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Summary

The conditional probability of an observation in a subpopulation i (a combination of levels of
explanatory variables) falling into one of 2" mutually exclusive and exhaustive categories is
modelled using a normal integral in n-dimensions. The mean of subpopulation i is written as a
linear combination of an unknown vector 8 which can include « fixed >> effects (e.g., nuisance
environmental effects, genetic group effects) and « random » effects such as additive genetic value
or producing ability. Conditionally on 0, the normal integral depends on an unknown matrix R
comprising residual correlations in a multivariate standard normal conceptual scale. The random
variables in 0 have a dispersion matrix G 0 A, where usually A is a known matrix of additive
genetic relationships, and G is a matrix of unknown genetic variances and covariances. It is
assumed a priori that 0 follows a multivariate normal distribution f (6 1 G), which does not depend
on R, and the likelihood function is taken as product multinomial. The point estimator of 0 is the
mode of the posterior distribution f (A I Y, G = G*, R = R*) where Y is data, and G* and R* are

:he components of the mode of the marginal posterior distribution f (G, R I Y) using « flat » priors
for G and R. The matrices G* and R* correspond to the marginal maximum likelihood estimators
of the corresponding matrices. The point estimator of 0 is of the empirical Bayes types. Overall,
computations involve solving 3 non-linear systems in 0, G and R. G* can be computed with an
expectation-maximization type algorithm ; an estimator of R* is suggested, and this is related to
results published elsewhere on maximum likelihood estimation in contingency tables. Problems
discussed include non-linearity, size of the system to be solved, rate of convergence, approxima-
:ions made and the possible use of informative priors for the dispersion parameters.

Key words : Multiple trait evaluation, all-or-none traits, categorial variates, Bayesian methods.

Résumé

Estimation bayésienne empirique de paramètres relatifs
à n caractères binaires polygéniques

La probabilité conditionnelle qu’une observation d’une sous-population donnée (combinaison
de niveaux de facteurs) se trouve dans l’une des 2" catégories possibles de réponse (exclusives et
exhaustives) est modélisée par une intégrale normale à n-dimensions. La moyenne de la f sous-



population s’écrit comme une combinaison linéaire d’un vecteur 0 de paramètres inconnus qui
peuvent comprendre des effets « fixes » (effets de milieu parasites, effets de groupe génétique) et
des effets aléatoires (valeur génétique additive ou aptitude à la production). Sachant 8, l’intégrale
normale dépend d’une matrice inconnue R fonction des corrélations résiduelles entre les n

variables normales sous-jacentes standardisées. Les effets aléatoires de 0 présentent une matrice de
dispersion de la forme G Q9 A où A est généralement une matrice connue de parenté et G une
matrice inconnue de variances et covariances génétiques. On suppose qu’a priori 8 suit une loi

multinormale de densité f (A 1 G) qui ne dépend pas de R. La vraisemblance s’exprime alors
comme un produit de multinomiales. L’estimateur de position de 0 est défini comme le mode de
la distribution a posteriori f (A I Y, G = G*, R = R*) où Y est le vecteur des données, G* et R* sont

les composantes du mode de la distribution marginale f (G, R 1 Y) avec des a priori uniformes
pour G et R. G* et R* correspondent alors aux estimateurs du maximum de vraisemblance

marginale et 0 à un estimateur de type bayésien empirique. Les calculs impliquent la résolution de
3 systèmes non-linéaires en 0, G et R. G* se calcule selon un algorithme de type E.M. Une
approximation de R* est suggérée en relation avec des résultats antérieurs publiés à propos d’une
estimation du maximum de vraisemblance pour les tables de contingence. Divers problèmes sont
abordés en discussion tels que la non-linéarité, la taille du système à résoudre, la vitesse de

convergence, le degré d’approximation et l’emploi possible d’a priori informatifs pour les paramè-
tres de dispersion.

Mots clés : Evaluation multidimensionnelle, caractères tout-ou-rien, variables discrètes, méthodes
bayésiennes.

I. Introduction

Several new procedures of sire evaluation for discrete characters postulate an

underlying normal distribution which is made discrete via a set of thresholds (GIANOLA
& FOULLEY, 1982, 1983 ; FOULLEY & GIANOLA, 1984 ; HARVILLE & MEE, 1984- ;
GILMOUR et al., 1985). In the method of GIANOLA & FOULLEY, the records in a sample
are allocated to sub-populations consisting of one or more individuals ; the mean of
each sub-population is a linear combination of an unknown vector 6. The link between
these means and the discrete observations is provided by a multivariate normal integral
with an argument dependent on location and dispersion parameters (H6sCHELE et al.,
1986). Inferences about 0 are made using Bayesian procedures which readily accommo-
date « fixed » effects (nuisance environmental parameters, genetic group means) and
« random » effects such as the breeding values of animals to be evaluated. As in the
case of genetic evaluation by best linear unbiased prediction (HENDERSON, 1973), the
estimators and predictors are obtained from the posterior distribution of 0, condition-
ally on the intervening dispersion parameters, e.g., heritabilities, genetic and residual
correlations. The objective of this paper is to further generalize the methods for

discrete variables by considering the situation where the values of the dispersion
parameters are not known. In particular, we present a solution based upon replacing
these parameters by point estimates obtained from their marginal posterior distribution
(O’HAGAN, 1980 ; GIANOLA et al., 1986). The procedure provides estimates of the

components of the dispersion structure and predictors of linear combination of 0 which
can be viewed as of the empirical. Bayes type. We consider the situation of n jointly
distributed binary variates as described by HÖSCHELE et al. (1986). The multivariate
empirical Bayes approach discussed can be viewed as a generalization of univariate
results of HARVILLE & MEE (1984). The paper includes sections on theory, computing
algorithms and a numerical application.



II. The model

A. The data

The records can be arranged into an s x 2&dquo; contingency table Y where the rows
(j = 1, 2, .. , s) represent sub-populations and the columns (k = 1, 2, ..., 2&dquo;) are

categories of response ; category k is designated by an n-bit digit with a 0 or a 1 for
attributes coded [0] or [1], respectively, in trait i (i = 1, 2, ... n). Symbolically, one can
write

where Yj is a 2&dquo; x 1 column vector such that

and Yj, is a 21 x 1 column vector having a 1 in the category of response and 0’s
elsewhere. The marginal totals n,+, n2l, ..., nj+’ .. , n., of each row of Y are assumed fixed

by sampling and non-null.

B. The threshold model

The model used to analyze this joint distribution of discrete variables assumes the
existence of underlying variables rendered discrete by a set of abrupt thresholds. This
concept, introduced by WRIGHT (1934), has been used by several authors (ROBERTSON &

LERNER, 1949 ; DEMPSTER & LERNER, 1950 ; FALCONER, 1965 ; TI-IOMPSON, 1972 ; CUR-
Now & SMITH, 1975). The probability that observation o of sub-population j responds in
category k depends on values taken by n underlying variates (1,, 1,, .. , In) in relation to
fixed thresholds (T,, T2, ..., rj. The underlying variates are written as

where Tlij is a location parameter and Eij. is a residual. Along the lines of a polygenic
inheritance model, it is assumed that the residuals follow the multivariate normal
distribution :

where rij, is a residual correlation and (1&dquo;, is the residual standard deviation of

underlying variate i. Further, it is assumed that Cov (E¡jo’ Ej,j,.,) = 0 unless o = o’ and
J’=J’.

Conditionally on the parameters TJij’ the probability that on observation in sub-

population j responds in category of response k can be written as



where wlll,..., wnIkl is an n-bit digit indicating the category of response, with w!1 = 0 or 1,
depending on whether attribute coded [0] or [1] in trait i is observed. HOSCHELE et al.

(1986) showed that [5] is equal to

where for simplicity the n-bit digit is replaced by k, (Dn is the n-dimensional normal
distribution function,

is an n x 1 row vector, and

is the distance between the threshold for the ith conceptual variate and the location
parameter !;! expressed in units of residual standard deviation. Finally, the matrix Rill is
a matrix of functions of residual correlations with typical element

C. Sources of variation

Because of the assumption of multivariate normality, it is reasonable to adopt
linear models to describe the underlying variates so we write

where Fi is an s x 1 column vector of elements 1J.i¡(j = 1, ..., s), Xi (Zi) is a known
incidence matrix of order s x p; (s x q), [3; is a vector of « fixed » effects and ui is a
vector of « random » effects. In animal breeding, the J3’s often are nuisance environ-
mental parameters (herd, year, season, age of dam) or effects of genetic populations
(lines, generations, groups). The u’s can represent breeding values, producing abilities
or, typically, transmitting abilities of sires. Model [7] can be put more compactly as

D. Conditional distribution of the records

Given 8 and R, the vectors V¡ are conditionally independent following the multino-
mial distribution

where the Pir’s are the multivariate normal integrals in {6].



III. Methods of inference

As in other studies dealing with genetic evaluation of animals (RONNn·rGEN, 1971 ;
DEMPFLE, 1977 ; LEFORT, 1980 ; GIANOLA & FOULLEY, 1983 ; GIANOLA & FERNANDO,
1986), a Bayesian procedure is adopted here. Because of the assumption of polygenic
inheritance used to justify [3], it is reasonable to assume, a priori, that u in [8] follows
the multivariate normal distribution

With u partitioned as in the equations subsequent to [8], one can write

where

. G is an n X n matrix of « u » variance and covariance components ; in many
applications, G is a matrix of genetic variances and covariances, and

o A is a q x q symmetric matrix with elements equal to twice Malecot’s coefficients
of parentage.

It is assumed a priori that P follows a uniform distribution so as to reflect

complete ignorance about this vector (Box & TIAO, 1973) ; this corresponds to a

« fixed )} P vector in a frequentist analysis. Further, we assume a priori that P and u
are independent so

Let now g be a column vector containing the n (n + 1)/2 variances and covariances
in G, and r be the column vector containing the n (n &mdash; 1)/2 residual correlations in R.
Further, let y’ = [g’, r’] represent all non-trivial dispersion parameters. The joint post-
erior distribution of all unknowns, i.e., 0 and y, can be written using [9] and [12] as

where f (g, r) is the joint prior density of the dispersion parameters.
From the viewpoint of genetic evaluation of animals, the parameters of interest are

in 0 (and sometimes only in u), in which case y should be considered as a nuisance
vector. For example, sires are usually evaluated from estimated linear combinations of
p and u (HENDERSON, 1973) ; if a quadratic loss function is employed, the correspond-
ing Bayesian estimator is the posterior mean of the appropriate linear combination.
Further, if k out of m candidates are to be selected, ranking individuals using the
posterior mean maximizes expected genetic progress (GOFFINET & ELSEN, 1984 ;
GIANOLA & FERNANDO, 1986).

The calculation of E (0 Y) involves integrating y out of [13] but this, in general,
is extremely difficult if not impossible to do. Hence, it is necessary to consider
alternative estimators. One possibility would be to consider modal estimators of 0, i.e.,
the values that have maximum density given a specified posterior distribution. Several
distributions and modes can be considered : 1) the 0 mode of f (0 Y), which is
difficult to obtain for the reasons mentioned above ; 2) the 0 mode of the joint
posterior density [13] ; or 3) the mode of f (0 ) Y, y = y*), where y* is some value of

y. In principle, these approaches lead to different point estimates of 0.



Procedure (2) corresponds to the estimators described by LirrnLEY & SMITH (1972)
for the multivariate normal case. Because in many instances this procedure leads to

trivial point estimates (HARVILLE, 1977 ; THOMPSON, 1980), we do not consider it any
further. In this paper, we adopt procedure (3) with y* being the mode of the marginal
posterior distribution f (&dquo;I Y). This is based on O’HAGAN (1980) who stated : « ...one

should (a) estimate variance components by the mode of their marginal distribution
after integrating out the other parameters, then (b) estimate the remaining parameters
by the mode of their conditional distribution given that the variance parameters have
the values obtained in (a) ». When a uniform prior distribution is adopted for y, the
mode y* is the marginal maximum likelihood estimator (MALECOT, 1947) found by
maximizing f (Y ! y) with respect to the dispersion parameters. Under multivariate

normality, this corresponds to the restricted maximum likelihood estimator of y (HAR-
mLLE, 1974). Further, the point estimator of 0 so obtained can be viewed as belonging
to the class of empirical Bayes estimators (CASELLA, 1985). This mode of reasoning has
also been employed by other workers in multivariate normal (GIANOLA et al., 1986) and
discrete (HARVILLE & MEE, 1984 ; SURATELLI et al., 1984) settings. Finally, the mode 0*
of the joint posterior distribution f (0 Y, y*) can be viewed as an approximation to
the mode of f (0) Y) (Box & TIAO, 1973). This can be established by writing

from which it follows that f (0 ) Y) = E [f (6 ) Y, y)], where the expectation is taken
with respect to f (y ) Y). If this distribution is symmetrical or quasi-symmetrical about
its mode y*, it follows that f (0 Y) = f (0 ) Y, y*). Equivalently, the approximation
can be justified using the first-order expansion

and then taking expectation with respect to f (y ! Y). The second term vanishes only
if E (’Y Y) = y* ; this holds when the posterior distribution of y is symmetric, or to
first order approximation, when the mode is close to the mean.

IV. Estimation of location parameters

As pointed out earlier, the point estimator of 0 is the statistic 0* (y*) such that

where y* is defined by

Using [9] and [12], one can write

where r and g are the components of y. Because the likelihood is product multinomial
and the prior distribution is multivariate normal, one can write the log of [17] as

Maximization of [18] with respect to 0 can be done via the Newton-Raphson algorithm,
and HBSCHELE et al. (1986) have shown that this involves iteration with equations



where t is iterate number and

are « working » vectors. In [19] and [20] above, the Wii, arrays are diagonal matrices
and the v;’s ares s x 1 vectors ; formulae to calculate elements of these matrices and
vectors are given by H6SCHELE et al. (1986). Further, the ii&dquo; sub-matrices are appropri-
ate blocks of Iu-I (evaluated at g)*. The parallel between (19) and the multiple-trait
mixed model equations (HENDERSON & QUAAS, 1976) is remarkable.

The matrix of second derivatives of the log-posterior in [18] with respect to 0 is the
negative of the coefficient matrix in [19]. This Hessian matrix is negative definitive

provided the matrices G and R defined earlier and evaluated at y* are positive
definite ; this is shown in Annex A. Therefore, the Newton-Raphson algorithm con-
verges to a unique maximum of the log-posterior density if it exists (DAHLQUIST &

BIORCK, 1974 ; EVERITT, 1984). Computations involve a double-iterative scheme with
[19] and with the equations used to calculate y*. We return to this in a later section of
this article.

It is useful to point out that the matrix



evaluated at the modal value 0* (y*) gives an expression for the asymptotic covariance
matrix of the posterior distribution of 0 (Cox & HINKLEY, 1975, p. 400 ; BERGER, 1985,
p. 224).

V. Estimation of genetic variances and covariances

Let

Calculating [22] requires first the integration of the joint posterior distribution of
all unknowns with respect to 0, that is

It is shown in Annex B that irrespective of the form of the density involved in
[23], the above integration leads to the expression :

where E. indicates expectation taken with respect to the conditional distribution
f (u Y, g, r), and f (g) is the prior density of the vector of genetic variances and
covariances. To satisfy (16), we need to set P (g, r, Y) = 0, which leads to a nonlinear
system in g. An important simplification arises if E, in [24] is evaluated at gill, a vector
representing the genetic (co)variances at iteration t. Then,

Hence, at iteration t,

Collecting [22], [24] and [26], it follows that at iteration t

The above result implies that whenever a flat prior is used for g, maximization of
the joint posterior distribution of all- variances and covariances with respect to g can be
done by maximizing Ell) {In f (u ! g)} at each iterate. More general situations, e.g.,
using informative prior distributions for g, are dealt with in the discussion section of
this paper.

From [10] and [11]



with !&dquo; ! _ ! G 11. A In (ANDERSON, 1984, p. 600), and it = G-1 0 A-’. Now,

where D = {u! A-’ uA (i = 1, .. , n, i’ = 1, ..., n) is an n x n matrix. Using Lemma 3.2.2 of
ANDERSON (1984, p. 62), expression [30] is maximum at

with the typical element of G* being

and this holding at each iteration. Under multivariate normality, the above formulae
lead to the iterative algorithm

where fii = E (ui Y, y) and C;! = Cov (ui, u, j Y, y). This is precisely the expectation-
maximization algorithm (DEMPSTER et (11. , 1977) applied to a multiple trait setting
(HENDERSON, 1984). In the multivariate discrete problem addressed in this paper, it is
not possible to evaluate [32] explicitly. Hence, as suggested by other authors (HARVILLE
& MEE, 1984 ; STIRATELLI et al., 1984), we replace !3!‘! in [33] by u* (y = y!‘’), the mode
of f (u ! Y, y)) evaluated at yltl = (g’lll, r’)’ and Clil by G,;, (y = y!‘’). With these

approximations, [33] generalizes the results for a univariate threshold model presented
by HARVILLE & MEE (1984). As pointed out earlier, [33] holds for the case where a flat
prior distribution is used for g.

As shown in Annex C, if X in [8] is a full-column rank matrix (this is not

restrictive because a reparameterization to full rank always exists) and if Gltl is positive-
definite, then G&dquo;+&dquo; calculated with [33] is also positive-definite. This property is

important in the construction of predictors of breeding values as pointed out by HILL &
THOMPSON (1978) and FOULLEY & OLLIVIER (1986). Finally, equation [16] is satisfied at

- ........... -....... r... !,

This procedure is general and can be applied to models with several sets of random
effects (FOULLEY et al. , 1986).

VI. Estimation of residual correlations

Define

Using a reasoning similar to the one employed in the preceding section it can be
shown (Annex B) that the ith element of the vector in [35] takes the form



where M (y) is the coefficient matrix in [19] excluding the contributions from the prior
distribution, i.e., without the if sub-matrices.

In many applications, the form of the prior distribution of r is not very important
as the residual correlations can be well estimated from the body of data used in the
analysis. In this study, we adopted a uniform prior distribution for r so the last term of
[36] vanishes. The first term represents the contribution of the likelihood function
evaluated at 0*, the mode of f (9 Y, y). The second term stems from a local

integration (in the neighborhood of 0*) to second order with respect to 0. Because

calculating the second term involves complex computations, we consider at this point
only the first term. This implies that we search for r* such that

which can be viewed as a modification of estimation by maximum likelihood (TALLIS,
1962 ; THOMPSON, 1972 ; ANDERSON & PEMBERTON, 1985).

From [9], the log-likelihood viewed as a function or r can be written as

where P!k is as in [6] with w*!!! replacing w!!!. From now on, we do not use the *’s on
the P’s and p’s to simplify notation. Maximization of [38] can be achieved using
Fisher’s scoring algorithm :

where .1r1’1 = rill - r[I-11, r(l] is a solution at iterate t, and the expectation is taken with
respect to f (Y 1 0, r). Using a result of PLACKETT (1954), one can write from [6]

where :

. ref is the residual correlation between traits e and f ;

. ! is a bivariate standard normal density ;

. 4>n-2 is the multivariate normal distribution function of order n - 2 ;

. h’§i!; = {h!.!j} for every d different than e and f is an (n - 2) x 1 vector, with

and h(!j is the third element of the row vector

. T is the 3 x 3 upper triangular matrix of the Cholesky decomposition T’T of the
residual correlation matrix between traits f, e, d and taken in that order ;

. R[!f is a correlation matrix of order n &mdash; 2, with typical element

and r,.,, is the partial residual correlation between c and d with e and f fixed.



Applying [40], one can write

The second derivatives of the log-likelihood can be obtained using Fisher’s informa-
tion measure for a multinomial distribution. This yields

In the case of two binary traits, [41] and [42] reduce to the formulae given by
TALUS (1962).

VII. Computing algorithm

Satisfying [15] and [16] involves computations with a system composed of equations
[19], [33] and [39]. Because the three sub-systems are non-linear in the unknowns, an
iterative solution is needed. The algorithm considered in this paper can be described as
follows :

i) given ylll, calculate 0[’1 = 0 (,ylll) using equations [19] ;
ii) apply [39] to compute d’+11 = r (0’&dquo;, d&dquo;, r<’!) ;
iii) compute g[Ill using [33] as a function of ON and of C (y!‘!).
Because [19] and [39] require « internal » iteration, steps (i) and (ii) can be

combined into a single, more rapid process. Let the iterate for 0 or r be denoted by
two indexes (t&dquo; t!), where t, indicates the number of iterations carried out for g, and t,
denotes the iterate number for 0 and r, intra t,. With this notation, the modified

algorithm becomes :

i) From 0111 and d’i&dquo; 2!!’, calculate 0(’1’ ’z] with a single iteration of [19], so

Having [43], compute with a single iterate of [39]

and perform a new iteration on 0 so

The process stops at iterate ( when

where c, is an arbitrarilly small positive number.

ii) The second step pertains to the calculation of gl’I+1) as a function of 0’&dquo; i21 and of
the corresponding inverse of the coefficient matrix, that is
..! ..... - .. - ... - -



At this point, we return to (i) of the modified algorithm and calculate [43] with
ti + 1 as the index for g, and rlll+l. = rIll. i2J as the « new » residua) correlation. The
overall process stops at « main » iterate q = il when

For example, as suggested by HARVILLE & MEE (1984) one could choose not to
iterate on step (i), by calculating a single pass 0[1B. 11, r’&dquo; 11 so as to save time. In fact, for
values of E2 of the order of 10-3, the number of iterations required for g can be reduced
considerably. In this study, we opted to calculate the first iterates for g using 9 values
close to the mode of f (0) Y, g!&dquo;!, r[II.121). Because in the examples so far examined r
seems to converge rapidly, it would be possible to stop calculating the residual
correlations early during iteration, or to revise their values only periodically during the
process. It should be mentioned that the general properties of convergence, e.g.,
convergence to a unique global maximum, are not known to hold for this modified

algorithm.

VIII. Numerical application

A. The records

In order to illustrate the procedures, an example involving 30 bulls progeny tested
for calving difficulty (trait A) and perinatal mortality (trait B), is considered ; it is
assumed that average progeny group size is 100 calves, 50 males and 50 females.

Calving difficulty is scored as an « all or none » trait ([0] : unassisted or mildly assisted
births ; [1] : mechanical assistance or caesarean section). Perinatal mortality classes are
[0] for live, viable calves, or [1] for calves that are born dead or of doubtful viability.
The data were obtained by simulating 2 conceptual underlying variates 1, and lB,
corresponding to traits A and B, respectively, following the bivariate normal distribu-
tion described below. The assignment ot categories of responses was by reference to
fixed thresholds iB and TB :

For reasons of simplicity, the thresholds were set at 0, and the parameterization was on
1Jij = T &mdash; /LiP with T null (see section II, B). This implies that factors increasing the q’s
would increase the probability of response in the categories coded as [1]. The linear
model employed to describe the underlying variates was

Tm : effect of calving season m (m = 1, 2)
S. : effect of sex of calf n (n = 1, 2 for males and females, respectively)
un : effect of sire o (o = 1, 2, ..., 30)
Cmnop ! residual effect.



A reparameterization to full-rank was achieved by putting 0, = T, + S,, !2 = T2 + S2 and

!3 = S, - S,. Based on H6SCHELE et al. (1986), the values chosen for the p’s in the

parameterization of the 9’s were

For example, the value for calving difficulty of 133 = .77, represents the difference in

liability between male and female calves. Because the difference is positive, linear

combinations of liability variates pertaining to males would have a higher probability of
difficult calving than those of females. The sire and residual effects were sampled from
independent bivariate normal distributions with null means and respective covariance
matrices :

with h.2 = .35 and h£ = .05 as heritabilities and rg = 0 as genetic correlation, and

with p = .35 as residual correlation.

The 3 000 calves were assigned to the sires at random ; each sire had an equal
probability of having the calf included in the corresponding progeny group. The
distribution of progeny across seasons of calving was also at random, with probabilities
.30 and .70 for seasons 1 and 2, respectively, and independently of the assignment of
records to sexes. The sample so obtained is presented in table 1 ; progeny group sizes
ranged between 76 and 116. Marginal and joint raw frequencies for the two traits are in
table 2 for each of the season x sex combinations. The overall proportions of unassisted
births and of calves having good viability were about .79 and .82, respectively. It is

interesting to observe that the data in table 2 suggest a slight interaction between
season of birth and sex, especially for the response in category (11] (difficult birth, poor
vigor). For example, proportions of calves born in season 1 having a difficult birth and
poor vigor were .17 and .06 for males and females, respectively ; corresponding
proportions in season 2 were .06 and .02. This is purely due to nonlinearity as the
model used to simulate the data additive. Linear analyses of 0-1 scores sometimes

require including interactions which, biologically speaking, may be non-existent. Statisti-
cally, this leads to the specification of highly non-parsimonious models (MCCULLAGH &

NELDER, 1983), with an unnecessarily large number of parameters. These « interac-
tions » can be more marked at higher incidence. The data in table 2 indicate an
association between the two traits ; correlations of .43 of .35 were calculated with
formulae of Yule and Pearson, respectively (KENDALL & STUART, 1973, p. 539 ;
RUTLEDGE, 1977, p. 395). This was expected as the residual correlation was p = .35 in
the simulation of the data.



B. Results

The data were analyzed with [48], the model used to simulate the records but the
analysis was carried out on the IJ.¡j metric (T-’TJij)’ Computations were carried out as
described in VII using APL in an IBM PC-XT/370 micro computer with an 8087 co-
processor. The first iterate for 0 was obtained solving univariate mixed model equations
applied to 0-1 data. The multivariate normal integrals required thereafter were calcu-
lated using DUTT’s algorithm with 10 or 4 positive roots of Hermite polynomials for
one or two dimensions, respectively (DucRocQ & CotLEnu, 1986). The final solutions





for the components of 0 are shown in table 3 and those corresponding to the

components of g and r are in table 4. The estimates of fixed effects agreed well with
the values used in simulating the data (except, of course, for the change in sign). For
example 01 was estimated at 1.03 and the « true » value was &mdash; 1.05. Likewise, the
estimate of pB was &mdash; .15 as opposed to .20. The transmitting abilities were also

reasonably well predicted as suggested by the values of the correlations between
« true » and predicted values which were .94 and .64 for calving ease and perinatal
mortalily, respectively. In a balanced layout with known mean and 100 progeny per
sire, the expected values of these correlations under normality would have been .95 and
.75, respectively. In view of the lack of balance, the presence of unknown fixed effects
in the model, and the intrinsic non-linearity of the problem, the agreement between
these two sets of correlations can be considered satisfactory.

As shown in table 4, the iterative process converged almost to the same solution
irrespective of the values employed to start iteration ; three markedly different starting
sets were used and these are described in a footnote to table 4. The estimates of sire
variances and covariances were ouA = 12.79 x 10-1, 6! = 2.01 x 10 !,andc, = .96 x 10 &dquo;.
The estimated genetic correlation was .19 (r, was 0 in the Simulation), and the
estimates of heritability in the underlying scale were .45 and .08 for calving difficulty
and perinatal mortality, respectively ; the corresponding « true » heritabilities were .35
and .05, respectively. The residual correlation stabilized at .2834 (p = .35 in the simula-
tion) after 5 iterations. For stopping values ranging between 10-1 and 10-6 and with the
tests applied to the 0-values, between 25 and 55 iterations were required to attain
« convergence ». In this example, the number of iterates required did not depend on
the staiting values used. However, calculations conducted with a smaller exampl 
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sires and 20 progeny per sire) suggested that the number of iterates can strongly
depend, although in a seemingly unpredictable manner, on the values used to begin
iteration. In this smaller example and for a stopping value of 10-B 56, 153 and 105
iterations using sets 1,2 and 3 in table 4, respectively, were needed. The estimated
parameters were fi;, _ .40,fil, = .17,í’g = - .82,andp p = .37. This indicates that the algorithm
can be very slow to converge when progeny group sizes are small. This is not surprising
because of the relationship between the expressions employed and the E-M algorithm,
as discussed earlier. Research on numerical aspects of the procedure is warranted.

IX. Discussion

This article describes a further contribution to the solution of the problem of
genetic evaluation with multiple binary responses along the lines of methods developed
by GIANOLA & FOULLEY (1983), FOULLEY et al. (1983), FOULLEY & GIANOLA (1984),
HARVILLE & MEE (1984) and H6sCHELE et al. (1986). Several points such as the analogy
with multivariate generalized linear models, the justification for multiple trait analyses,
the calculation of genetic evaluations on the probability scale, and the numerical aspects
of solving a large non-linear system on 0 have been already discussed by H6sCHELE et
al. (1986), so they will not be dealt with here.

In the context of the present paper, three aspects merit discussion as they may
limit the usefulness of the results presented. The first issue relates to the consequence
of ignoring the second terms of [36] in the estimation of the residual correlations.
While this may be unsatisfactory from a theoretical viewpoint, it can be conjectured
that the consequences will be small when the method is applied to the large data sets
that frequently arise in animal breeding applications. In fact, when this term is

included, the estimator can be interpreted as marginal maximum likelihood ; when it is
ignored, the procedure is closely related to maximum likelihood (ML). Because
estimates of residual variances and covariances obtained by these two methods using
multiple trait mixed models often differ little, it is reasonable to speculate that the
same would hold in the non-linear domain.

The second aspect is the approximation of the mean vector and covariance matrix
of the distribution u Y, y by the u-component of the mode of the density f (0 Y,
y) and by the matrix C(y), which is the inverse of the coefficient matrix in [19]. This
approximation, also made by HARVILLE & MEE (1984) and by ST1RArELu ,t al. (1984),
could be critical. In the context of sire evaluation, for example, this approximation
might be crude if progeny group sizes are small. This can cause bias in the estimates of
G. GILMOUR et al. (1985) conducted a univariate analysis using the procedure described
here and in HARVILLE & MEE (1984), and found that the intra-class correlation was
under-estimated when family sizes were less or equal than 8. This potential problem
merits further study. 

’

The third point concerns the slow convergence of the algorithm used to estimate G
(see formulae [33] and [46]). These expressions, ’related to the EM algorithm
(DErtrs!rEx et al., 1977), are very slow to converge, particularly when the eigenvalues of
G are small (THOMPSON, 1979). Techniques used to accelerate convergence in the case
of normal variables (THOMPSON & CAMERON, 1986) might be useful here. Another

possibility would be to develop algorithms based on second derivatives of f (y j Y)



with respect to g, or to extend the techniques described by SMITH & GRASER (1986) to
the discrete domain. It would be useful to develop procedures yielding at least

approximations to the posterior dispersion matrix of g. For example, Louis (1982) has
addressed this problem in the context of the EM algorithm.

Because precise estimation of genetic variances and covariances requires an exten-
sive amount of data, in instances in which little data is available it may be useful to

incorporate prior information about G in the estimation procedure. For example, this
prior information could stem from previous data sets pertinent to the problem. The
form of [30] suggests using an inverted Wishart distribution as an informative conjugate
prior (CHEN, 1979) The density is then

where :

o S2 is an n x n known matrix interpreted as a location parameter of the prior
distribution such that E (G !l ) 0, v) = ! , and

. v is an integer interpreted as degrees of freedom or as a measure of « degree of
belief » in n.

When v = 0, [49] becomes I G I - ’ (&dquo;&dquo;)which is a non-informative prior distribution for G.
In general, the new estimator (G**) obtained using the informative prior [49] can be
written as

where G* is the marginal maximum likelihood estimator of G. Expression [50] can be
viewed as a weighted average of G* and dL. This estimator is not invariant under
transformations. For example, if one is interested in making inferences about A = G-1,
which is reasonable in view of the form of equations [19], one would obtain A* = (G*)-’
as marginal maximum likelihood estimator of A. However, the estimator based on [49]
is

which is not the inverse of [50]. Use of reference priors (BERNARDO, 1979) would be
worth investigating.

The methodology described in this paper consists of basing inferences on 0 on the
conditional distribution f (8 I Y, y*), where y* is the mode of f (,y I Y). This is

along the lines suggested by O’HAGAN (1980) and GIANOLA et al. (1986). However,
there are alternatives. As pointed out by BROEME!NG (1985, p. 144), the mixed model
can be viewed as having two levels of parameters. The first or « primary level
includes the location parameters P ans u and the vector of residual correlations r. The
« secondary » level comprises the elements of g, or u-components of variance and
covariance ; these are regarded in Bayesian inference as « hyper-parameters » linked to
the prior distribution of u. If the hyper-parameters are known, the prior distribution of
u is completely specified, and inferences are based on f (P, u, r Y, g). Alternatively,
as done in empirical Bayes estimation, one could base inferences on f (P, u, r j Y,
g = g), where g is the maximum of f (g Y), a marginal posterior distribution based on
a flat prior for g. It is shown in Annex D via the method of « cyclic ascent »
(ZANGWILL, 1969 ; OBERHOFER & KMENTA, 1974), that p and f, the components of the
mode of f (0, u, r j Y, g = g) correspond to the mode of f (0, u ! Y, g, i) where t is



the maximum with respect to r of the function f (Y I 13, ü, g, r).f (r). With a flat

prior for r, the estimates so obtained for P, u, and r have the same form of those

presented in the article when the residual correlations are estimated by an ML-type
procedure (see Section VI). The difference resides in conditioning on g = g rather on
g = g*, where g* is the g-component of the mode of f (y Y). This illustrates at least
one variation of the theme, and that there may be alternative approximations to

E (0 Y). From a theoretical point of view, it would be desirable to completely
marginalize the posterior distribution of u by integrating out all « nuisance parame-
ters, i.e., the fixed effects P and all the dispersion parameters y. This type of inference
has been discussed by HARVILLE (1985), and by GmNOLn et al. (1986) in animal

breeding settings.

Received May 29, 1986.

Accepted November 17, 1986.

Acknowledgements

Part of this research was conducted while J.L. FOULLEY was a George A. MILLER Visiting
Scholar at the University of Illinois. He acknowledges the support of the Direction des Produc-
tions animales and Direction des Relations internationales, LN.R.A. D. GIANOLA wishes to

acknowledge the support of the Illinois Agriculture Experiment Station, and of Grant U.S.-805-84
from BARD-The United States-Israel Binational Agricultural Research and Development Fund.
Thanks are also extended to Dr. C. CHEVALET (LN.R.A., Toulouse) and to one anonymous
referee for very valuable comments which helped to improve the manuscript.

References

ANDERSON T.W., 1984. An introduction to multivariate statistical analysis. 675 pp., John Wiley
& Sons, New York.

ANDERSON J.A., Pr.MSERroN J.D., 1985. The grouped continuous model for multivariate ordered
categorical variates and covariate adjustment. Biometrics, 41, 875-885.
BERGER J.O., 1985. Statistical decision theory and Bayesian analysis. 2nd ed., 617 pp., Springer-

Verlag, New York.
BERNARDO J.M., 1979. Reference posterior distribution for Bayesian inference. J. R. Statist. Soc.

(B), 113-147 (with discussion).
Box G.E.P., TIAo G.C., 1973. Bayesian inference in statistical analysis. 585 pp., Addison-Wesley,

Reading.
BROEMELING L.D., 1985. Bayesian analysis of linear models. 454 pp., Marcel Dekker, New York.
CASELLA G., 1985. An introduction to empirical Bayes data analysis. Am. Stat., 39, 83-87.

CHEN C.F., 1979. Bayesian inference for a normal dispersion matrix and its application to
stochastic multiple regression analysis. J. R. Statist. Soc. (B), 41, 235-248.

Cox D.R., HINKLEY D.V., 1974. Theoretical Statistics. 511 pp., Chapman & Hall, London.
CRAMER H., 1974. Mathematical methods of statistics. 421 pp., Princeton University Press, Prin-

ceton.

CuRNow R.N., St!nrtt C., 1975. Multifactorial models for familial diseases in man. J. R. Statist.
Soc. (A), 138, 131-156.
DAHLQUISf G., BJORCK A., 1974. Numerical methods. 574 pp., Prentice Hall, Englewood Cliffs.
DEmmm L., 1977. Relation entre BLUP et estimateurs Bayésiens. Ann. Ginit. Sél. Anim., 9, 27-

32.



DEMPSTER E.R., LERNER I.M., 1950. Heritability of threshold characters. Genetics, 35, 212-236.

DEMPSTER A.P., LAIRD N.M., RUBIN D.B., 1977. Maximum likelihood from incomplete data via
the EM algorithm. J. R. Statist. Soc. (B), 39, 1-38.

DUCROCQ V., COLLEAU J.J., 1986. Interest in quantitative genetics of Dutt’s and Deak’s methods
for numerical computation of multivariate normal probability integrals. G!n!t. Sel. Evol., 18,
447-474.

EVERITT B.S., 1984. An introduction to latent variate models. 107 pp., Chapman & Hall, London.

FALCONER D.S., 1965. The inheritance of liability to certain diseases estimated from the incidence
among relatives. Ann. Hum. Genet., 29, 51-76.

FOULLEY J.L., GIANOLA D., THOMPSON R., 1983. Prediction of genetic merit from data on binary
and quantitative variates with an application to calving difficulty, birth weight and pelvic
opening. Genet. Sel. Evol., 15, 401-424.

FOULLEY J.L., GIANOLA D., 1984. Estimation of genetic merit from bivariate « all-or-none »

responses. Génét. S!l. Evol., 16, 285-306.

FOULLEY J.L., OLLIV1ER L., 1986. Criteria of coherence for the parameters used to construct a
selection index. Proc. 35th Annual National Breeders’ Roundtable, May 1-2, 1986, St-Louis,
Missouri. 17 pp., mimeo.

FOULLEY J.L., GIANOLA D., 1M S., 1986. Genetic evaluation of traits distributed as Poisson-
binomial with reference to reproductive characters. Theor. Appl. Genet. (accepted).
GIANOLA D., FOULLEY J.L., 1982. Non-linear prediction of latent genetic liability with binary

expression : an empirical Bayes approach. 2nd World Congress on genetics applied to livestock
production, Madrid, 4-8 October 1982, 7, 293-303, Editorial Garsi, Madrid.
GIANOLA D., FOULLEY J.L., 1983. Sire evaluation for ordered categorical data with a threshold

model. Génét. Sél. Evol., 15, 201-223.
GIANOLA D., FERNANDO R.L., 1986. Bayesian methods in animal breeding theory. J. Anim. Sci.,

63, 217-244.

GIANOLA D., FOULLEY J.L., FERNANDO R.L., 1986. Prediction of breeding values when variances
are not known. Genet. Sel. Evol., 18, 485-498.
GILMOUR A.R., ANDERSON R.D., RAE A.L., 1985. The analysis of binomial data by a generalized

linear mixed model. Biometrika, 72, 593-599.
GOFFINET B., ELSEN J.M., 1984. Critère optimal de sélection : quelques rdsultats g6n6raux. G!nest.

Sél. Evol., 16, 307-318.

HARVILLE D.A., 1974. Bayesian inference for variance components using only error contrats.

Biometrika, 61, 383-385.
HARVILLE D.A., 1977. Maximum likelihood approaches to variance component estimation and to

related problems. J. Am. Statist. Assoc., 72, 320-340.
HARVILLE D.A., 1985. Decomposition of prediction error. J. Am. Statist. Assoc., 80, 132-138.

HARVILLE D.A., MEE R.W., 1984. A mixed model procedure for analyzing ordered categorical
data. Biometrics, 40, 393-408.
HENDERSON C.R., 1973. Sire evaluation and genetic trends. Proceedings of the Animal Breeding

and Genetics Symposium in honor of Dr. J. L. Lush. American Society of Animal Science and
American Dairy Science Association, 10-41. Champaign, Illinois.

HENDERSON C.R., 1984. Application of linear models in animal breeding. 462 pp., University of
Guelph, Guelph.
HENDERSON C.R., QuAAs R.L., 1976. Multiple trait evaluation using relatives’ records. J. Anim.

Sci., 43, 1188-1197.
HILL W.G., THOMPSON R., 1978. Probabilities of non-positive definite between-group or genetic

covariance matrices. Biometrics, 34, 429-439.
HooG R.V., CIIAIC A.T., 1968. Introduction to Mathematical Statistics. 415 pp., MacMillan

Publishing Co., New York.
H6scHELE Ina, FOULLEY J.L., COLLEAU J.J., GIANOLA D., 1986. Genetic evaluation for multiple

binary responses. Génét. Sél. Evol., 18, 299-320.
KENDALL M.G., STUART A., 1973. The Advanced Theory of Statistics. Vol. 2, 676 pp., Charles

Griffin & Co, London.



LEFORT G., 1980. Le mod6le de base de la selection, justifications et limites. In : LEGAY J.M. et al.

(6d.), Biom6trie et Génétique, 4, 1-14. Soci6t6 frangaise de biométrie. I.N.R.A., D6partement
de Biométrie.

LINDLEY D.V., SMITH A.F.M., 1972. Bayes estimates for the linear model. J. R. Statist. Soc. (B),
34, 1-41.

Louis T.A., 1982. Finding the observed information matrix when using the EM algorithm. J. R.
Statist. Soc. (B), 44, 226-233.
MALECOT G., 1947. Les critères statistiques et la subjectivite de la connaissance scientifique. Ann.

Univ. Lyon, 10, 43-74.
McCutr.acH P., NELDER J.A., 1983. Generalized linear models. 263 pp., Chapman & Hall,

London.

OBERHOFER W., KMENTA J., 1974. A general procedure for obtaining maximum likelihood esti-
mates in generalized regression models. Econometrica, 42, 579-590.

O’HAGAN A., 1980. Likelihood, sufficiency and ancilarity : reply to the discussion. In : BERNARDO
J.M., DE GROOT M.H., LINDLEY D.V., SMITH A.F.M., (eds.), Bayesian Statistics. Proceedings
of the First International Meeting held in Valencia (Spain), May, 8-June 2, 1975, 185-203.

University Press. Valencia.
PLACKETT R.L., 1954. A reduction formula for normal multivariate integrals. Biometrika, 41, 351-

360.

ROBERTSON A., LERNER I.M., 1949. The heritability of all-or-none traits : viability of poultry.
Genetics, 34, 395-411.
RONNINGEN K., 1971. Some properties of the selection index derived by « Henderson’s Mixed

Model Method ». Z. Tierz. Zuchtbiol., 88, 186-193.
RUTLEDGE J.J., 1977. Repeatability of threshold traits. Biometrics, 33, 395-399.
SMITH S.P., GRASER H.V., 1986. Estimating variance components in a class of mixed models by

restricted maximum likelihood. J. Dairy Sci., 69, 1156-1165.
STIRATELLI R., LAIRD N., WARE J.H., 1984. Random effects models for serial observations with

binary response. Biometrics, 40, 961-971.
TALLIS G.M., 1962. The maximum likelihood estimation of correlation from contingency tables.

Biometrics, 18, 342-353.
THOMPSON R., 1972. The maximum likelihood approach to the estimate of liability. Ann. Hum.

Genet., 36, 221-231.
THOMPSON R., 1979. Sire evaluation. Biometrics, 35, 339-353.
THOMPSON R., 1980. Maximum likelihood estimation of variance components. Math. Operation-

forsch. Statist., 11, 545-561.
THOMPSON R., CAMERON N.D., 1986. Estimation of variances and covaiiances. In : DICr!ERSON

G.E., JoxrrsoN R.K. (eds.), 3rd World Congress on Genetics Applied to Livestock Production,
Lincoln, 17-22 July 1986, 11, 371-381, Agricultural Communications, Lincoln.

WRIGHT S., 1934. An analysis of variability in number of digits in an inbred strain of Guinea pigs.
Genetics, 19, 506-536.
ZANGWILL W.I., 1969. Nonlinear programming : a unified approach. 356 pp., Prentice-Hall,

Englewood Cliffs.



Annex A

Positive definiteness of the expected value of the negative
of the matrix of second derivatives of the log-posterior density

with respect to 0

We consider the positive definiteness of the matrix

which we refer to as the « information » matrix. Let r be the vector of residual

correlations, and

Define the « information » matrix in subpopulation j as

Thus Jj is a matrix of order n + n (n - 1)/2 = n (n + 1)/2. Letting

be the Jacobian of the transformation !! &mdash;! p,. Assume this transformation has rank

2 1 n (n + 1). Then

where D is a 2&dquo; x 2&dquo; diagonal matrix with typical element Pj!;!’ Using Theorem A.1.1 of
ANDERSON (1984, p. 583), it follows automatically that JJ is positive definite.



The information matrix for all sub-populations can be written as

and ? is a direct-sum operator,

From ANDERSON (1984, p. 594)

Now, the matrices Jj in [Al] and J in [A3] can be considered as variance-covariance
matrices of corresponding multivariate normal distributions, and the matrix inside the
second determinant in [A4.1] would be the variance-covariance matrix of a conditional
distribution. This implies that this latter matrix is positive definite. Because froln [A4.2]
I $1 ) is positive, the product of the two determinants in [A4.1] is also positive. It

follows that J is positive definite.

The « information » matrix for p, u, r can be written as

Observe that the number of rows in K is larger than the number of columns. Using
again ANDERSON (1984, p. 583), it follows that J* is positive-definite when K has full-
column rank ; otherwise, is positive semi-definite.

Define

: logarithm of the likelihood function,

logarithm of the prior distribution of u,



For any vector v’ = [v&dquo; v,, v,], we have

Clearly, none of the two terms of [A7] can be negative. Hence [A7] is null only if
both terms are null. If G is positive definite, Yu-l is also positive definite so for [A7]
being null, V3 must be null. This implies that the first term of [A7] has the form :

- - - - - -

Now, [A8] is null only if Xv, = 0 and v, = 0 because J is positive-definite. Further if X
has full-column rank, Xv, is null only if v, = 0. Thus, [A7] is null only if v&dquo; V, and v,
are all null, which implies that

is positive definite. This property also applies to the particular case = [0, u] provided,
as before, that X has full-column rank and G is positive-definite. Finally, it should be
mentioned that R is implicitly positive-definite because otherwise, the probabilities Pjk
would be ill-defined.



Annex B

Components of the mode of the joint posterior distribution
of the residual and genetic dispersion parameters

Genetic components

Let

Remembering that : i) the likelihood function does not depend on g, ii) (3 is a priori
independent of the dispersion parameters and of u, iii) the prior distribution of u

depends only on g, and iv) taking g and r independent a priori, the preceding
expression becomes :

gives the first term under the integral sign in [B2]. The second term can be written as

Inserting [B4] and [B5] in [B2]

where E is as defined in the main text. 
c

Residual components

The same reasoning applies when searching for the r component of the mode of
f (g, r)Y). Let



In view of [B3]

By analogy with [B6]

where, again, the expectation is taken with respect to the distribution f (u, J3 g, r,

Y). The first term is the above equation can be expanded by a Taylor series about 6,
the mean of the distribution f (u, P) g, r, Y), to obtain as term i of Q :

Letting

which is the coefficient matrix in [19] without it, [B10] finally becomes

where C (!y) is as in [21]. Because calculating 6 is impossible in the discrete case

considered in this paper, we suggest to approximate the posterior mean by the posterior
mode 0* and to calculate [Bll] accordingly.



Annex C

Positive-definiteness of the matrix GI&dquo;’I

From [32], at iteration t + 1 we have

is a q x n matrix obtained by rearranging the elements of u in [8], with candidates for
selection in rows and traits in columns ; Et’ indicates expectation with respect to the
distribution f (u ! I Gill, R, Y).

We first prove that if A-’ is positive-definite (which is true except in very special
situations such as when there are identical twins in the data set), then Gll+ll is at least

positive semi-definite. Consider the quadratic forms

where x is a non-null vector. These are both ? 0 ; note that the second one is a

weighted average of non-negative terms so it cannot be negative. Now, from [Cl]

It is shown next that [C3] is positive by reduction to the absurd. Suppose that there is
a non-null x such that x’ Glt+l) x = 0. If this is true, both quadratic forms in [C2] are null.
Theorem 6 in HOGG & CRAIG (1968, p. 47) states that for every positive constant c
(which can be arbitrarily small)

so Prob’*’ (x’ U’ A-’ Ux = 0) = 1. Because A-’ is positive definite, this implies that
Prob {Ux = 0} = 1 [C4]

Because x is non-null, [C4] would imply that the distribution with density f (u ! I GIll,
R, Y) is not « regular (CRAMER, 1974, p. 298), or equivalently, that the posterior
variance-covariance matrix C.., which is a partition of

- - I -

is singular. However, if X has full-column rank and G’&dquo; is positive-definite, C-1 is

positive-definite (see Annex A), as well as C and C... This contradicts the preceding
conclusion so the case that a non-null x exists such that x’ Glt+1] x = 0 is excluded.

Therefore, GIt+l1 is positive definite.



Annex D

Components of the mode of the density f (0, rig, Y)

From standard distribution theory

From [12], f (0 ) g, r) = f (u ! g). Reasoning conditionally to a value g of g, one can
write [Dl] as

The 0 and r components of the mode of [D2] can be obtained by maximizing this

density via the method of « cyclic ascent » (ZANGWILL, 1969 ; OBERHOFER SC KMENTA,
1974), as described below.

Let 911-11 and rll-q the values of these parameters at iterate t - 1 of this method.

Values at the following iteration, can be obtained in two steps :
i) find

which follows from [D2]. Observe that the product of the two densities in the above
expression is the posterior distribution of 0 when the dispersion parameters are g and
ril-11. Thus

ii) Setting A to the value calculated in [D3], calculate rIll as
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