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Summary

This paper presents the expression of the posterior probability of the different possible
genotypes of a sire at a major locus based on progeny performance for a discrete trait. Binomial,
multinomial and Poisson distributions are considered fort this trait. Sires and dams are assumed
unrelated. Polygenic as well a major gene effects are supposed to influence the trait recorded. An
approximation to the computation of the posterior probability is suggested by expressing the latter,
conditionally to estimated values of location and dispersion parameters (population, environmental
and polygenic effects) which influence progeny performance.

Key words : major gene, Bayes’ theorem, discrete characters.

Résumé

Probabilité a posteriori du génotype paternel à un locus majeur à partir de l’observation
des descendants : cas d’un caractère discret

Cet article présente l’expression de la probabilité a posteriori des différents génotypes
possibles d’un père à un locus majeur à partir des performances obtenues en contrôle de
descendance pour un caractère discret. Des distributions binomiale, multinomiale et de Poisson
sont considérées pour ce dernier. Les parents sont supposés non apparentés entre eux. Le
caractère mesuré est supposé sous la dépendance d’un gène majeur et de polygènes. Un calcul
approché de la probabilité est proposé basé sur l’expression de celle-ci, conditionnellement à des
valeurs estimées des paramètres de position et de dispersion relatifs aux effets « population »,
environnementaux et polygéniques résiduels influençant les performances.

Mots clés : gène majeur, théorème de Bayes, caractère discret.



I. Introduction

For a trait with a mixed model of inheritance (a single locus and polygenes), rules
to assign genotype at a major locus as a function of observed performance are often
empirical. A good example for this is given by the Booroola gene with major effect on
ovulation rate and litter size in sheep (PIPER & BINDON, 1982). In that case, rules to
assign genotype to females are usually those defined by Dnms et al. (1982) ; i.e. : ewes

are said carriers of the F gene if they have at least one observation where the ovulation
rate is higher than 3. They are declared homozygote if one observation at least is

higher than 5. These values 3 and 5 were derived from performance achieved in a

relatively low prolific breed, the Merino. Obviously, these thresholds should be revised
for more prolific breeds in which this gene is now introduced. Another example is

muscular hypertrophy in cattle as affected by a major recessive gene (VISSAC, 1972 ;
RoLLINS et al., 1972 ; HANSET & MICHAUX, 1985 a & b).

For such sex limited traits, inference about genotypes of males require information
from related females, usually groups of paternal half sibs. In that situation, the former
rule can be applied to female progeny individually and genotype inference based upon
agreement between expected and observed numbers of the different genotypes in the
female progeny of a given sire. Again, such criteria are open to criticism due to

ignoring polygenic variation and for other methodological reasons (FOULLEY & FRE-

BLING, 1985).

To improve these empirical criteria, ELSEN et al. (1988) dealing with progeny-
testing of males, suggested to use computation of posterior probabilities. Classically, the
trait observed in the progeny was assumed normally distributed. The purpose of this
study is to extend this approach to discrete phenotypic distributions as often encounte-
red in reproductive and productive performance.

II. Methodology

The following design is considered. Each sire whose genotype at a major locus is

investigated, is randomly mated to several females having a given genotype (usually but
not necessarily so), and progeny performance for a trait influenced by the major locus
is recorded. Let us define the following symbols :
Gi : a random variable corresponding to the genotype of individual i,

gi : a realized value of this random variable among r possible values coded by
the integers 1, 2, ..., r ; G(g) will be used for sires and G*(g*) for
progeny,

G and g : column vectors made up of former components,

y : i data vector with elements yij where i = 1, 2, ..., q refers to sire and j =
1, 2, ..., n, to progeny within sire such as



Y, Yij, Vi symbolize the corresponding random variables.

By a straightforward application of Bayes’ theorem, one has :

where Pr(!) and p(.) refer to a probability and a density function respectively.
If sires and dams are unrelated, the random variables (G;, YJ are independent and

(1) reduces just to :

and letting G: = {g!} for j = 1, 2, ..., n,, it can be shown that (ELSEN et al., 1988)

where F(a) is the cumulative density function pertaining to the prior distribution of a
vector a of parameters (ei E R.) involved in environmental and residual polygenic
influences and which will be discussed more in detail in the next chapter.

Using (4) and (5b) in (3) and changing the order of summation and product
operators, one obtains the general expression of the posterior probability that sire i has

genotype k knowing its progeny performance y, (ELSEN et al., 1988) :

Notice that (6) involves the following elements :

i) Pr(Gi = k) is the prior probability that sire i has genotype k. These probabilities
depend on the mating structure out of which tested males are born. For instance, when
introducing the Booroola gene into a foreign population by successive backcrossings,
one will usually have heterozygote (F+) and homozygote normal (++) rams in equal
proportions at each generation. In human genetics, these prior probabilities are gene-
rally assumed to be those of a Hardy-Weinberg population.

ii) Pr(G&dquo;;! = flG¡ = k) are elements of transition matrix such as the T matrix

developed by GEPPERT & KOLLER (1938) and Li & SACKS (1954) when dams are chosen
at random in a Hardy-Weinberg population.

iii) p(Y¡jIG’ij = !, a) is the likelihood function for the observed performance of

progeny j born out of sire i conditionally to its genotype and which will be discussed
more in detail in the next section.



III. Likelihood functions

Several cases may be considered according to which distribution is hypothesized for
the performance trait recorded.

A. Normal distribution

This situation has been described thoroughly by ELSEN et al. (1988) and will just be
summarized here so as to introduce the parameterization. Let us now designate the jlh
progeny of the i‘&dquo; sire by the subscript m, the conditional distribution of the progeny
performance may be written as :

where a = (0’, !y’) is a concatenation of location (0) and dispersion (y) parameters
defined as follows :

The 13 component usually represents « population and systematic environmental

effects such as herd x year x season, age of dam, etc.

To make the model flexible, these effects will be allowed to vary from one genotype to
another. Therefore, we will write

where v, is the progeny mean for genotype and br &dquo; be 2, ... are effects of factors 1,
2, ... expressed in deviation from this mean.

Polygenic variations will be represented by the vector u which may include

different kinds of effects (FOULLEY et al., 1987 c) e.g. sire and/or maternal grand sire
transmitting abilities, additive genetic values and/or permanent influences. Again, these
effects are formally allowed to vary according to the genotype of the progeny in which
the trait is expressed

The vector y of dispersion parameters is decomposed into :

The vector y, component is formed by variances and covariances among elements
in (10), say r variances P!t and r(r &mdash; 1)/2 covariances oB,,,, when just one factor (e.g.
additive genetic values or sire) is considered.

Conditionally to Gm = e, [3 and u, the distribution of progeny performance has a
mean which is a specific linear combination of effects in 0, say wi! 0, where wmf is



a known row incidence matrix for progreny m knowing its genotype is and has a
variance which is the usual residual variance u2,. This leads to

when allowance is made for possible heterogeneity of residual variances among progeny
genotypes.

B. Binomial and multinomial distributions

When the trait considered is an all-or-none trait, such as twinning in cattle for

which a major gene effect has been suggested (MORRIS & DAY, 1986), one will use the
« liability » concept originally developed by WRIGHT (1934). This model postulates an
underlying normal distribution rendered dichotomous via an abrupt threshold.

Keeping the same notation as in the previous section, but with vector 0 defined
now as a vector of effects in the underlying scale, we will take for a binary variate,
y. = 0 or 1 for categories coded [0] to the left and [1] to the right of the threshold
respectively.

where (D(.) is the standardized normal cumulative density function and wmr the mean of

the distribution of progeny performance conditionally to genotype e, the origin being
taken at the threshold. It has been assumed in (13 a & b) that the residual variance in
the underlying scale u’, is constant. This is not a very limiting constraint since the

heterogeneity in residual variances in the underlying continuum results usually from a
scale effect.

This approach can also be applied to ordered polytomies. In that case, the

probability that progeny m responds in category q (q = 1, 2, ..., c + 1) can be written as

where t&dquo; t2, &dquo;-I tql ..., t! are parameters locating a reference population from the c
thresholds (GIANOLA & FOULLEY, 1983) with t&dquo; = - 00 and tc _ + 00

and

is a location parameter similar to (13b). Hence, the likelihood is product binomial or
multinomial according to the distribution considered.

C. Poisson distribution

Some traits such as ovulation rate or litter size might be better described with a
Poisson than a multinomial distribution. Then, following FOULLEY et al., (1987 c), the
conditional distribution of progeny performance is given by



As pointed out by these authors, one may also envision truncated Poisson distributions.
For zero excluded, (15a) must be replaced by

IV. Computations

Computing the exact posterior probability that sire i has genotype e according to
formula (6) is formidable task which requires integrating out both location (0) and
dispersion (y) parameters. Even when y is known, this integration involves the
calculation or £r!> terms which can be expressed analytically only in the normal case
(ELSEN et al., 1988).

Therefore some approximations are necessary especially with discrete distributions.
As suggested by ELSEN et al., (1988) with normal traits and GIANOLA et al. (1986) and
FOULLEY et al. (1987 a, b) in genetic evaluation problems, one can evaluate (1)
conditionally to 6 and y values estimated from the data i.e. compute

where

9’ (y) is the mode of the posterior distribution of 0 given y
y’ is the mode of the marginal posterior distribution of y which corresponds to the

marginal maximum likelihood (ML) estimator when a flat prior for y is used.

A. Estimation of location parameters

In consideration of the threshold-liability model, we will take as prior density
(GIANOLA & FOULLEY, 19g3 ; FOULLEY 21 Cll. , 1987 c)

Usually, but no necessarily so, one takes 9’0 = (8’, 0) and the [3 component of r, say
r, - 00, so as to mimic a mixed model structure with r depending on y! only. Now,
with the same assumptions as before, the likelihood can be written as



Hence, the posterior distribution is

Maximizing (22) with respect to 0 involves solving a nonlinear system of equations,
using for instance the Newton-Raphson algorithm (FOULLEY et al., 1987 b). Let L(O) be
the logarithm of the posterior density defined in (22) and, again m being a single
subscript for the combination ij, the first and second partial derivatives of L with

respect to 6 are :

Hence, putting

the Newton-Raphson algorithm consists in iterating from round t to t + 1 with

Analytical expressions of these coefficients can be derived explicitly for the different
discrete distributions considered previously, i.e.

i) for a Bernouilli variate

where cp is the standardized normal density function. For several ordered categories,
explicit formulae for v!, and E(avm,!c3!m,) are shown in GIANOLA & FOULLEY (1983) ;
moreover, the system in (25) must be augmented by sectors pertaining to the thres-
holds.

ii) for a Poisson variate

As shown by FouLLEV et al. (1987 c)

If the Poisson model truncated at zero is employed, Vml becomes

and r., is calculated according to (26c) with



The system in (25) with formulae (26a, b & c) are similar to those given by
FOULLEY et al. (1987 a) for genetic evaluation with uncertain partemity. The qmf
coefficient gives rise to an interesting interpretation since (26a) can be viewed as the
posterior probability that progeny m has genotype £. This expression would also occur
naturally if the problem was set up in terms of incomplete data and solve accordingly
via the EM algorithm (DEMPSTER et al., 1977, p. 16). As a matter of fact, letting
q!, = 1 in the expressions of vmr and rmt, one obtains the usual coefficients encountered
in genetic evaluation for binary (FOULLEY et al., 1983 ; FOULLEY et aL, 1987 d) and
Poisson variates (FOULLEY et al., 1987 c). Finally, the form of the system in (25)
indicates that the analysis is carried out conditionally to the different possible genotypes
of progeny with appropriate weighting factors on the left and right handsides depending
on the posterior probabilities of genotypes. This generates two sources of nonlinearity
as shown clearly in the formula for r., (26c), one due to the form of the distribution
and the second to uncertainty about genotype of progeny.

B. Estimation of dispersion parameters

The value of 9 calculated from (25) is the mode of the condition distribution of 0

given r and the data. It remains to replace r by its marginal ML estimator. For the
sake of simplicity we will consider the case of just one random factor u such as sire
transmitting abilities or individual additive genetic values. Then, the unknown is the
vector ’/! (see 11) formed by the r(r + 1)/2 different elements of the G = {gkt} matrix
of « u » components of variance and covariance. The general procedure for discrete

variates has been presented by HARVILLE & MEE (1984), FOULLEY et al. (1987 b & c).
These authors have shown that maximization of the logposterior density of y! with
respect to y. using a diffuse prior, results in the equation

here E! indicates expectation with respect to the density p(uly, Y.).
Within the framework of a normal distribution for ul’Yu’ the formal solution to (30)

is very general whatever form of the likelihood. Provided some approximations are

made about the first two moments of uly, y,, computations amount to iterate with

Ul’l, Uf’l are solutions to (25) in Uk and u, given y, = y!‘!

C&dquo; is the (q x q) submatrix pertaining to genotypes k and e in the u part of the
inverse of the coefficient matrix in (25).

C. Computation of the posterior probabilities

Under the same assumptions as in II (no genetic relationships among parents),
formula (17) may be simply written as



Hence, after having estimated 0 and y, the posterior probability that sire i has

genotype k will be calculated as

The last terms in (32 b) are computed from (13 a & b), (14 a & b) and (15 a, b & c)
replacing 0 by 6*(-Y ).

V. Discussion-Conclusion

It has been implicitly assumed till now that one record per progeny is available.

Taking into account several performances per animal can be easily achieved using a
« repeatability » model as follows :

where t is the subscript for the t’! performance within progeny ij. The location

parameter used in the likelihood is then, for progeny m given genotype t :

where, as previously 6’ = (P’, u’), and u can be parameterized as u’ = (s’, p’), s being
a vector of sire effects and p a vector of permanent environmental effects for a given
progeny within sire. The corresponding dispersion parameters become

and the coefficient p, = (QZk + QPk)I(Q;k + opk + -2k)

designates the usual repeatability coefficient for genotype k which may be assumed
constant as in ELSEN et al. (1988). The procedure described in the previous chapter IV
is still valid especially the method for estimating dispersion parameters which can be
easily extended to several sets of random factors (FoutLEY et al., 1987 c).

It is also worth mentioning that the approach followed in chapter IV provides as a
by-product a genetic evaluation method for traits with a mixed model of inheritance

(ELSTON & STEWART, 1971 ; MORTON & McLEAN, 1974 ; LALOUEL et al. , 1983) and with
completely or partially unknown genotypic information. In that case, the coefficient
matrix in (25) may be very large especially with field data sets. Some problems
encountered in solving such large non linear systems (e.g. convergence properties,
precision, computing costs) have been recently discussed by MISTZAL & GIANOLA (1987)
for sire evaluation programs dealing with threshold traits. Anyhow, this is another

example of how the Bayesian paradigm can be used to solve problems in that area
which cannot be readily addressed via the BLUP machinery.



However with the method proposed, nuisance parameters have been averaged out
and not exactly integrated out as it should be. Therefore, it is important to bear in

mind that this procedure as others (HASSTEDT, 1982) is an approximation, the domain
of validity of which should be more carefully addressed using for instance realistic

examples with Monte-Carlo simulation techniques.

Some practical provisions can be suggested to apply this procedure shrewdly. First,
genetic and phenotypic parameters must be taken as known to reduce the degree of
nonlinearity of the problem especially when a limited number of sires is tested.

Secondly, one has better to choose at start a simple parameterization with no specific
effects and variances according to genotypes of progeny. Finally, when the distribution
of performance is clearly multimodal, one may expect some of the coefficients q to

have extreme values. In order to improve the assignment of genotypes to sires, one

might use for instance some prior information about genotypic means in calculating the
q’s at the first round of iteration. Anyhow, we are truly conscious that the approxima-
tions proposed in (17) and (18 a & b) may severely limit the potential interest of this
methodology as long as formula (6) cannot be calculated efficiently by numerical

procedures of integration.
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