilities analyzed are addi-
tive by definition, and they accommodate any incomplete 
penetrance involved.
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