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Summary

A Restricted Maximum Likelihood procedure is described to estimate variance components for
a univariate mixed mode! with two random factors. An EM-type algorithm is presented with a
reparameterisation to speed up the rate of convergence. Computing strategies are outlined for
models common to the analysis of animal breeding data, allowing for both a nested and a cross-
classified design of the 2 random factors. Two special cases are considered : firstly, the total
number of levels of fixed effects is small compared to the number of levels of both random
factors ; secondly, one fixed effect with a large number of levels is to be fitted in addition to other
fixed effects with few levels. A small numerical example is given to illustrate details.

Key words : Restricted Maximum Likelihood, variance component estimation, nested design,
full sib family structure.

Résumé

Estimation des composantes de la variance par le Maximum de Vraisemblance Restreint
dans un modéle mixte a deux facteurs aléatoires

Une méthode d’estimation des composantes de la variance par le Maximum de Vraisemblance
Restreint est décrite dans le cas d’'un modéle mixte 2 une seule variable avec 2 facteurs aléatoires.
Un algorithme de calcul du type E.M. est présenté avec une reparamétrisation pour accélérer la
vitesse de convergence. Des stratégics de calcul sont abordées pour les modeles d’analyse
génétique les plus courants avec 2 facteurs aléatoires hiérarchiques ou croisés. Deux cas particu-
liers sont décrits : premiérement, le nombre total de niveaux des effets fixés est faible comparati-
vement a celui des facteurs aléatoires ; deuxiémement, un effet fixé avec un grand nombre de
niveaux est ajouté aux précédents. Un petit exemple numérique illustre les détails.

Mots clés : Maximum de Vraisemblance Restreint, estimation des composantes de la variance,
modéle hiérarchique, familles de pleins fréres.
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I. Introduction

Recently Maximum Likelihood (ML) and related procedures to estimate variance
components for unbalanced data have become popular. Restricted Maximum Likelihood
(REML), developed by ParTtersoNn & THompsoN (1971), which in contrast to ML
accounts for the loss in degrees of freedom due to fitting fixed effects, has become
accepted as the preferred method to estimate variance components for animal breeding
data.

HEeNDERSON (1973) described an EM-type ML algorithm for several uncorrelated
random effects, based on the Mixed Model Equations (MME) for Best Linear Unbia-
sed Prediction (BLUP). Its REML analogue (e.g. HARVILLE, 1977 ; HENDERSON, 1984)
is widely used although it is slower to converge than an algorithm using Fisher’s
Method of Scoring (THompson, 1982). However, it is guaranteed to yield non-negative
estimates (HARVILLE, 1977). THompsoN (1976) outlined an ML procedure to estimate
direct and maternal variances. Using small examples HENDERsON (1984) illustrated
REML algorithms for a variety of more complex cases, including models accommoda-
ting additive and dominance. direct and maternal effects and a three-way classification
where variance component estimates for one random factor and all random interactions
were required. His algorithm permits a general form of the matrix of residual errors. In
a different context, LAIRD & WARE (1982) discussed ML and REML estimation for
longitudinal data, invoking a two-stage model which accommodated both growth and
repeated measurement models.

In spite of well documented theory, most applications of REML in animal breeding
have been restricted to models which include only a single random factor apart from
the random residual error. This paper describes a univariate REML procedure for
models where three variance components are to be estimated. This encompasses cases
with 2 uncorrelated random effects and situations where the variance components for
one random factor and its random interaction with a fixed effect are of interest. With
an appropriate coding for the interaction, the latter is a special case of the 2 random
factor model. For animal breeding data, these are commonly sires and dams. Fre-
quently, there are considerably more dams than sires, in particular with artificial
insemination, and sires are used across a wider range of fixed effects than dams. The
algorithm has been developed with such a data structure in mind and will be presented
in terms pertaining to the animal breeding situation.

II. The model

Let y, of length N, denote the data vector and b, of length NF, denote the vector
of fixed effects including any regression coefficients for covariables to be fitted.
Similarly let s, of length NS, and d, of length ND, stand for the vectors of the first
(e.g. sires) and second (e.g. dams) random effect and e, of length N, stand for the
random vector of residuals. X, Z and W are the corresponding design matrices for b, s
and d of order N X NF, N X NS and N x ND, respectively. The model of analysis can
then be written as :
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y=Xb+Zs+ Wd + e (1)

with E(y) = Xb, E(s) = 0, E(d) = 0 and E(e) = 0 and variances and covariances
V(s) = Gs, V(d) = Gp, V(e) = R, Cov(s,d’) = 0, Cov(s,e’) = 0 and Cov(d,e’) = 0

Then V(y) = V = ZGZ' + WGpW' + R. Assuming errors to be. uncorrelated and
variances to be homogeneous for each random factor, this simplifies to :

V = ZAgZ'cl + WApW'a}, + Ino, (2)
where o} = V(sj), o} = V(dy) and o}, = V(en) for j=1,..., NS, k=1, ..., ND and
m =1, ..., N. Ag and Ap describe the covariance structure among the levels of each of

the 2 random effects. In animal breeding terms, assuming an additive genetic model,
for sires and dams, these are the numerator relationship matrices.

The MME for (1) are then (HENDERsoON, 1973) :

X'X XZ X'W b X'y
Z’X Z'Z+ NAs! W § | =1]2Zy 3)
WX WZ W'W + ApAp™! d W'y

with variance ratios As = 0%/02 and A\, = 0%/0% (assumed to be the known parameter
values).

III. REML algorithm

To account for the loss in degrees of freedom due to fitting of fixed effects,
REML, in contrast to ML, maximizes only the part of the likelihood of the data vector
y which is independent of the fixed effects. This is achieved by operating on a vector of
so-called « error contrasts », Sy, with SX = 0 and hence E(Sy) = 0. A suitable matrix S
arises when absorbing the fixed into the random effects in (3) (THomPsoN, 1973).

Z'SZ + AsAg™! Z'SW s | _ | zsy @
W'SZ W'SW + \pAp™ d W'Sy
with :
S = Iy - X(X'X)'X’ (5)

Differentiating the log likelihood of Sy with respect to the variance components to
be estimated then gives the general REML equations :

y'Pov/50, Py = tr(Pov/50)) (6)

where 6; stands in turn for o, o and o%. P is a projection matrix :
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P=S-S[Z:W]C | Z [s

7
W’ Q)
with :
c-= Cs Cop _ Z'SZ + \A 7'SW ' ®)
Cos Cop W'SZ W'SW + \Ap
From (2), the derivatives of V required are :
dv/do; = ZAZ', dv/dop, = WALW' and dv/day, = I
This gives the following estimating equations :
a2 = [§'As'S + o} tr(A;'C)]/NS or ©)
a2 = §'A;'$/{NS — A tr(A;'Cyy)]
a2 = [d'A;'d + o, tr(A;'Cyp)]/ND or (10)
62 = d'A5'd/[ND — )\, tr(A;'Cpp)]
and :
a2, = &¢'8/[NDFW + X tr(A;'Css) + Ap tr(Ap'Cpp)] 11

where & =y — Xb — Z§ — Wd = S(y — Zit — Wd) ; and NDFW = N — NS — ND — rank(X)
denotes the degrees of freedom for residual. Equivalent expressions to (9) to (11) have
been given by HARvILLE (1977), SEARLE (1979) and HENDERSON (1984). Estimates are
usually obtained employing an iterative solution scheme. Above and in the following,
o2, and A\, (or ) are then thought of as starting values while a superscript « * »
denotes estimates for the current round of iteration. These equations, (9) to (11),
utilize only first derivatives of the likelihood function, resulting in an EM algorithm
(DEMPSTER et al., 1977). Alternatively, the right hand side of (6) can be expanded to
include second derivatives, resulting in an algorithm equivalent to Fisher’s Method of
Scoring. Details are given in the Appendix (A).

While the EM algorithm requires only the diagonal blocks (Cs and Cpp) of the
inverse of the coefficient matrix for random effects and traces of their simple products
with the corresponding inverse of the numerator relationship matrix, off-diagonal blocks
and more complicated traces are required for the Method "of Scoring algorithm (see
(A3) in relation to (9) to (11)). Hence computational requirements per round of
iteration for the latter are considerably higher. Though the EM algorithm can be slow
to converge, in particular for ratios of variance components common to animal breeding
data (THoMPSON, 1982) it is often preferred for its computational ease and the fact that
it guarantees estimates in the parameter space.
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IV. Reparameterisation

THoMPSON & MEYER (1986) described a reparameterisation to speed up convergence
of a REML algorithm based on first derivatives of the likelihood function. It was
derived considering the expectations of mean squares, resulting from the orthogonal
partitioning of sums of squares due to factors in the model, in a balanced design. For a
model with one random factor, for instance, where the variance components within
(o%) and between (o}) random groups are of interest, it was suggested to estimate
parameters a,, = oy, and o, = of + o /K. The latter is the variance of a group mean if K
is the group size. For K — o, o, reduces to o}. For a balanced design with K equal to
the group size, estimates of o, and «,, were obtained in one round of iteration. For the
unbalanced case a value of K equal to the average group size increased speed of
convergence markedly over the EM algorithm on the original scale (K = =), especially if
o; was small compared to al.

A. Nested design

For a model with 2 random factors it is necessary to distinguish between a nested
and a cross-classified design. If the second random factor, for instance dams (d), is
nested within the first, for instance sires (s), expectations of mean squares in a
balanced hierarchical analysis of variance suggest a reparameterisation to oy = 03,
a, = o3 + a3/K,, and a3 = o2 + a,/Ks = 02 + o}/Kg + 03,/KK,,. THOMPSON & MEYER
(1986) demonstrated for K, equal to the average dam group size and K equal to the
average number of dams per sire a considerable reduction in rounds of iteration
required for convergence, as compared to values of K; = K, = ». Again, in the balanced
case estimates were obtained in one round.

Differentiating the log likelihood of Sy with respect to the new parameters oy, o
and a,, and equating the resulting expressions to zero, « improved » estimates for the
three variance components can be derived. The first variance component, o3, is derived
as before, i.e. according to (9), while (10) is replaced by :

62 = [d'Az'd — (o3/02)/KS'AS'S] /
(ND = ho tr(45'Cog) = (03703 (12)
K [NS — A tr(Ag'CSS)]>
The residual variance is then found as :
62, = [y'Sy — y'SZ8 — y'SWd — A\S'A's — N, (1 + A/Kp)d'A;'d] /
(N — rank (X) — [NS — A tr(A;5'Css)] (13)
= (4 M/Ky) IND = h, tr(A5'Co)] )
Clearly, (12) and (13) reduce to (10) and (11) respectively, if Ks and Kp are «.
Alternatively, an estimator of the general form :
6, = 0, + [6; (3L/38;) 6;/M (14)

can be used to determine 8; = ag, ap and oy, where 3L/6; denotes the partial Qerivative
of the log likelihood of Sy with respect to 6;. M stands for the number of levels or
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degrees of freedom pertaining to the respective random factor (see THOMPSON & MEYER
(1986) for a reasoning for the latter). Estimates of the variance components are then
found as &w = &Wa 6.;2) = &D - &W/kD and (}é = &5 - &D/KS'

This implies that, in contrast to the scheme above (i.e. (12) and (13)), estimates of
o3, and of rather than the starting values are used in back transforming from the
reparameterised to the original scale. This appears to be advantageous. For 6; = ag, ap
and aw in turn, this gives (from 14) :

as = ag + (as/02)? [§'A5's — NSo? + o2, tr(A;'Cse)]/ (NS — 1) (15)
o = ap + (ap/o})?( [A'd = ND + o3, tr(A5'Con)] — (0B/037/Ks

[(6'As's — NSo? + a?, tr(A,;‘Css)])/(ND ~ NS) (16)
G = 0y + ([é’é — (NDFW + ¢ tr(A;'Cy) + Ap tr(Ag'Cop))o]

— N/Kp [d’Ay'd — NDo? + a3, tr(Ag‘CDD)])/NDFW (17)

Obviously, with ay = 0% rearranging (17) yields (13).

B. Crossclassified design

Reparameterised variables for the crossclassified design are aw = d%, ap = o}, + o3,/
Kp and as = o2 + 04/Ks where suitable values for Kp and Kg may be the average
number of records per dam and sire, respectively. From (14),

&p = ap + (ap/a2) [d'Ag'd — NDo? + a3 tr(A5'Cpp))/(ND — 1) (18)
and

aw = ay + ([é'é — (NDFW + X tr(A;'Cy) + Ap tr(A5'Cpp))onl

— M/Ks [$'A5's — NSo? + 0% tr(A5'Cy)]

- N/Kp [d’'A;'d —~ NDo2 + o, tr(Ag'CDD)])/NDFW (19)

for 6; = ap and aw, respectively, and (15) for §; = ag. Estimates of o3, and o} are then
determined as for the nested design and o = a5 — aw/Ks.

V. Computing strategy

The REML algorithm as described so far centres around the matrix S which is of
order equal to the number of observations. For most applications, S cannot be
calculated directly but often special features of the data structure can be exploited to
obtain the required terms indirectly.

A. Few fixed effects

Consider a model where the total number of levels of fixed effects, including any
regression coefficients for covariables, is small compared to the number of levels of the
first random effects.
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Assume further that :
i) there are more levels for the second than for the first random effect
ii) Ap = Inp

ll]) AS = INS
The steps are then :

1) Absorb d into s and b. This gives MME

X'KX X'KZ b | | XKy

= (20)
Z’KX Z'KZ + \A;' ] Z'Ky

with K = Iy — WW'W + A\pAj')'W'

If Ap = L, (W'W + ApAj") is diagonal and d can be absorbed one level at a time.

2) Absorb s into b giving
X'MX b = X'My (1)
with M = K — KZ(Z'KZ + \A{)'Z’K
If d is nested within s, Z'KZ is diagonal and, for Ag = I, (Z'KZ + \Ag') is easily

inverted.

3) Obtain solutions for the fixed effects as :

b = (X'MX) X'My (22)
and backsolutions for the random effects

§ = (Z'KZ + \A,") '(Z'Ky — Z'KXb) (23)
and

d=(WW+\AL) ' (Wy — WZ§ — WXb) (24)

4) The REML algorithm requires traces involving the diagonal blocks, Cg and Cyy, of
the inverse of the coefficient matrix. These can be derived using partitioned matrix
results, utilising inverses and matrix products arising during the absorption steps.

Let :

H, = (X'MX)

H, = (Z’KZ + \A; ') !
Hy, = (WW + MAp') !
L, = X'’KZH,

L., = X'WH,,
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and
Ly, = Z’WH,
Then :
Ci = Hy + HZ'KXH, X'KZH, (25)
and
Cpp = Hp + Hy [W'X : W'Z] | H, H X'KZH; X'W
, H, (26)
HZ'KXH, Cys Z’W

The traces are then :

tr(A;'Cy) = tr(Ag'Hg) + tr(HLyAg'L' ) (27)

and :

tr(A5'Cyp) = tr(Ap'Hp) + tr(HLgp,Ap'L' ) + tr(HET) (28)

with :

T = [X'W : — X’KZHZ'W] H A 'H,, W'X
- W'ZH,Z'KX
= [LXD P LXSLSD] Ap' ern]) , (29)

-L SDL XS

Hence, 3 additional symmetric matrices have to be determined to calculate the
required traces indirectly : Lyp,A;'L’, of order equal to the number of levels of s, and
L,A;'L'ys and T, both of order equal to the total number of levels of fixed effects
including any regression coefficients. These can efficiently be calculated when absorbing
the random effects.

The quadratics in the vector of random effects, §'A5's and &'A[;‘fi, can be
calculated directly. The corresponding term for residuals is then determined as :

¢t = y'y — y'Z5 — yWd — y'’Xb — A$'A;'S — A d'Ag'd (30)

B. One fixed effect with many levels

Often the model of analysis includes one fixed effect with many levels, too many
to pursue the approach described above. Usually, however, there are still considerably
more levels of d so that it appears appropriate, first to absorb d and then to absorb the
major fixed effect into s and any additional fixed éffects or covariables to be fitted.
This strategy requires that the levels of d are nested within the levels of the major
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TABLE 1

Data for numerical example

L

. L Treatment 1 Treatment 2 Treatment 3
Sire Dam size
Male Female Maic Female Male Female
Time period 1
1 1 4 99 130 124 119
2 15 118 106, 109, 124, 97, 137, 112 93, 95 130, 97
125 113, 115,
87
3 8 108 115 106, 116, 104 125
136, 103
4 13 109, 98 113, 111, 101, 116 122, 104 109, 111,
137 99, 107
2 6 7 138, 123 115 117, 106 119, 104
7 7 |88 116, 116 140, 114 100 109
3 11 8 123, 93, 107 122, 114 114, 127
107
14 11 95 101 117, 103, 118, 118, 117, 87
107, 76 96
15 6 91, 123, 98 86, 107
124
4 17 4 i1, 116 119, 116
18 4 111, 106 100 102
19 13 108, 116, 136 107, 116, 112, 124 117, 103
103 101, 107,
109
21 S 92 120, 107 123, 105
22 11 108, 122 117 119, 90. 128, 105, 83, 97
107 111
5 24 12 104, 83, 101 112, 108, 81, 98 118, 120
103 109, 109
26 7 1102 129 106, 108 123 99 105
30 13 102, 116 106, 117 106, 96, 129 116 134, 116
103, 127 126
Time period 11
1 5 15 108 90, 105, 106, 128, 130
92, 109, 120, 106
110, 104,
118, 101,
108
2 8 16 |94 104, 95, 89, 101, 97, 92, 81 115, 99,
112, 104 97 125 105, 108
9 14 |95 85, 117, 95, 91, 116, 102, 91
114 93 115, 115,
117, 110
10 13 108, 93 132, 109 106, 100, 118 81, 121
100, 90,
89, 108
3 12 5 103 122 104 115, 119
13 15 111, 92, 102 115, 99, 114, 96, 85, 108 114, 118,
95 95 100 104
16 14 |92 83 94, 111, 110, 108, 83, 100, 108
91 110, 96 110, 108
4 20 9 124 114 132 119, 91, 113, 121
97, 116
23 8 102 114 129, 96 122, 131 114 115
5 25 9 118 138 93, 114 140 118 125, 129,
114
27 9 |98 105, 96. 111, 110, 102
90, 100 103
28 14 117 102, 96 119, 128, 102, 94
115, 101,
129, 108,
111, 95,
129
29 5 102 122 112, 126 102
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fixed effect or at. least within a sufficiently small group thereof. Only then can the
inverse required to absorb the fixed effect be calculated. A typical example is the
analysis of dairy data where a large number of herd-year-season (HYS) effects has to
be taken into account. Assuming cows do not change herds, repeated records for a
cow, for instance for milking speed or calving ease, are nested within herds. Details for
this case are outlined in the Appendix (B).

VI. Numerical example

Consider records on progeny of 5 sires and 30 dams, subject to 3 treatments in 2
time periods, as summarized in table 1. Dams are nested within sires and within time
periods. Let the model of analysis include the 6 time X treatment subclasses (h,) and two
sexes (b;) as fixed effects, litter size (X,;,) as linear covariable and sires (s;) and dams
(d,) as random factors,

Yy = hy + b+ +d, + b, (K — i) + Chi

where b, denotes the regression on litter size and e, the residual error associated with
Yy» the record for the I-th progeny of dam k and sire j and sex i in treatment X time
class h. Assume both sires and dams are unrelated, i.e. A = Is and A, = [,

A. Absorption strategy for few fixed effects

1l

Fora? = 10,03 = 12and o} = 120, submatrices for time X treatment classes in period I

are :
32.651 sym. 2 140.66
B'KB, =|— 70952 50.999 B/'Ky = | 3813.11
— 5.552 — 8.856 36.855 2 423.77
and :
0.3095 sym.
(LgpAp'Lyp'), = | 0.3782 0.7576
0.2664 0.4478 0.3131
8.585 10.561 198.54
B/'K; X, = | 20.845 13.345 318.09
15.807 6.639 205.53
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and :
0.5434 0.4107 10.3124
(LyA, 'Ly’ ) = | 0.9586 0.6250 15.9732
0.6116 0.4167 10.2803
4.885 1.765 5.050 3.168 4.279
B,'K\Z = | 8.190 4.118 5.069 10.602 6.211
5.879 2.353 3.313 6.168 4.734
and :

0.2683  0.0727 0.2190  0.1731  0.2211
0.4059 0.1696 0.2474  0.4412  0.3195
0.2845  0.0969  0.1461  0.2539  0.2459

(LBDAl; ILSI)’)]

Absorbing all dams,

113.438 sym. 7 850.17
X, KX, =] — 3459  98.165 , X,'Ky = 7 707.22
821.58  694.31 18061. 164,276.
2.2663 sym.
LywAp'Lypy' = 1.6165 1.5977
43.330 37.289 999.91

With dams nested within sires, the coefficient matrix for sires absorbing dams is
diagonal.

Z'KZ = Diag. {24.954 25.875 28.599 29.119 33.865},

(Z'Ky)' = (27864 27622 3017.0 3246.8 3 745.0) and

Ly,Ap'Ly,’ = Diag. {1.3186 1.3776 1.4239 1.2901 1.6867}

The first term required to calculate tr(C,,) is tr(A;'Hp) = 1.57588.

Absorbing sires, (sub)matrices corresponding to X,'KX, are :

82.114 sym.
X, MX, = |- 52.742 77.484
238.41  212.17 6 586.8
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0.7738 sym.
0.5933 0.5051 of LysAq'Ly
14.447 11.874 285.01
and :
0.2882 sym.
0.0524 0.2341 of T
3.9472 4.1987 179.953

The first term in (27) is then tr(A'Hg) = 0.1752778, and the second term in (28) is
tr(HgL,A, 'Ly,') = 0.1242176.

With more than one fixed effect fitted, the coefficient matrix is not of full rank.
Hence the row and column of X'MX pertaining to the first level of each additional, i.e.
other than the first, fixed effect are set to zero. Obtaining a generalized inverse gives
tr(H Ly As'Lys') = 0.0634841,  tr(HT) = 0.1160263,  tr(A;'C) = 0.1877017  and
tr(A5'Cpp) = 1.867190.

Corresponding results pursuing a computing strategy suitable for a model with one
fixed effect with many levels are given in the Appendix (C).

B. Solutions

For both computing strategies, solutions (or backsolutions) for the fixed effects are
b = [112.672 112.862 111.485 110.480 111.532 111.116] and b,’ = [0 11.349 — 0.71834],
while sire and dam effects are predicted as §' = [2.4608 — 1.3884 — 2.8995 1.4868
0.3403] and d = [0.1614 0.6646 0.930 ... 0.1335 3.5630]. This gives products of solutions
and right hand sides b,'X,y = — 85,022.4, h'By = 3,576,705.2, §'Zy = 285.5 and
d'Wy = 2 636.4. With a total sum of squares (SS) of 3,526,153, the residual SS is
31.548.2. The quadratics required in the estimation equations are then
$'AS's = 18.716404, d’A;'d = 119.472337 and &'é = 30,128.9.

The EM algorithm on the original scale gives estimates o3 = 8.2481 (first line of (9))
or o3 = 6.8120 (second line of (9)), o3 = 11.4512 (first line of (10)) or o3 = 10.5465
(second line of (10)) and oy, = 110.7988 (eq. (11)). The average number of progeny per
dam is k, = 294/30 = 9.8 and the average number of dams per sire ky = 30/5 = 6.0. This
gives op, = 24.2449 and oy = 14.0408. Using estimators of form (14) then gives
ag = 9.72366, &, = 21.89974 and &, = &3, = 110.70115 (from (15), (16) and (17)) with
estimates of the original components of 3 = 10.6037 and &2 = 6.0737. Estimates for
subsequent rounds of iteration are given in table 2 for both the reparameterisation
(using (15), (16) and (17)) and the « better » version of the EM algorithm on the
original scale (using (11) and the second lines of (9) and (10)).

Received November 12, 1985.
Accepted September 5, 1986.
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TABLE 2

Estimates over rounds of iteration for the numerical example.

Round a3 o oy
Starting values
0 10.000000000 12.00000000 120.0000000
Reparameterised scale
1 6.073697343 10.60368758 110.7011524
2 5.793292231 10.38246830 111.0148001
3 5.774875145 10.36519071 111.0016223
4 5.773818666 10.36309267 111.0020272
5 5.773855456 10.36278748 111.0020245
6 5.773887264 10.36272901 111.0020299
7 5.773896807 10.36271619 111.0020312
8 5.773899257 10.36271321 111.0020315
9 5.773899859 10.36271249 111.0020316
10 5.773900005 10.36271232 111.0020316
11 5.773900041 10.36271228 111.0020316
12 5.773900049 10.36271227 111.0020316
13 5.773900051 10.36271227 111.0020316
14 5.773900052 10.36271227 111.0020316
Original scale
1 6.811960832 10.54653761 110.7988338
2 6.162192464 10.38779261 110.9331919
3 5.934679073 10.34431931 110.9844251
4 5.846001718 10.33784182 111.0011447
5 5.808836612 10.34174703 111.0054555
6 5.792134787 10.34732035 111.0057549
7 5.784054722 10.35207264 111.0050067
8 5.779848630 10.35557730 111.0041680
9 5.777512317 10.35800506 111.0034923
10 5.776146465 10.35963494 111.0030054
11 5.775318220 10.36071089 111.0026719
12 5.774803618 10.36141452 111.0024494
13 5.774478933 10.36187223 111.0023031
14 5.774272135 10.36216905 111.0022075
16 5.774054544 10.36248546 111.0021052
20 5.773926863 10.36267281 111.0020444
25 5.773903062 10.36270784 111.0020331
30 5.773900390 10.36271177 111.0020318
35 5.773900090 10.36271221 111.0020316
40 5.773900056 10.36271226 111.0020316
44 5.773900052 10.36271227 111.0020316
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Appendix

A. Method of scoring

Utilizing that PVP = P and that V is linear in the parameters to be estimated (see
(2)), (6) can be rewritten as :

y'P3V/36Py = X tr(P3V/36, P3V/56,) 6, (A1)
This yields a sylstem of linear equations to be solved simultaneously :

BO=gq (A2)

with 8 = {6;} the vector of parameters to be estimated, q = {q;} = {y'P3V/56,Py} a vector of
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quadratics and B = {b;} = {tr(P3V/56; P8V /56;} a symmetric matrix of coefficients. Apart
from a factor of 1/2, B is equal to the information matrix for 8. The elements of B for
the model considered here are :

b, = N [NS — 2 tr(A§'Cys) + A2 tr(A5'Cyy)’]
b, = MNAJ tr(A5'CpAL'Cpy)
b; = A [tr(A5'Cys) — A tr(A5'Cgs)® — Ap tr(A'CopA5' Crs)l (A3)
b,, = A3 [ND — 2A, tr(A;'Cpp) + A tr(A;'Cpp)]
by = A [tr(A5'Cpp) — Ap tr(Ap'Cpp)? — A tr (A5'CypAp'Cg)]
b, = NDFW + A2 tr(A;'Cgg)* + A tr(A5'Cpp)?
+ 2N\ tr(A5'CpAp'Chs)
The quadratics required are equel to those in the EM algorithm :
$'A;'s, q, = d’A;'d and
q, = &'é = y'Sy — y'SZ3 — y'SWd — A\$'A;'8 — A\, d'Aj'd (Ad)

=
I

B. Computing strategy for a model including a fixed effect with many levels

Partition the vector of fixed effects and the design matrix in (1), according to the
« major » fixed effect h with many levels and any additional fixed effects and covaria-
bles.

X=[B:X,Jandb=| h
b

Let the subscript h denote the submatrix or vector for the hth group of levels of h.
The MME absorbing d, (20), can then be rewritten as :

B'KB B'KX, B'KZ h B'Ky
X,KB  X,KX, X,'’KZ b, | =| XKy (AS)
Z'KB Z'KX, Z'KZ + \A;j! § Z'Ky

NH
with B'KB = hE" B'.K,B,, where “ 3* ” denotes the direct matrix sum (SEARLE, 1966) and
=1

NH the number of groups of the major fixed effect. This holds only if A, has a
corresponding block structure, i.e. if all covariances between levels of d in different

groups are zero.

Absorbing h then gives the MME for sires and additional fixed effects as :

X,'NX, X,'NZ b, | | X.JNy (A6)
Z'NX, Z'NZ + \A;! § Z'Ny

Lév. R A C.M.R.2
Legarter: (indtique Anias
o e S CHEQUE
T Y EN JOR A
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with N = K — KB(B'KB) 'B’K. From (AS) it follows that N is block diagonal,
ie. N= h}:‘.l N, with :
N, = K, — KB, (B',K,B,) B',K, (A7)
Absorbing any additional fixed effects then leaves :
(Z'FZ + \A,")3 = Z'Fy (A8)

with F = N — NX, (X,'NX,) X,'N. Hence a direct inverse of order NS, equal to the
number of levels of s, is required,

Cy = (Z'FZ + \ASY) (A9)
to obtain solutions :

§ = C,Z'Fy (A10)

After backsolving for any additional fixed effects or covariables,

b, = (X,'NX,)" (X,'Ny — X,'NZ3) (A11)
backsolutions for h and d can be obtained group by group.

h, = (B,/K,B,)" (B,’K,y, — B,/K,X,,b, — B,’K,Z,3) (A12)

d, = (W'W, + M AT (W,'y, — W,'B,h,

- W,/X,,b, — W,'Z3) (A13)

The quadratic forms and traces for REML are the same as before except :
(i) y'Xb (in (30)) expands to y'Bh + y'X,b,,
(ii) tr(Ag'Cg) can be calculated directly, and
(iii) tr(A5'Cpp) = tr(Ap'Hy) + tr(HyLypAs'L'yp)
+ tr(HyTyy) + tr(CsT) (Al4)
with :
H, = (W'W + A AR

Hy, = (B'’KB)"
H, = (X,'NX,)"
Ly, = B'WH,
L., = X,'WH,
Ly, = Z'WH,
L,, = X,’KBH,
L, = Z’KBH,
Ly, = Z'NX,H,

T = Tgs — LixT'sx — TeyLl'sx + Loy Toex L' sx (A15)
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and :

Tyx = [Lap i — Laglap] Ap'

Tsx = [LSD . LSBLBD] AI;I

and :

T = [Lso P LSBLBD] Ap'

C. Numerical example : absorbing a fixed effect with many levels

L,SD
- L'BDL,SB

65

(A16)

(A17)

(A18)

Absorbing treatments for one time period after the other, intermediate results are

as follows.

Processing data for period I gives :

X,'NX, =

107.340
— 34.374
893.281

0.0489
~ 0.0489
0.0060

107.374
926.719

0.0489
— 0.0060

and tr(HgLgpAp'Lygy') = 0.0497559.  After absorbing

tr(HyLypA; Lyp') = 0.1089976,

Tyx =

0.1238
- 0.1238
— 0.3848

0.1238
0.3848

sym.

25,131.3

sym.

40.376

|

dams

sym.

77.240

treatments,
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and :

69.030
X,'NX, = | — 69.030  69.030
— 8.768 8.768 1 708.54

(X.'Ny)’ = [~ 767.511 767.511 — 1107.39]

19.547 sym.
- 3.633 20.185
Z'NZ =] — 4603 - 5.429 22.521
- 5700 — 4540 - 5.649 22.317
~ 5611 - 6429 - 6839 - 6429 25.462
( 44.704
~ 48.678
Z'Ny = | — 103.484
54.079
53.379
: i
- 4
1.0118 sym.
- 0.1941 1.0291
T =| —0.2353 - 0.2922 1.1119
- 0.2665 - 0.2019 - 0.2522 1.0078
- 03158 —0.3407 -0.3321 - 0.2870 1.2757
i 0.0405 - 0.0629 - 0.0098 0.1470 - 0.1147
T = | — 0.0405 0.0629 0.0098 - 0.1470 0.1147
2.5173 0.9691 - 0.2343 - 2.1407 - 1.1114
— -

and tr(HyLypA;'Ly,’) = 0.1089976.

Again, setting the first level of each additional effect to zero and obtaining a
generalized inverse, yields tr(H,Ty,) = 0.0469752. Absorbing the additional fixed effects
and covariables into sires,
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0.9303
- 0.2245 1.0150
T=| —02271 - 0.2900 1.1109

-0.2005 -—0.1703 — 0.2569 0.9363
- 02782 —03302 —0.3369 —0.3087

b

and the fourth term of (A14) is tr(CT) = 0.1353313,

. sym.

.1.2546
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