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Abstract 

Background  Mitochondrial genomes differ from the nuclear genome and in humans it is known that mitochondrial 
variants contribute to genetic disorders. Prior to genomics, some livestock studies assessed the role of the mitochon-
drial genome but these were limited and inconclusive. Modern genome sequencing provides an opportunity to re-
evaluate the potential impact of mitochondrial variation on livestock traits. This study first evaluated the empirical 
accuracy of mitochondrial sequence imputation and then used real and imputed mitochondrial sequence genotypes 
to study the role of mitochondrial variants on milk production traits of dairy cattle.

Results  The empirical accuracy of imputation from Single Nucleotide Polymorphism (SNP) panels to mitochondrial 
sequence genotypes was assessed in 516 test animals of Holstein, Jersey and Red breeds using Beagle software 
and a sequence reference of 1883 animals. The overall accuracy estimated as the Pearson’s correlation squared 
(R2) between all imputed and real genotypes across all animals was 0.454. The low accuracy was attributed partly 
to the majority of variants having low minor allele frequency (MAF < 0.005) but also due to variants in the hypervari-
able D-loop region showing poor imputation accuracy. Beagle software provides an internal estimate of imputation 
accuracy (DR2), and 10 percent of the total 1927 imputed positions showed DR2 greater than 0.9 (N = 201). There were 
151 sites with empirical R2 > 0.9 (of 954 variants segregating in the test animals) and 138 of these overlapped the sites 
with DR2 > 0.9. This suggests that the DR2 statistic is a reasonable proxy to select sites that are imputed with higher 
accuracy for downstream analyses. Accordingly, in the second part of the study mitochondrial sequence variants 
were imputed from real mitochondrial SNP panel genotypes of 9515 Australian Holstein, Jersey and Red dairy cattle. 
Then, using only sites with DR2 > 0.900 and real genotypes, we undertook a genome-wide association study (GWAS) 
for milk, fat and protein yields. The GWAS mitochondrial SNP effects were not significant.

Conclusion  The accuracy of imputation of mitochondrial genotypes from the SNP panel to sequence was gener-
ally low. The Beagle DR2 statistic enabled selection of sites imputed with higher empirical accuracy. We recommend 
building larger reference populations with mitochondrial sequence to improve the accuracy of imputing less com-
mon variants and ensuring that SNP panels include common variants in the D-loop region.
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Background
Mitochondria are the primary site for the cellular energy 
metabolism in eukaryotes. These organelles contain small 
mitochondrial (MT) genomes (~ 16 kb) that are circular, 
haploid, non-recombining, and are maternally inherited 
[1–3]. Thus within a single cell, there are multiple cop-
ies (up to thousands) of MT genomes present depending 
on cell types [4, 5]. This genome codes for 13 proteins 
which are not present in the nuclear genome, but overall 
these constitute less than 1% of all MT proteins (i.e., pro-
teins in the mitochondrial compartment including those 
involved in metabolic and maintenance processes in the 
mitochondria). While many MT proteins continue to 
be identified and characterized, of those that are known 
and encoded by the nuclear genome, it is estimated that 
15 percent are involved in energy metabolism and up 
to 25 percent in maintenance and regulation of the MT 
genome indicating a close inter-dependence between the 
two genomes [6–8]. Mutations in MT protein genes from 
both the MT and nuclear genomes have been implicated 
in mitochondrial diseases in humans [9, 10]. Therefore, it 
is possible that these mutations in livestock species (e.g., 
dairy cattle) may manifest as either detrimental or ben-
eficial to traits that are associated with MT function (i.e., 
energy metabolism and utilization) in particular complex 
traits such as energy balance, feed efficiency and milk 
production [11].

Studies have shown that the MT genome of cattle is 
highly diverse and indicates a population structure differ-
ent from that of the nuclear genome due to the mater-
nal inheritance [12, 13]. It has been speculated that there 
may be as yet unaccounted for MT genetic variation that 
may augment the heritability and potentially improve 
genomic prediction accuracies for complex traits [14–
17]. In fact, the MT genome has long been of interest to 
animal breeders. There have been attempts to understand 
the role and quantify the effects of MT DNA in animal 
production, mainly through association of maternal lines 
(often derived from pedigree), as well as relatively small-
scale studies testing the association of several MT mark-
ers with production phenotypes [18–21].

In recent years, there has been renewed interest in 
studying the role of the MT genome on adaptation 
and production traits in livestock: investigations have 
included use of cybrids (cells with nuclear DNA from 
one source and MT genomes from a different source) 
[22–24], MT copy number, gene expression, mutations, 
haplotypes and haplogroups [25–28]. Further, the rapid 
developments in genomics over the last decade now ena-
bles larger scale genomic studies through the availability 
of whole genome sequences and computing capability 
[29]. In particular, whole genome sequencing of relatively 
large reference populations (e.g., 1000 Bull Genomes 

Project [30]) has enabled the recovery of MT genome 
sequences for large numbers of animals [12]. This pro-
vides a set of reference MT genomes that, coupled with 
the application of imputation, has the potential to deliver 
imputed whole genome MT sequence into many thou-
sands of individuals that have appropriate MT Single 
Nucleotide Polymorphism (SNP) panel genotypes [27]. 
In turn, this would enable large-scale genome wide asso-
ciation studies (GWAS) involving all MT sequence vari-
ants being tested for associations with recorded traits, as 
well as evaluation of the proportion of genetic variance 
explained by the MT genome.

To date, to the best of our knowledge the imputation 
of whole genome sequence MT genotypes in cattle and 
their evaluation for association with complex traits has 
not previously been undertaken. Therefore, the aims of 
our study were the following:

•	 Evaluate the empirical accuracy of imputing mito-
chondrial sequence variants from a set of mitochon-
drial markers genotyped on a custom Illumina XT-
50k SNP panel.

•	 Undertake a genome wide association study (GWAS) 
of real XT-50k mitochondrial SNP and imputed 
mitochondrial sequence variants with milk produc-
tion traits.

Methods
Evaluating empirical accuracy of mitochondrial sequence 
imputation
Imputation reference mitochondrial sequence genotypes
In a previous study, we developed a high quality set of 
whole genome mitochondrial sequences of 1883 ani-
mals from the 1000 Bull Genomes project and empiri-
cally demonstrated accurate imputation of sporadic 
missing MT sequence variants [12]. The same MT 
sequence dataset consisting of more than 185 breeds 
and crossbreds was used as an imputation reference in 
this study. There was a small proportion of ’heterozy-
gous’ genotypes in the reference sequences even though 
the genome is haploid. This phenomenon is thought to 
be due to both mutant and wild-type versions of the 
mitochondrial genome co-existing in the sampled tis-
sue and is referred to as ‘heteroplasmy’ [31]. However, 
heteroplasmy may also in part be due to mis-align-
ment of small segments of MT sequence that through 
the course of evolution have been incorporated in the 
nuclear DNA known as nuclear mitochondrial DNA 
segments (NUMTs) [32, 33]. Thus, heteroplasmic gen-
otypes were converted to homoplasmic genotypes by 
assigning the base with the higher allelic read depth 
(among the reference and alternate alleles). We did this 
because previously we have observed poor empirical 
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imputation accuracy of the MT heteroplasmic geno-
types [12]. The allelic read depths of heteroplasmic 
genotypes were rarely equal, but in this case the geno-
types were set to missing and then imputed as sporadic 
missing sequence genotypes following the approach 
described previously [12]. There was a total of 1949 
segregating sites in the set of 1883 reference animals 
(with an average distance of 8  bp between sites given 
the mitochondrial genome size of 16.4 kb). First, these 
sequence genotypes were used as the imputation refer-
ence dataset to test the empirical accuracy of imputa-
tion. Second, these sequence genotypes were used as a 
reference for the imputation of real MT markers from a 
custom array (XT-50k) genotyped in 9515 dairy cattle.

Test animals for empirical evaluation of imputation accuracy
A subset of 516 animals from three dairy breeds were 
selected as the test individuals from the above MT 
sequence reference dataset for determining empirical 
accuracy of imputation from MT marker genotypes to 
MT sequence. The test dataset consisted of MT sequence 
genotypes from 267 Holsteins, 27 Jersey and 222 Nor-
wegian Reds. These breeds were of interest because they 
were available in a larger dataset of animals used in this 
study for a GWAS of imputed and real MT SNP.

To test the empirical accuracy of imputation from 
lower density SNP marker panels to MT sequence, we 
used two marker panels: a custom XT-50k SNP panel and 
the Illumina BovineHD Beadchip panel. The custom XT-
50k SNP panel included 27 MT SNP markers, all of which 
were a subset of the 343 MT markers on the BovineHD 
panel (see Additional file 1: Table S1 and Table S2). The 
positions of MT SNPs on the XT-50k and HD Illumina 
manifests were based on an older MT reference genome 
(AY526085.1: 16,338 bp long). Therefore, following Dorji 
et al. [12], they were lifted over to the newer MT refer-
ence genome (CM008198.1: 16,340  bp long) that was 
used for the alignment of the above reference sequences 
[12]. Twenty-two out of the 27 SNPs on the XT-50k and 
70 of the 343 SNPs on the HD panels overlapped the 
polymorphic sites of the 1883 animals with reference 
MT sequence genotypes described above (see Additional 
file 1: Table S1 and S2 for the MT positions of all over-
lapping sites). The number of those sites segregating in 
the test set of 516 animals was 14 (XT-50k), 41 (HD) and 
968 sequence variants (including those on SNP panels). 
The number of full mitochondrial haplotypes among the 
test animals were 16, 56 and 412 for the XT-50k, HD and 
sequence respectively compared to 37, 161 and 1380 in 
the full reference dataset. The average distances between 
the MT SNPs were 710 bp for the XT-50k set and 232 bp 
for the HD set.

Testing empirical accuracy of imputation to mitochondrial 
sequence
To maximize the size of the reference population for 
imputation we adopted a “leave-one-out” approach to 
test imputation accuracy (i.e., repeating the imputa-
tion process 516 times for each of the test animals one 
at a time). The MT sequence genotypes of the ‘left-out’ 
test animal were masked down to the MT XT-50k SNPs 
while the remaining 1882 animals were masked to the 
MT HD SNPs for use as an HD imputation reference 
for the left-out test individual. Similarly, the full set of 
sequence variants for these same 1882 animals became 
the sequence reference to impute the ‘left out’ test ani-
mal. Thus, the XT-50k MT genotypes of each test ani-
mal were first imputed to the HD MT SNP (a total of 
48 imputed SNP = 70–22) and then to sequence (1879 
imputed SNP = 1949–70) using Beagle 5.2 [34, 35]. Given 
the higher mutation rate of mitochondrial DNA com-
pared to the nuclear DNA, the mixed breed population, 
and expectation of a large effective population size (Ne) 
for the MT genome due to maternal inheritance [36], we 
used the default Ne in Beagle. Furthermore, we tested the 
use of a lower Ne of 1000 and found no marked difference 
in the imputation accuracy.

Two measures of imputation accuracy were considered:

1.	 Pearson’s correlation squared between the original 
and imputed genotypes (R2) for each site across all 
animals.

2.	 The Beagle software provides an internal estimate of 
imputation accuracy (DR2) which is the squared cor-
relation between the imputed allele dosage and the 
posterior probability of the unobserved true geno-
type [37]. Since DR2 is not estimated when using the 
leave-one-out approach, we obtained DR2 for each 
variant by imputing all the test animals together from 
mitochondrial XT-50k genotypes to HD and then to 
sequence.

Mitochondrial sequence GWAS
Genotypes
A set of 13,999 cows (including Holstein, Jersey, Aus-
tralian Red and crossbreds) were genotyped on a cus-
tom XT-50k SNP panel which included 27 MT SNPs as 
described earlier. The panel also included 45,709 mark-
ers from the nuclear genome. A quality check of the MT 
genotypes was applied on both SNP marker and individ-
ual animal levels. The MT SNPs with genotype call (GC) 
scores of < 0.5 were set to missing and SNPs failing GC 
score and/or missing in > 10% of animals were removed, 
resulting in 13 MT markers (XT-50kMt) that passed this 
filter. Additionally, 238 animals were removed because 
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they were missing > 10% of these MT SNP genotypes (i.e., 
2 or more SNPs) leaving a total of 13,761 animals. The 
XT-50k nuclear marker genotypes used in our analyses 
also underwent similar quality control except that the GC 
score threshold was 0.6. This slightly higher GC score was 
used for the nuclear markers because these animal geno-
types were previously processed to generate a high-qual-
ity XT-50k imputation reference population. There were 
36,557 nuclear markers in this final set of genotypes. Any 
sporadic missing genotypes that remained in the nuclear 
XT-50k data (at less than 10%) were imputed with default 
settings in FImpute with no pedigree [38]. Finally, after 
checking for animals with near duplicate genotypes 
(< 200 differences out of 36,557 markers) a further 10 ani-
mals were removed, and 13,751 animals remained in the 
final XT-50k genotype data set.

Phenotypes for milk traits
Of the 13,751 cows in the final XT-50k SNP genotype set, 
there were 10,290 cows with records for three milk pro-
duction traits: milk, fat and protein yields. These pheno-
types were de-regressed proofs (corrected for herd, year, 
season and lactation) using records available across mul-
tiple lactations and were prepared by DataGene, the Aus-
tralian national dairy evaluation organization (https://​
datag​ene.​com.​au). To check the accuracy of pedigree 
breed assignment, we undertook a principal compo-
nents (PC) analysis using the genomic relationship of the 
nuclear XT-50k genotypes where the three breeds sepa-
rated clearly on PC1 and PC2. A relatively small number 
of mixed crossbreds from the three breeds (N = 775) were 
removed, leaving a total of 9515 animals for further anal-
ysis consisting of Holstein (N = 5806), Jersey (N = 1984) 
and Australian Reds (N = 1725).

Imputation of real mitochondrial XT‑50k genotypes
The XT-50kMt SNP genotypes of the 9515 animals with 
phenotypes were converted to VCF format using Plink 
2.0 [39] with care to convert the genotypes to match the 
sequence reference allele format. Next, the XT-50kMt 
genotypes of 9515 animals were imputed to HD geno-
types and then to sequence following the same approach 
and imputation reference set as described above (1883 
animals) using Beagle 5.2 with default settings. After 
imputation, we applied a threshold on the Beagle soft-
ware’s estimate of imputation accuracy, DR2 > 0.9, to 
select the most accurately imputed sites for further 
analyses.

Genome wide association studies (GWAS)
The imputed MT sequence genotypes (coded as 0 or 1 to 
reflect the haploid A or B genotypes) were used for sin-
gle-trait multibreed GWAS of milk, fat and protein yield 

using a mixed linear model fitted with the  GCTA soft-
ware “mlma” option [40, 41] in the following model:

where y is a vector of deregressed proofs of milk, fat 
and protein yields, 1 is a vector of ones, µ is an overall 
mean, X is a design matrix relating animal phenotypes 
to the fixed effects, b is the vector of the fixed effect of 
breed, w is the vector of animal genotypes for MT SNP 
i, coded as 0 or 1 (representing A or B genotypes) and a 
is the fixed effect of SNP i, Z is the incidence matrix, u is 
the vector of genomic breeding values distributed as N(0, 
G σ2g ) where σ2g is the additive genetic variance, G is the 
genomic relationship matrix generated from the nuclear 
XT-50k genotypes and e is the vector of residual effects 
distributed as N(0, σ2e ) where σ2e is the error variance. The 
breed was included as a fixed effect because the produc-
tion records were not previously corrected for breed.

The SNP effects were tested for significance using 
a stringent Bonferroni corrected p-value, defined as 
0.01/N, where N = number of SNPs in the MT test set 
that were not in perfect LD.

Results
Empirical accuracy of imputation of mitochondrial XT‑50k 
to sequence
The MT sites on XT-50k of 516 test animals were first 
imputed to HD markers and then to MT whole genome 
sequence variants. Of the 48 imputed HD MT SNP, 
only 19 had a MAF > 0.005 in the reference genotypes, 
and 353 of the 1,879 imputed sequence variants had 
a MAF > 0.005 (see Additional file  1: Table  S3). There 
were 63 imputed variants with MAF > 0.01 and just 
11 variants with a MAF > 0.1. The overall accuracy 
of imputation measured as Pearson’s correlation (R) 
between original and imputed genotypes coded as 0 
(i.e., major allele genotype) and 1 (minor allele geno-
type) across all imputed sites and all test animals was 
0.409 (R2 = 0.167) for XT-50k to HD imputation and 
0.67 (R2 = 0.449) for XT-50k to sequence via HD. The 
accuracy of imputation for HD variants was impacted 
by having a higher proportion of D-loop variants with 
MAF > 0.02 in the test animals (18.5% compared to 
the 2.7% in the sequence variants) and the imputa-
tion accuracy for these higher frequency D-loop vari-
ants was very poor. We tested the imputation accuracy 
of imputing direct to sequence from the XT-50k vari-
ants but this did not improve the imputation accuracy 
for the HD variants. The average R2 per site, calculated 
for 240 sites that segregated in both the genotyped and 
imputed test animal data, was 0.842 (0.777 for HD sites 
and 0.848 for sequence) and 151 had an R2 > 0.9. Of 
these 240 sites, 233 had a MAF > 0.005 and showed an 

(1)y = 1µ+ Xb+ wa+ Zu + e,
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average R2 = 0.844 and 147 of these sites were imputed 
with very high accuracy of R2 > 0.9 (see Additional file 1: 
Table  S3). As expected, there was a bias towards the 
minor allele being wrongly imputed to the major allele, 
and in our data the major allele always represented the 
reference allele except for two sites in the D-loop region 
(at 169 and 364  bp). Thus, when considering all sites 
segregating in the test animals and with MAF < 0.005 in 
the reference set, the average error rate for the imputed 
alternate allele was 98.9% indicating the difficulty of 
accurate imputation for less common alleles.

The Beagle software provides an internal estimate of 
imputation accuracy (the DR2 statistic) that can be used 
as a means of filtering poorly imputed variants before 
downstream analyses and therefore it was of interest to 
compare the DR2 with the empirical accuracy measures. 
The DR2 was obtained by imputing the entire test dataset 
altogether from their XT-50k genotypes to sequence via 
HD genotypes because the leave one out approach does 
not produce DR2 estimates. Thus, this DR2 may some-
what underestimate the leave-one-out imputation accu-
racy. Nonetheless, 10% of the imputed variants (201 out 
of 1927 imputed HD & sequence sites) had DR2 > 0.9 
(mean 0.996, min 0.920, max 1.0) and they overlapped 
with 138 sites of the 151 sites with an empirical R2 > 0.9. 
The remaining 58 variants with an estimable R2 < 0.9 and 
DR2 > 0.9 showed an average R2 of 0.626 (min 0.112 and 
max 0.831) and 31 variants of the 58 had R2 > 0.7 (see 
Additional file 1: Table S3). This indicates that filtering on 
a DR2 threshold is useful to identify the more accurately 
imputed variants for further analyses as found in other 
studies [42, 43].

A more detailed check on the imputation errors 
per site showed that they were spread over 42% of the 
imputed sequence positions considered (i.e., 805 out of 
1927 imputed sites) but increased to 83.6% when consid-
ering only the sites segregating in the real sequence of the 
test animals. Of those sequence positions showing impu-
tation errors, the majority (73%) had only 1 to 2 errors 
(across 516 animals) with the exception of four sequence 
variants (at positions 169, 215, 364, 1595, 16,318 bp) that 
had extremely low accuracies (R2 ranging from 0.000 to 
0.049: see Additional file  1: Table  S3). The genotypes in 
these positions were not specific to any particular breed 
and all but one (at 1595  bp) site are located within the 
D-loop region of the MT genome. These four D-loop 
variants together with others in the D-loop contributed 
almost 50% of the wrongly imputed genotypes while only 
10% of the imputed variants fall in this region (198 out 
of 1927). Thus the D-loop was the most poorly imputed 
region. On a per animal basis, the vast majority of ani-
mals (90%) had less than 10 errors (< 0.6%) while the 
overall range was 0 to 18 errors (< 1%).

Genome‑wide association study using mitochondrial SNPs
For this second part of the study, we used 9515 cows 
with imputed MT sequence genotypes and custom XT-
50k SNP array genotypes (nuclear genome) as well as 
milk, fat and protein yield phenotypes. The MT sequence 
genotypes were imputed from real genotypes on the XT-
50k panel and it is likely that these were a more accurate 
starting set of genotypes than those used for our empiri-
cal study (the latter being masked-down sequence data). 
Additionally the entire MT sequence reference popula-
tion was used for the imputation of the 9515 cows and 
our empirical test of imputation accuracy demonstrated 
that the Beagle DR2 is a useful indicator for filtering 
poorly imputed variants. Therefore here, we applied a 
Beagle DR2 > 0.9 from the imputation of the 9515 ani-
mals as a threshold to keep only 216 imputed sequence 
variants. In addition there were 13 directly genotyped 
MT markers from the XT-50k custom SNP panel mak-
ing a total of 229 variants. We did not filter on empirical 
R2 from the first part of the study because not all vari-
ants segregating in this set of animals were segregating in 
the test animal set (thus previously had no estimable R2). 
Furthermore, the starting set of real genotypes showed a 
better spread of MAF which may have resulted in differ-
ent imputation accuracy to that of the 516 test animals. 
Nonetheless, of the 216 variants with DR2 > 0.9, we found 
207 variants had an empirical R2 estimate: of these 175 
(85%) had R2 > 0.7 and 161 had R2 > 0.8.

The GWAS tested the effect of each of the 227 MT 
variants. In this set of 9915 animals, many pairs of 
the imputed MT variants were in close to perfect LD 
(r2 > 0.9), such that if one of each pair was pruned out 
this would leave only 18 variants. Interestingly most of 
the variant pairs that were in perfect LD had a MAF of 
0.3807 including four of the XT-50k real genotypes, and 
the others ranging between 0.0002 and 0.3872. We did 
not prune the variants a priori for the GWAS because we 
wanted to test for putative causal variants. However, the 
estimated MT variant effects across breeds for milk, fat 
and protein yields were not significant at p < 0.01 (apply-
ing a Bonferroni correction for 18 independent tests) (see 
Additional file 1: Table S4).

Discussion
To our knowledge, this is the first study in cattle to inves-
tigate the empirical accuracy of imputation from a SNP 
panel to whole MT genomes, and to evaluate the effect 
of real and imputed MT genotypes on milk yield traits in 
more than 9000 dairy cattle. The present study provides 
useful insights for future studies in this area, and this is a 
key focus of our discussion.

In an earlier study [12] the high accuracy of imput-
ing sporadic missing MT sequence genotypes suggested 
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the potential for exploiting existing data for popula-
tion scale imputation of MT genomes from lower den-
sity SNP. However, in the present study the empirical 
accuracy of imputed sequence sites from SNP panel 
genotypes was rather variable and there are some impor-
tant lessons learnt from this study. First, the accuracy 
of imputation tended to be lower for variants in the 
D-loop, a short non-coding region on the MT genome, 
compared to the coding region. This is perhaps not sur-
prising because the D-loop region is known to be more 
highly variable (potentially a mutational hotspot) than 
the remaining coding region, showing greater diversity 
both between and within breed [12, 44–46] and thus is 
more likely to be poorly imputed. Of the 12 variants with 
MAF > 0.1, 11 were in the D-loop, while the MAF of the 
XT-50k MT SNP were all < 0.02 in the test and reference 
animals. Therefore, it appears that the XT-50k MT SNP 
were unable to closely tag the common D-loop SNPs, 
resulting in the low imputation accuracy for this region. 
Unfortunately, only one variant on the XT-50k panel was 
from the D-loop region, therefore, in future studies it 
may be advisable to include some of the more common 
D-loop SNPs on panel designs. Additionally, it is difficult 
to impute rare variants accurately and only 372 (20%) of 
the imputed SNP had a MAF > 0.005 and only 3% had a 
MAF > 0.01 in the reference population. Therefore, it 
would be advisable to increase the size of the imputation 
reference population by several fold and apply a thresh-
old on the minor allele count of variants used for imputa-
tion. Further, it is likely that increased MT marker density 
on SNP arrays for those SNP that segregate at sequence 
level with a range of MAF (including in the D-loop 
region) would provide further improvements in imputa-
tion accuracy of the alternate alleles. A recent study in 
humans, with a reference population of almost 40,000 
MT genomes, showed that the imputation accuracy for 
MT sequence variants was generally higher for denser 
MT SNP panels and for panels that included MT variants 
with a range of MAF [46]. Interestingly, the MAF of vari-
ants in the real XT-50k genotypes of 9515 cows showed 
more variation than observed in the 516 test animals and 
ranged from 0.00084 to 0.3872. This is perhaps expected 
given that the animals used for our empirical evaluation 
of imputation accuracy were bulls that were included in 
the 1000 Bull Genomes Project because they were highly 
influential ancestors of specific dairy cattle populations 
and many may have shared the same maternal lines. 
However, the set of 9515 cows used for the GWAS were 
from a range of commercial herds across Australia poten-
tially representing different proportions of haplogroups 
than found in the 1000 Bull Genome Project set.

A weakness of our evaluation of empirical accuracy is 
that the existing sequence genotype calls were assumed 

to be always correct, while it is known that there will 
be sequencing and alignment errors. In particular, the 
short-read sequence data used here may include align-
ment errors due to small regions of MT sequence that 
are also found with high similarity in nuclear DNA due to 
transfer events across evolutionary time (often referred 
to as “NUMTs”). Once these NUMTs become part of the 
nuclear genome they may undergo mutational events 
and if misaligned to the MT genome can result in false 
positive segregating MT SNPs [47, 48]. This can poten-
tially give rise to erroneous heteroplasmy, where an indi-
vidual is found to have some heterozygous MT sites even 
though the genome is haploid. A complication of dealing 
with heteroplasmy is that it is also possible (though not 
common) for this to arise naturally through mutations 
of the MT genome, occasional leakage of paternal MT 
DNA and through inheritance from a heteroplasmic egg 
itself [33]. Therefore, when we previously generated our 
imputation reference population, we had imposed a read 
depth filter to identify and exclude sites that might be 
contaminated by NUMT alleles [12]. In a previous study, 
we found that imputation of sporadic missing genotypes 
at masked heteroplasmic sites showed low imputation 
accuracy [12] and therefore for the few remaining sites 
with heteroplasmy in this study, we assigned the most 
common allele to be the genotype. Ideally in the future, 
reference populations of MT sequences could be devel-
oped using long-read sequencing technology where the 
entire, or almost entire length of the MT genome will be 
sequenced in a single read. While previously the long-
read technology was plagued by low base call accuracy, 
this has now improved to the level of short-read technol-
ogy [49–51]. Thus, the long-read approach should now 
help to resolve the negative influence of NUMTs and the 
question of heteroplasmy.

It is plausible to speculate that MT variants might 
affect milk trait phenotypes because of the high energy 
metabolism requirements for milk production (reviewed 
in [52]). In addition, a previous study reported associa-
tion of MT SNP (e.g., variant at 169  bp which is in the 
D-loop and was poorly imputed in our study) with milk 
traits [20]. Our finding of no significant variants for milk 
trait GWAS in this study is however somewhat consistent 
with a study [17] which reported cytoplasmic and mater-
nal inheritance was negligible [53]. Outside of the small D 
loop region, the MT genome is mainly comprised of cod-
ing regions (with no introns) and the MT genes are gen-
erally found to be highly co-expressed [54] because their 
transcription is controlled by a single regulatory region 
and transcribed as a single unit [3]. Therefore compared 
to the nuclear genome, it is much more likely that a 
mutation in the MT genome will affect coding sequence 
and create a missense variant. However, the vast majority 
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of proteins required for MT function are encoded by 
the nuclear genome: thus mutations in coding or regu-
latory regions of these genes on the nuclear genome are 
potentially more likely to affect energy demanding traits 
such as milk production. In a recent study of MT protein 
gene expression in high and low feed efficient dairy cat-
tle (another trait related to energy utilization) [11], there 
was enrichment of nuclear encoded MT protein genes 
among those differentially expressed but no enrichment 
for genes from the MT genome. Therefore, the finding 
of no significant effects of MT sequence variants in our 
GWAS may be a true reflection of these variants tend-
ing to have small to negligible genetic influence on the 
traits. It is also possible that the power of GWAS may 
have been considerably reduced as a result of imputation 
errors because based on our empirical test of imputation 
accuracy, we know that alternate allele MT genotypes 
were imputed with lower accuracy compared to refer-
ence alleles. However, at least some of the variants tested 
were directly genotyped on the XT-50k panel. Addition-
ally, given the range in MAF of the real XT-50k MT geno-
types it might be expected that some at least would tag 
any underlying moderate size MT causal variants for the 
milk traits if present.

To some extent these studies question the likelihood 
that variants in the MT genome will have a strong influ-
ence on traits of economic importance in dairy cattle. It 
seems plausible that MT mutations with a significantly 
unfavorable impact on milk production or other key 
traits are under strong negative selection because a cow 
with such a mutation may be culled from the herd or 
not used to breed replacement heifers. Thus, only unfa-
vorable mutations with small effects would remain in the 
breeding population and as such only a very limited num-
ber of mutations are found in the small MT genome com-
pared to the nuclear genome. Additionally, even newly 
arising favorable MT mutations would tend to remain 
at low allele frequency because they must be inherited 
through the maternal line, versus favorable nuclear DNA 
mutations that can be rapidly disseminated into the pop-
ulation through use of artificial insemination.

Conclusions
In conclusion, with the available reference population we 
found that the imputation accuracy for mitochondrial 
sequence genotypes from a 50k SNP array was low for 
the majority of variants. The low minor allele frequency 
of many mitochondrial SNPs combined with the hyper-
variability of the D-loop region indicate that a much 
larger reference population is needed for the accurate 
imputation of MT sequence variants. It is also advisable 
to design genotyping platforms that capture relatively 
dense coverage of MT variants at a range of MAF. The 

GWAS study here may have lacked power due to impu-
tation errors, but may also suggest that any existing MT 
effects for milk traits are rare and/or small.
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