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Summary

Considering a normally distributed quantitative trait whose genetic variation is controlled by
both an autosomal major locus and a polygenic component, and whose expression is influenced by
environmental factors, a mixed model was developed to classify sires and daughters for their

genotypes at the major locus in a progeny test design. Repeatability and genetic parameters
reflecting the polygenic variation were assumed to be known. Posterior distribution of the sire

genotypes and that of the daughters given the sire genotypes were derived. A method was
proposed to estimate these posterior probabilities as well as the unknown parameters, and a

method using the likelihood ratios to test specific genetic hypotheses was suggested. An iterative
two-step procedure similar to the EM (expectation-maximization) algorithm was used to estimate
the posterior probabilities and the unknown parameters. The operational value of this approach
was tested with simulated data.
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Résumé

Un modèle statistique pour la détermination du génotype à un locus majeur
dans un test sur descendance

S’appliquant à un caractère quantitatif à distribution normale, dont la variabilité génétique est
contrôlée à la fois par un locus majeur autosomal et par une composante polygénique et dont

l’expression est influencée par des facteurs de milieu, un modèle mixte est développé afin de
déterminer le génotype (au locus majeur) des pères et de leurs filles dans un test sur descendance.
La répétabilité et les paramètres génétiques relatifs à la composante polygénique sont supposés
connus. La loi a posteriori des génotypes des pères et celles des génotypes de leurs filles,
conditionnellement aux génotypes des pères, sont établies. Une méthode est proposée pour estimer
ces probabilités a posteriori, ainsi que les paramètres inconnus, et une méthode utilisant les

rapports de vraisemblance est suggérée afin de tester des hypothèses génétiques spécifiques. Une
procédure itérative en deux étapes, similaire à l’algorithme EM (expectation-maximization), est

présentée afin d’estimer les probabilités a posteriori et les paramètres inconnus. L’intérêt opéra-
tionnel de cette approche est éprouvé sur des données simulées.

Mots ctés : gène majeur, lest sur descendance, détermination du génotype, maximum de
vraisemblance.



I. Introduction

PIPER & BINDON discovered, in 1982, a major gene, named Booroola, affecting
ovulation rate and litter size of ewes. Many data have confirmed this discovery since
(DAVIS et al., 1982 a, b ; DAVIS & KELLY, 1983). The favourable allele and the wild-

type allele are symbolized by F and + respectively.

Some differences have been found between the reproductive biology of carrier and
non-carrier ewes (see the review of BtNnot·r (1984)). However, up till now the only
measurements actually used to classify females according to their genotype (FF, F+ or
++) are ovulation rate and litter size. The most used criterion is that proposed by
DAVIS et al. (1982 b) : a ewe is classified FF when, in a series of measurements, it has

at least one ovulation rate of 5 or more ; a ewe is said to be F+ when its maximum

ovulation rate recorded is 3 or 4 ; a ewe is identified as ++ when its ovulation rate

never exceeds 2.

As far as the choice of males is concerned, the only possibility at the moment is

the progeny test : a ram is mated to a large enough number of ++ ewes, for its

genotype to be assessed from the observation of its ptogeny (100, 50, or 0 % of F+
daughters).

However, even if they are sufficient at the moment, these criteria may be criticized
(ELSEN & ORTAVANT, 1984 ; PIPER et al., 1985 ; OWENS et al., 1985) :

1) the threshold values (3 and 5) were derived from observations on Merino ewes
whose basal level of prolificacy is low. Their mean ovulation rate is about 1.5 for ++

females, 3 for F+ and 4.5 for FF. Obviously, such thresholds could not be used in the
case of prolific breeds. Moreover, many sources of variation (age, season, body weight,
feeding) influence the ovulation rate, within the breed. Such factors must be considered
when choosing a threshold ;

2) the polygenic variability of the ovulation rate is a bias source already shown by
Dnvts et al. (1982 a). For example, an FF ram may have a very low breeding value for
ovulation rate (compared to the mean of the FF) which will lower the percentage of its
F+ daughters and rank him as a heterozygote ;

3) since the penetrance is incomplete, it is necessary to repeat ovulation rate

measurements. Unfortunately, the probability of a ++ female with an ovulation rate of
3 or more is not null (even more so when the prolificacy of the breed is higher) and
the risk of classifying some + + ewes as F+ (or some F+ as FF) increases with the
number of measurements. It is generally considered that 3 measurements are necessary
for the Merinos, but this is not a rule.

Considering these difficulties, OwENS et al. (1985) proposed the use of cluster

analysis to classify females according to their genotypes : the candidate population is

subdivided into three groups by minimizing the sum of squared deviations from the
within group means. This solution has the advantage of avoiding the choice of a

threshold and of a number of observations per female, but it does not take into

account the error sources stated above.

Because of the problems caused by the identification of genotypes in the case of
the Booroola major gene, we suggest a general approach for determining the genotype
at a major locus in a progeny test design, in the case of a quantitative trait with a

normal distribution ; the case of a discrete trait is studied in the same way by FOULLEY



& ELSEN (1988). The proposed method, based on maximum likelihood methods, is

derived from works concerning mixtures of distributions (DAY, 1969 ; AITKIN & WIL-

SON, 1980 ; EVERITT, 1984) and segregation analysis (ELSTON & STEWART, 1971 ; MORTON
& Me LEAN, 19!4 ; LALOUEL et al., 1983).

II. Definitions and hypotheses

A. Genetic model and progeny test design

1) The genetic variation of the quantitative considered trait has two sources : a

polygenic and a monogenic component depending on an autosomal major locus with
two alleles F and +.

2) In the parental population of the progeny tested sires, there is genetic indepen-
dence or linkage equilibrium between the major gene and the genes controlling the
polygenic variability.

3) The progeny test is made by mating 9 with ++ dams the sires whose prior
distribution of the genotypes at the major locus is assumed to be known. The choice of
mates is at random. These matings give birth to daughters (F+ or + +) measured, once
or more, for the quantitative trait involved. Several sources of variation can modify the
expression of the trait.

4) The measured daughters are not inbred. This means that the sires are not

related to their mates.

5) The only relationship between two measured daughters can be due to a possible
common father. This means that :

- there are no full sibs in the population of measured daughters,
- the sires are not related,
- their mates are not related.

B. Notation for genotypes, performances, and probabilities

1. Notation for genotypes

Genotypes of sires and their daughters are considered as random variables with the
following notation :

G, refers to the genotype of the t’h sire, t being between 1 and T, the total number
of sires

G,i, the genotype of the ph daughter of the t’&dquo; sire, i being between 1 and n&dquo; the
number of the t’&dquo; sire’s daughters

r = {G&dquo; G2 ..., GT} the vector of the sires’ genotypes

T, _ {GtJ, G!!, ..., G,J the vector of the genotypes of the f! sire’s daughters.
<

The realizations of these random variables are denoted g,, g,;, y and y,, respecti-
vely.



2. Notation for performances

The random variable Y,,j denotes the !’&dquo; observation of the i’&dquo; daughter of sire
t (j = 1 to n,,).

Y&dquo; is the vector of Y,,, variables concerning the it’ daughter of sire t.

Y, is the vector of all the variables concerning sire t.

Y is the vector of all the variables.

The realizations of these random variables are denoted y,ii, y,,, y, and y respectively.

3. Notation for probabilities

For ease of presentation, we shall use the same notation the denote an event as
well as the value taken by a random variable when this event is realized : the event

« random variable Y is equal to y » will be noted « y » instead of « Y = y ». For

example, the symbol prob(y/y) means prob(r = y/Y = y), i.e., the probability that the
realization of r is y, given that the random variable Y is y.

C. Modelling of performances

1. Effects considered in the model

Daughters’ performances are described through a linear model with the following
effects :

- fixed effects independent of the daughter’s major genotype (b vector),
- fixed effects dependent on the daughter’s major genotype (o vector),
- a random sire effect accounting for the polygenic part of the variation, and

whose distribution depends on the daughter’s major genotype (U vector),
- a residual whose distribution depends on the daughter’s major genotype (E

vector).

The 13 vector may be split into two parts (13/+ and I3IFJ only one of which is

applicable depending on the daughter’s genotype (++ of F+). Similarly, the U vector
may be split into two parts, V/H and U,F,.

2. Distribution of random variables

The vector U, = (U°++1 of sire t effects, depending on daughters’ genotypes, fol-UUH J+
lows a binormal distribution :



The vector of residuals E,ilgli conditional on genotype g,, of daughter ti is supposed
to be multinormally distributed with zero mean and a n,, x n,, variance-covariance
matrix :

where r is the repeatability of the trait, supposed independent of the genotype.

There is independence between :
- the different random sire effects,
- the residuals of the performances of different daughters,
- the sire effects and the residuals.

With this model, two heritabilities have to be defined, reflecting the polygenic
relationship between a sire and its daughters, depending on whether they are ++ or
F+ :

In this context, the p parameter can be defined as a genetic correlation.

3. Notation for incidence matrices

The random vector Vi!,,i of the performances of the P&dquo; sire’s ilh daughter conditional
on its genotypes g,, can be written :

where X,,, W&dquo;lg,¡ and Z,;,R are the incidence matrices corresponding to vectors b, 0
and U respectively. 

&dquo;

The common part of W’ilH and W&dquo;IF+ is noted W,,.

We shall have :

Similary, we have

! Finally, the preceding incidence matrices will be generalized in X&dquo; W,, Z, and X,
W, Z when considering random vectors Y, and Y, respectively.

4. Expression of performance distribution conditionally on the genotype

According to the assumptions and notations presented above, the joint density of
the random vector of the t’&dquo; sire’s daughters’ performances Y,,-,,, conditional on their
genotypes -y,, is multinormal with



- a mean

- a variance-covariance matrix ’ 
I

where

Similarly, the mean vector and variance-covariance matrix of the random vector

Y,;,R; of the ti’&dquo; daughter performances, conditional on its genotype g,i, are denoted 1!,;,R!;
and V&dquo;I&dquo;&dquo;, respectively.

III. Objectives

The prior distribution of sire genotypes is assumed to be known. These sires being
unrelated, we obtain

prob(y) = II prob (g,).
I

With the method described here, the genotypic classification of sires and their

daughters is given by estimating the posterior distribution of sire genotypes prob(g,/y,),
and, conditional on these genotypes, the posterior distribution of their daughters’
genotypes prob(g,,/y, and g,).

IV. Methods

A. Expression of the posterior probabilities of sire and daughter genotypes,
conditionally on the sire random effect U,, the parameters of the model

being assumed to be know

1. Posterior distribution of sire genotypes

The aim is to calculate prob(y/y). Under our assumptions, we can write :

prob(y/y) = II prob(g,/y,).
I

We are looking for the T probabilities prob(g,/y,). Bayes theorem gives :

The quantity prob(g,) is the prior probability that the genotype of sire t is g,.



The density f(y,/g,) can be described by the sum :

where the summation of the 2&dquo;’ possible vectors y, forms a complete sum of events.

Practically the sum over the 2&dquo;’ possible vectors y, is impossible as soon as the
number of daughters exceeds 10. In order to avoid this difficulty, we shall work

conditionally on the random sire effect U, :

But, conditionally on genotype G, and polygenic effect U, of their sire t, the

performances Y,; and Yri, of two distinct daughters are independent :

where f(y,;/g,; and u,) is the density function of a normal distribution with a mean

fJ-tilgli + Utlgli and a variance-covariance matrix R,,19,,.
Consequently the desired density-function can be written

2. Posterior distribution of daughter genotypes conditional on their sires’ genotypes
The aim is to calculate prob(g,/y, and g,). As before we shall work conditionally on

the random sire effect U, :

But, taking into account the assumptions adopted,

Using Bayes theorem and substituting f(y,;/g!; and u,) to f(yilgi, g&dquo; u,) as well as
prob(g,;/g,) to prob(g!;/g, and u,) - because of our assumptions -, we can write :

Our assumptions enable us to write :

B. Estimation of the unknown parameters and of the posterior probabililites
of the genotypes

Heritabilities /!!, and hF+, genetic correlation p, and repeatability r are assumed
to be known. The unknown parameters to be estimated (9 vector) are the location
parameters (b and [3) and some of the dispersion parameters (sires and residual



variances). These parameters could be estimated by the maximum likelihood method,
i.e. by maximizing the probability of observing the measures :

Expression of f(y,/g,) is given in section IV.A.I.

Then we shall use the subscripts 0 or 9 in denoting the probabilities of the
different events and their estimates.

Although it is numerically possible to integrate f (y,/g,) with respect to u, when 0

parameters are known, we did not find any practical solution when 6 parameters are to
be estimated. Our proposition, therefore, is to estimate f(y,/g,) by fi(y,lg, and u,) where
6, is the mode of the distribution of U, conditional on Y&dquo; noting that u, maximizes the
joint density of the Y, and U,, f! (u, and y,).

This approach will be discussed later. We use it according to GIANOLA & FOULLEY

(1983) who clearly showed its limits and its value in the context of Bayesian theory of
selection indices.

Looking simultaneously for the estimates of 0 parameters and the modal value of
the distribution of U, conditional on Y, drives us to maximize, with respect to u, values
and 0 parameters, the quantity II fø(y, and u,).

t

Then, probiJ(g,/g&dquo; y, and u,) can be deduced firstly, prob,(g,/y, and 6,) secondly.

V. Solutions

To avoid burdening this paper with unnecessary algebra, it can be simply stated
that the solutions were obtained by equating to zero the first derivatives of the

logarithm of the density II fe(yr and u,).
t

The proposed solution is an iterative two step procedure :
- the first step is to estimate 0 and u, given the probability P,, that each female ti

would be F+ ;
- the second step is to estimate, given the 6 parameters and u values, the

posterior probabilities :

At this point, we can return to the parameters estimation step and continue until
the results converge. To that end, the successive values of the estimated parameters or
of the density n!,(y, and 1i,) must be compared.

t



A. Estimation of the b, p and u vectors

Estimates of the b, p and u vectors are obtained by simultaneously solving the
system :

The R!! matrix is a block diagonal one, the block ti being given by R,-Il! (1 &mdash; P,,).
In the same way, the matrix R-1 is made of blocks RF1 . P,,.

With IT being the T x T identity matrix, we get :

Thus, estimates of the b and P parameters and of the u modal values are obtained,
after each iteration, by solving a linear system of equations quite similar to the BLUP
(HENDERSON, 1973).

B. Variance estimation

Estimates of the variances of sire effects are given by solving the following system :



where k}+ and kl, are the ratios of sire/residual variances

and where Ztilgti is the vector of the deviations :

Finally, b, and b1 are given by :

The sire variances are found simply by solving a second degree equation. The
residual variances follow.

C. Estimates of the posterior probabilities of genotypes

Given the values of 6 and u, we estimate the genotypic probabilities and suggest
the following steps :
- the corrected records are given 2,ig,, (see before)
- the probabilities of the records of each daughter may be calculated :

- for each daughter, we estimate the quantities :

- and for each sire, the quantities

- then we obtain

At this moment, we can return to the parameters estimation step and continue
until the results converge. To that end, the successive values of the estimated parame-
ters or of the density Hf!(y, and fi,) must be compared.

I



VI. Illustration
As the computations corresponding to the proposed method are long, the results

given here concern only a limited number of simulations (10 per case). Thus, they must
be considered just as indicative tendencies. In order to show the properties and limits
of the method, we studied different situations for the number of sires (5, 10 and 20),
daughters per sire (10, 20, 30, 50, 100, 150), mean value J1.F+ of the F+ daughters’
measurements (from 0.5 to 3.5), variances o,2,, of F + daughter’s measurements (1, 2,
3 and 4) and heritabilities (0.1 to 0.6). In all cases, the two previously defined heritabi-
lities, h++ and hF+ , are assumed to be equal (they will be denoted h2), and the
following parameters are given the values :
- prior probabilities of the genotypes : 0.5 for the F+ and 0.5 for the ++,

corresponding to the general situation during the fixation of a major gene into a new
breed,
- mean values p,++ of the ++ : 0,
- variance o-2++ of the ++ : 1,
- genetic correlation p : 0.8,
- number of measurements per daughter : 1.



Each simulation gives the estimated posterior probabilities of the genotypes and the
estimates of the parameters. Deprived of any objective measurement of the quality of
the probability estimation, we chose to give the percentage P. of errors among the

sires classified by using the following criterion : a sire is classified in a genotypic class
(F+ or ++) if the estimate of posterior probability of its genotype is more than a

threshold a (0.5 or 0.9). When the threshold is 0.9, some sires cannot be classified and
we give also the percentage of sires whose genotype remains undetermined. Concerning
the parameters, we give the averaged values and standard deviation of the means (ILH’
}.tF+) and of the variances (o,2++, o,2,+).

Results are given in tables 1 and 2. As expected, the quality of the classification
and of the parameter estimation increased with the number of sires and more drasti-
cally with the number of their daughters. A minimum of 20 daughters per sire seems
necessary for a sufficient accuracy. Differences between the two probability criteria

P! (PO, and P!9) are notable : the percentages of misclassified sires are quite similar
when the mean value }.tF+ is high (excluding the extreme situation where sires are tested
on 10 daughters) but rather different when this mean value is only 1 standard
deviation. In fact, the second criterion l£ shows that the general situation for }.tF+ = 2
is that the posterior probabilities are near 0 or 1 but that, for }.tF+ = 1, the prior
information is dominant (unless the number of daughters is high) leading to probabili-
ties near 0.5.



Table 2 gives some more information for the case where 10 sires are tested on 20
daughters. The first part concerns the magnitude of the differences between means ILF+-
ILH’ A threshold appears around a deviation of 2 units and the power seems poor for
differences of 1 standard deviation or less. The heritability is not a very important
parameter even if, as expected, the accuracy of the method decreases when this

parameter increases, the separation between major gene and polygenic variation being
more and more difficult. The difference between the variances of the two genotypes
Q? and or2,, does not play a great role in the discrimination.

VII. Discussion and conclusion

A. Discussion concerning the proposed method

Solutions obtained depend on a number of assumptions and simplifications which
have to be emphasized.

1. Assumptions

Only the case where dams are known to be homozygous ++ was considered. As
mentioned above, this is the general situation when progeny testing sires in a structured
design for fixation of a new major gene in a breed (see for instance ELSEN et al., 1985).
Nevertheless, when intercrossings are made, at the end of such a process, in order to
create FF animals, the assumption falls down. Then daughter genotypes will have to be
determined simultaneously. Approaches similar to that described here could probably
be followed.

We assumed here that the progeny tested sires were unrelated. In the opposite
case, two levels of complications would occur : the prior probabilities of genotypes
cannot be written as the product of separated terms and off diagonal non zero terms
appear in the variance-covariance matrix of the polygenic random sire effect. The

second point could probably be neglected when the heritability and genetic relationships
are low, whereas the first one seems very crucial since all the daughters of sires related
to a particular sire will inform on its own genotype. The computations will be simplified
if the group of sires can be partitioned into independent families.

We studied a gene with only two alleles (F and +). Generalization to a larger
number of alleles does not cause any difficulties and is given in FOULLEY & ELSEN

(1988).
Finally, we assumed that the sire effect was a bivariate phenomenon, defining two

heritabilities and a genetic correlation. Other assumptions could be made. The first one
is a unique random sire effect leading to the definition of a unique error variance if the
heritability is still given and assumed to be the same for both genotypes, or to the
estimation of different heritabilities if the total calculated variances may be different. A

second approach would be to define a proportionality coefficient c and to describe the
sire random effect as U, or c.U! depending on the genotype of the daughter. Whatever
the hypothesis, the problem of prior information on these parameters appears and
requires preliminary investigations.

2. Simplifications
A major point in the proposed method is the replacement in the likelihood

function of the integration over u by searching for the modal value of the posterior



random sire effect U. As suggested by GIANOLA & FOULLEY (1983), the validity of these
methods depends on the form of the posterior distribution of U, the hypothesis being
that it is symmetric and sharp enough. This must be checked relative to current

parameters. Using rapid computers, the possibility of integration over u cannot be
neglected, at least when the numbers of animals are not too high.

B. Discussion concerning the classification criteria

The posterior probabilities described here are useful when describing a population.
Nevertheless, they cannot be directly used for decisions when carriers are to be kept
and non-carriers to be eliminated. In the illustration, we suggested a decision criterion
based on the comparison between the probability value and a threshold. Other methods
could be adopted considering for instance the costs of the errors.

We suggest a test for a hypothesis H&dquo; concerning sire genotypes. This hypothesis is
that the realization of the genotypes vector r is y, = (g,, g,, ...g,). Strictly speaking,
there is no general hypothesis for sire genotypes and this causes two difficulties : firstly,
the hypothesis to be tested being not nested in a general one, the classical asymptotic
properties of the maximum likelihood ratio test can no longer be used, resulting in
more complicated methods (Cox, 1961). Secondly, there is no absolute reference to

compare a particular hypothesis and H&dquo; has to be tested against aT-’ other hypotheses
concerning vector r (a being the number of possible genotypes per sire).

To prevent this difficulty, we suggest use of a process similar to segregation
analysis, introducting the probability p, that a sire t gives the F allele to one daughter.
Biologically, this probability can only take the values 0, 1/2 or 1. But we suppose here
that p, can take any value in the interval [0, 1]. We shall denote as p(y) the vector of
probabilities (p&dquo; p,, ..., p,) ; p(-i,,) will be this vector under the hypothesis H&dquo; :
p(’Y,,) = !Pun! P2/(&dquo; ...pTnl.

The proposed test is done as follows (see the appendix for details) :
o H, hypothesis : 6, u are determined by maximizing the density M,(O, u, p(y)/y) :

o Ho hypothesis : 0, u are determined by maximizing the density Mo(6, u, p(y»/y)

e the ratio I(y!) = - 
Mo(6, fi, p(Yo)/y) . is calculated. the ratio 1(,y,)) 2.log Mo(O, 6, P(-io)/Y) is calculated
M¡ (6, Û, p(-y)/y)

! this ratio 1(,y,,) has to be compared to a threshold t(a). If l(y&dquo;) > t(a), H&dquo;
hypothesis is rejected at the a level.

Unfortunately, Mo and M, not being real likelihood functions, 1(’Y(,) does not seem
to converge to the classical X2 with T degrees of freedom as would make a true

likelihood ratio. Thus, this point needs further research, involving for instance integra-
tion over u.
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Appendix

Proposition of a test for the determination of genotypes

Hypothesis H&dquo; will be tested by comparing the estimated probabilities of recorded
data f.(y) under Ho and under H,. These probabilities may be written :

The likelihood will be obtained through the maximization of these probabilities
with respect to 0 (and also to p under H,).

As before, we do not integrate with respect to u but approach f.(y) by fe(y and u)
where u is the modal value of the distribution of U conditional to Y.

The algorithm presented for the estimation of the genotypes probabilities can be
transposed for this test. Only two points are to be modified : the probability pi used in
the successive estimations of the parameters is defined in another way and we have to
calculate at each step the probability p,.

We, now, have :
.... 11 /’ 1&dquo; ! I ........ B.

The probabilities ,n, are given by :

We shall have a two steps procedure :
- estimation of the p&dquo; PARA, and variances,
- estimation of the p,,.

Finally, it has to be noted that the results (estimated of PARA, of the variances
and of the posterior probabilities) are the same as the estimates obtained with the first
method when the genotypes of the T sires are fixed. In this case, we have (for the
distribution estimation and for the genotypes test, respectively) :
- either : prob(G, = FF! and p, = 1
- either : prob(G, = F+) and p, = 1/2
- or : prob(G, _ ++) and p, = 0.
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