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Summary &mdash; Restricted maximum likelihood estimates of variance and covariance com-
ponents can be obtained by direct maximization of the associated likelihood using stan-
dard, derivative-free optimization procedures. In general, this requires a multi-dimensional
search and numerous evaluations of the (log) likelihood function. Use of this approach for
analyses under an animal model has been described for the univariate case. This model in-
cludes animals’ additive genetic merit as random effect and accounts for all relationships
between animals. In addition, other random factors such as common environmental or
maternal genetic effects can be fitted. This paper describes the extension to multivariate
analyses, allowing for missing records. A numerical example is given and simplifications
for specific models are discussed.
variance component / restricted maximum likelihood / animal model / additional
random effect / derivative-free approach / multivariate analysis

Résumé &mdash; Estimation par le maximum de vraisemblance restreint (REML) des com-
posantes de variance et de covariance pour un modèle animal multicaractères. En se
fondant sur le principe du maximum de vraisemblance restreint, on peut obtenir les estima-
tions des composantes de variance et de covariance par la recherche directe du maximum
de la vraisemblance correspondante au moyen de méthodes d’optimisation n’utilisant pas
le calcul de dérivées. En général, ceci nécessite une approche multidimensionnelle et de
nombreux calculs de la fonction de vraisemblance. l’utilisation de cette approche a déjà été
décrite dans le cadre d’un modèle animal avec un seul caractère. Le modèle considère les
valeurs individuelles des animaux comme des effets aléatoires, et prend en compte toutes
les relations de parenté; de plus, d’autres facteurs de variation aléatoires comme des effets
de milieu commun ou des effets maternels génétiques peuvent être pris en compte. Cette
étude étend la méthode au cas multicaractère et admet que des données soient manquantes.
Un exemple numérique est présenté, et les simplifications possibles dans le cas de certains
modèles sont discutées.

composantes de la variance / maximum de vraisemblance restreint / modèle animal /
effet aléatoire complémentaire / approche sans dérivation / analyse multivariable
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INTRODUCTION

In the statistical analyses of animal breeding data, traits are often considered one
at a time. Usually we are interested, however, not only in the mode of inheritance
of a particular trait but also in its relationships with other traits and correlated
responses when selecting on the trait analyzed. Multivariate analyses are required
to obtain estimates of genetic and phenotypic correlations between traits. Moreover,
while univariate analyses implicitly assume that all correlations are 0, joint analyses
of correlated traits utilize information from all traits to obtain estimates for a

specific trait and are thus likely to yield more accurate results. This is of particular
relevance when data are not a random sample, ie if records for some traits are

missing as the result of selection. For animal breeding data, this is often the case
since, typically, data originate from selection experiments or are field records from
livestock improvement schemes which select animals on the basis of performance.
In that situation, univariate analyses are expected to be biased while multivariate
analyses may account for selection.

Analysis of (Co) variance (AOV) type methods have been used widely to estimate
genetic and phenotypic correlations. These require records for all traits for all
individuals. If there are missing records, this implies that part of the information
available is ignored. More importantly, if lack of records is the outcome of selection
based on some criterion correlated to trait(s) under analysis, estimates are likely to
be biased by selection. In contrast, maximum likelihood (ML) estimation procedures
utilize all records available and, under certain conditions, account for selection.
Recently this has been considered more formally and from a Bayesian point of view
( eg Im et al, 1989). Even if these conditions are only partially fulfilled, ML estimates
are often considerably less biased by selection than their AOV counterparts (Meyer
and Thompson, 1984).
A modified ML procedure, so-called restricted maximum likelihood (REML),

which accounts for the loss in degrees of freedom due to fixed effects in the model
of analysis (Patterson and Thompson, 1971), has become the preferred method of
analysis for animal breeding data, not least for its property of reducing selection
bias. Multivariate REML algorithms suggested so far, however, in general require
the direct inverse of a matrix of size equal to the total number of levels of random
effects multiplied by the number of traits considered simultaneously, in each round
of an iterative solution scheme. This represents not only a substantial computational
requirement but imposes severe limitations on the model and dimension of analysis.
Simplifications have only been suggested for the ’equal design matrix’ case, ie all
traits recorded for all animals at the same (or at strictly corresponding) time(s), for
models containing only one random factor (eg sires) apart from residual errors. To
date, there are no practical applications of multivariate REML analyses for models
including additional random factors.
REML algorithms as employed in practice today, by and large rely on the use

of information from first or even second derivatives of the likelihood function
to locate its maximum. Recently, use of a derivative-free procedure, involving
explicit evaluation of the likelihood and maximization by direct search has been
advocated by Graser et al (1987). This was described for univariate analyses fitting
animal’s additive genetic merit as the only random effect, ie estimating 2 variance



components, and required only a 1-dimensional search. Such models, which also
incorporate all information on relationships between animals are usually referred
to as animal models (AM).

The derivative-free approach provides a flexible and powerful alternative to
REML algorithms used currently. Its application for AMs including additional ran-
dom effects, for instance animals’ maternal genetic effects or common environmental
effects, for the univariate case has been described previously (Meyer, 1989). This
paper presents an extension to multivariate analyses.

THE REML ALGORITHM

The model

Let

denote the multivariate linear model of analysis for q traits with: y the vector of N
observations for all traits; b the vector of NF fixed effects (including any linear or
higher order covariables); X the N x NF incidence or design matrix for fixed effects
with column rank NF*; u the vector of all NR random effects fitted; Z the N x NR
incidence matrix for random effects; and e the vector of N random residual errors.
Assume that

which gives

Define E with elements eij (i < j = 1,..., q) as the symmetric matrix of residual
or error covariances between traits. Correspondingly, let T = {tij} of size rq x rq
denote the matrix of covariances between random effects where r denotes the
number of random factors in the model (apart from residual errors). Assume there
are r* < r(r&mdash; 1)/2 covariances between the r random factors. The total number of
parameters to be estimated is then s = q(q + 1)(r + 1)/2 + q2r*.

The likelihood

As outlined previously (Meyer, 1989), the natural log of the likelihood function to
be maximised is

I



assuming y has a multivariate normal distribution with mean Xb and variance V,
where X* (of order N x NF * ) is a full column rank submatrix of X . Alternatively,

where C is the coefficient matrix in the mixed model equations (MME) pertaining
to (1) (or a full rank submatrix thereof), and P is a matrix,

As described by Graser et al (1987), the last 2 terms required in (3), logICI and
y’Py, can be evaluated simultaneously in a general way for all models of form (1).
This involves application of Gaussian Elimination with diagonal pivoting to the
matrix

which is the coefficient matrix in the MME, augmented by the right hand sides and
a quadratic in the data vector (see Meyer (1989) for further details).

Calculation of log IRI

Let y be ordered according to traits within individuals, and assume error
covariances between traits measured on different animals are zero. This results
in R being block-diagonal for animals,

with ND the number of animals which have records, and F+ denoting the direct
matrix sum (Searle, 1982).

For q traits, there are a total of GV = 2! - 1 possible combinations of traits
recorded. For q = 2, for example, W = 3 with combinations trait 1 only, trait 2
only and both traits. For animal i which has combination of traits w, Ri is equal
to Ew, the submatrix of E obtained by deleting rows and columns pertaining to
missing records. This gives

where N,,, represents the number of animals having records for combination of
traits w. Hence, evaluation of logIRI requires calculation of W log determinants of
matrices Eu, of size q x q or smaller.



Calculation of log[GI ]

As for the univariate case, logIGI depends on the random effects fitted and their
covariance structure. Corresponding conditions to those discussed by Meyer (1989)
apply to allow logIGI to be evaluated ’indirectly’, ie without the need to set up and
perform numerous Gaussian Elimination steps for a large matrix, to obtain its log
determinant, similar to the procedure required to determine logIC1.

Consider the simplest case with animal’s additive genetic merit, denoted by the
vector a of length q x NA (with NA the total number of animals), as the only
random effects in the model, ie r = 1 and s = q(q + 1). Assume effects are ordered
according to traits within animals, and let ai be the subvector for the ith animal
with covariance matrix T. Here, T has dimension q x q and its elements are the
additive genetic covariances. Then,

where A is the numerator relationship matrix between animals, and x denotes the
direct matrix product (Searle, 1982). As for the univariate case, loglal does not
depend on the parameters to be estimated and is not required in order to maximize
log C.

Extend the model by allowing for a second random effect for each animal, m with
subvectors mi(i = 1, ..., NA), which has the same correlation structure between
animals as a. A typical example is a maternal genetic effect. Then r = 2 and T
is of size 2q x 2q, with s = 3q(q + 1)/2 if a and m are assumed uncorrelated

(r* = 0) and s = q(5q + 3)/2 otherwise (r* = 1). Assuming u is ordered according
to effects within animals, ie u’ = (a’ mi ...a’ mNA), (7) and (8) hold, with
T = var{(ai mi)}.

Often we want to include an additional random effect, uncorrelated to the other
random factors, in the model of analysis. This could be a common environmental
effect, such as a litter effect in the analysis of pig data, or the permanent effect due
to an animal which is not additive genetic in a multivariate repeatability model.
Let this effect, with NC levels per trait, be denoted by c. T can then be partitioned
into diagonal blocks TA (for additive genetic effects) and Tc (for the additional
uncorrelated effect). Correspondingly,

where D, most commonly taken to be the identity matrix, describes the correlation
structure amongst levels of c. Again, loglal and logIDI are constants and do not
need to be evaluated. As above, (9) and (10) also apply, with an appropriate
modification fo TA, if a second random effect, m, is fitted for each animal.
Extensions to other models, for instance including several additional factors c, can
be derived accordingly.



Maximizing the likelihood

Different strategies to locate the maximum of the log likelihood function, or

equivalently the minimum of -2log 1:, with respect to several parameters have
been examined by Meyer (1989). The so-called Simplex procedure of Nelder and
Mead (1965) proved to be robust and easy to use and was chosen for the current
application, together with the associated convergence criterion of the variance of
function values in the Simplex. As for univariate analyses, a step size of 20% was
used throughout in setting up the initial Simplex. In particular, this procedure
allow constraints on the parameter space to be imposed simply by assigning a
very large value to -2 log £ for parameter vectors out of bounds. This is especially
important for multivariate analyses, as estimated genetic covariance matrices have
a high probability of being non-positive definite, increasingly so with the number
of traits considered and the magnitude (absolute value) of genetic correlations (Hill
and Thompson (1978)).

To illustrate the convergence behaviour of the maximization procedure, data
were simulated, sampling from a multivariate normal distribution, consisting of
records for 2 traits for each of 4000 animals, assumed to be offspring of 500
base animals, 100 sires mated to 4 dams each. Fitting an overall mean as the
only effect and families (NC = 400) as an additional random effect, this gave
M of size 9 803 with 80 903 non-zero off-diagonal elements. Using the population
values for additive genetic variances (QA2! = 50, 32, 80 for i <_ j = 1, ... , q),
variances due to family or litter effects (uci j = 12, 10, 60) and error variances
(o’Etj = 40, 100, 260) as starting values, 1321 Simplex iterates involving a total of
2437 likelihood evaluations were carried out, at the end of which the variance of
function values in the Simplex (-2log G) was reduced to 1.06 x 10-7. The behaviour
of the multi-dimensional search is illustrated in figures 1 and 2, showing changes
in estimates of variance components and associated log likelihoods for successive
Simplex iterates. For ’good’ starting values, increases in log likelihood after 190
iterates, equivalent to 300 function evaluations and V(-2log C) = 1.9 X 10-4, were
only very small. Estimates of variances, though, changed until changes in log£ were
of order 10-3 or less (see inset of figure 2). About 1 000 likelihood evaluations were
required to reach that stage of convergence.

SPECIAL CASES

Traits measured on difl’e. ent animals

Specialized multivariate REML algorithms using information from derivatives of
the likelihood function have been suggested for models with one random factor for
various special cases. Schaeffer et al (1978) considered the situation where traits
were measured on different animals, so that residual covariances were zero. The
algorithm presented here is adapted! for this case simply by reducing the vector of
parameters to be estimated accordingly. For the analysis under an animal model,
however, it has to be borne in mind that with a record for one trait only for each
animal, information on genetic covariances is available only through relatives with



records for the other trait(s). Hence estimates are likely to be subject to large
sampling errors unless animals are highly related or data sets are large.

Equal design matrices for all traits

If the design or incidence matrices in the linear model are equal for all traits, (1)
can be rewritten as



assuming, in contrast to the above, that records are ordered according to animals
within traits. Let n = N/q, nr =NR/q and n f =NF/q denote the number of
records, random effects levels and fixed effects levels per trait, respectively. Xo of
order n x n f and Zo of order n x nr are then the design matrices for fixed and
random effects for each trait, while Iq denotes an identity matrix of order q.

Since all animals have records for all traits,

Consider now a decomposition of the residual covariance matrix into

This gives

with Q-T = (Q’)-l. Using that

where W and rcw stand in turn for Xo and nf, and Zo and nr, it can be shown
that R-1 can be factored from the coefficient matrix in the MME.

Transforming the data vector to

the augmented MME, (4), can be replaced by

with G* = (Q-’ x I!r)G(Q-T x Inr). Absorbing all rows and columns of M* into
y*’y* then directly yields the quadratic in the data vector required in (3), ie

The log determinant of the coefficient matrix, logIC1, calculated when operating
on M* rather than M, however, has to be adjusted for the fact that R-1 has been
factored out.

with nf* = NF* /q, C* = (Q’ x 1,,f+,,,)C(Q x InJ+nr) and P* = (Q-T X

In)P(Q-1 x In). For ease of presentation, (14) has been written for the vector
of random effects assumed to be ordered according to efFects within traits. For
computational purposes, however, some re-ordering would be advisable in order to
minimize ’fill-in’ during the absorption steps. Ordering effects within animals and
animals according to date of birth, for instance, would result in equations for the
youngest animals to be eliminated first.



An obvious choice for Q would be the Cholesky decomposition of E. Using
(14) rather than (4) then reduces computational requirements in setting up the
augmented coefficient matrix. However, a large proportion of the off-diagonal
elements thus ’saved’ initially arise subsequently as fill-in during the absorption
steps due to covariances between traits for random effects levels. Alternative forms
of Q exist though which yield G* with more or larger diagonal submatrices, ie

considerably less off-diagonal elements, and are thus computationally advantageous.

Canonical transformation

The use of a canonical transformation of the data to estimate variance components
by REML for multivariate linear models with one random factor and equal design
matrices for all traits, has been considered by a number of authors. Estimation
procedures have been described for expectation-maximization (EM) type algorithms
(eg Taylor et al, 1985; Smith and Graser, 1986) and Fisher’s method of scoring
(Meyer, 1985).

For q correlated traits, this transformation yields a set of q new traits, so-called
canonical variables, which are both genetically and phenotypically uncorrelated.
Hence a multivariate analysis can be carried out as a series of q corresponding
univariate analyses which results in a substantial reduction of computational effort;
see references given for further details.

Consider an AM without additional random effects, ie u = a, T = Var(ai) and
G = T x A, with equal design matrices for all traits. Let Ai for i = 1, ... , q denote
the eigenvalues of E-1T and S the corresponding matrix of eigenvectors. Then

and

ie E = S-1 S-T, Q = S-’ and G* = Diag Pi A}. Hence S, with elements Sij,
describes the canonical transformation.

For y* = (S x I,,)y, then variance matrix of the transformed data vector,
V* = Var(y*), the coefficient matrix C* and projection matrix P* (based on (14))
are block-diagonal for traits (Meyer, 1985). Consequently, M* can be partitioned
into q independent matrices M2 :

where y* is the subvector of y* for trait i.

Clearly, each of these submatrices is equivalent to the augmented coefficient
matrix in a univariate analysis of a trait with heritability A,/(A: + 1). Absorbing
rows and columns 2 to k = n f + nr + 1 in (18) (skipping rows with zero pivots)
into YT’ yi then yields a quadratic y( PTyi and determinant 10glCT where Pi and



Ci are the submatrices of P* and C*, respectively, for the i-th trait. Quantities
required in (3) are then obtained by summing over traits

Alternatively, the log likelihood can be evaluated as the sum of likelihoods for
univariate analyses on the canonical scale together with an adjustment for the
transformation.

with

q

Noting that Y1 = L 8ik Yk, it follows that
k=l

ie that an explicit transformation of the data vector is not required. Replace Yi’ y* in
(18) by the q x q matrix of sums of squares and crossproducts between traits on the
original scale, Y = ly’y?), 1, and expand the first row and column correspondingly,
ie replace X’y* by q columns X!y! , and Z’y* by columns Zoy!, for k = 1, ... , q.
Absorbing rows and columns q + 1 to q + n f + nr into the first q rows and columns
then yields q(q + 1)/2 terms y!Pi y&dquo;l, and yipiYi can be calculated according to
(22).

For univariate analyses, the error variance can be estimated directly from
the residual sums of squares, ie the quadratic in the data vector at the end of
the Gaussian Elimination steps (Graser et al, 1987). Correspondingly, the error
variances on the canonical scale can be determined as

Back-transforming to the original scale then yields the matrix of residual cova-
riances:

At each iteration, these are the conditional REML estimates of E given the current
value(s) of T.

This can be utilised to reduce the dimension of search for the maximum of the
likelihood function. For the univariate case, Graser et al (1987) and Harville and



Callanan (1990) parameterised the analysis to the error variance and its ratio(s)
with the other component(s), and maximised the ’concentrated’ log likelihood,
log GC with the respect to the latter only. At the maximum of log LC, the estimate
of the error variance is equal to its (unconditional) REML estimate and estimates
of the other components can be obtained from it and the REML estimates of the
variance ratios.

Analogously, we can parameterise the multivariate analysis to E and a function
of E and T, F = f (E, T). Corresponding to the univariate case, an obvious choice
is the generalized ratio of T and E. Log GC is then maximised with respect to the
elements of F and, at the maximum, T is obtained from F and E via the inverse of
f (E, T). This reduces the dimension of search by q to the q2 elements of F. As T is,
by definition, symmetric and is required to set up M, F should be chosen so that it
is ensured that T is symmetric. A possible strategy is to force F to be symmetric,
eg F = E- ! i- 2 TE- or F = L-1 TL-T with LL’ = E, and to maximise with respect
to the q(q + 1)/2 elements of the upper triangle of F only thus reducing the search
by a further q(q &mdash; 1)/2.

So far, the canonical decomposition has only been considered as a means to
reduce the number of off-diagonal elements in M and thus the computational
requirements in each likelihood evaluation. However, it can be regarded as an
alternative parameterization in its own right which effectively reduces the dimension
of search to the number of traits. Instead of estimating the q(q + 1) elements of T
and E, we can estimate the q eigenvalues Ai of E-1T and q2 elements si! of S. This
is a one-to-one transformation so that maximizing log £ with respect to elements
of Diag f Ai and S is equivalent to maximizing with respect to elements of T
and E.

Using this parameterization, maximization can be carried out as a nested 2-step
procedure, analogous to the approach taken by Smith and Graser (1986) to solve a
2-dimensional problem performing 2 1-dimensional search steps in sequence. From
(17), (21) and (22) it follows that (20) can be rewritten as

The first 2 terms in (23) depend on the Ai only. Hence for given values of Ai, the
log likelihood can be evaluated for different matrices S. This allows an ’internal’
search to be performed to determine S which maximizes log ,C for these A,. In
general, this search involves q2 parameters. Computationally it is comparatively
undemanding though: once quantities loglc*l and y[Pgym (i = 1, ... , q) have
been determined, each likelihood evaluation for different values of S merely requires
scalar manipulations or matrix operations proportional to the number of traits.

This ’internal’ search is repeated for each ’external’ search step, ie each likelihood
evaluation required in maximizing log C with respect to the Ai. Since the dimen-
sion of the external search is reduced to q, the number of likelihood evaluations,
or equivalently the number of computationally demanding Gaussian Eliminations,



required is lowered substantially. Overall this yielded to a considerable decrease in
computational resources needed. After REML estimates A, have been determined
with the pertaining matrix S, estimates on the original scale are obtained by revers-
ing the canonical decomposition. This parameterization also has been considered
by Juga and Thompson (1990) for 2 traits only, where additional knowledge about
the structure of S could be exploited to reduce the dimensionality of the internal
search.

NUMERICAL EXAMPLE

Data from a selection experiment in mice by Sharp et al (1984) are given in

table I. Records are body weight at 6 wk of age and adjusted food intake from
wk 4 to 6 (adjusted for weight at 4 wk by within-family, within-sex regression)
for 3 generations of mice selected for increased appetite, ie adjusted food intake.
In addition, pedigree information for parents of the first generation was available
and utilized, yielding a total of 339 animals in the analysis, 284 with records and
55 which were parents only. These data were analyzed for a multivariate animal
model with animals as the only random effect (model 1), and for an AM including
litters as an additional, uncorrelated random effect (model 2). Fixed effects fitted
were generations (3 levels), sex (2 levels) and litter size (7 levels) for each trait,
where the first levels of the latter two were set to 0 to account to X not of full
column rank.

Analyses for both models were carried out for data of a general structure
(strategy I: M of form (4)), and accounting for the fact that design matrices
for both traits were equal (strategy II: M of form (14)), utilizing the canonical
decomposition of the error (E) and additive genetic covariance (TA) matrices
to obtain a transformation of the data which diagonalized the submatrix of G*
pertaining to animals. In addition, for the analysis under model 1, strategy III used
the ’concentrated’ likelihood approach, estimating residual covariances directly,
while strategy IV used the parameterization to characteristics of the canonical
transformation with a nested 2-stage search procedure (M of form (18) for both).

Preliminary univariate analyses yielded estimates of variance components which
were utilized as starting values for the multivariate analyses. Values used were
U,4ii = 4.7, 4.0, 8.3 and {J Eij = 2.5 3.0, 12.9 for model 1, and QAi! _
4.9, 1.0, 6.0, {JCij = 1.5, 1.0, 3.0, and (J&dquo; Eij = 1, 7, 1.0, 12.6 for model 2, for
i <_ j = 1; 2, respectively. Characteristics of the augmented coefficient matrix M,
components of the log likelihood for the starting values, time required per evalua-
tion of the log likelihood, and estimates of variance components are summarized in
table II.

While iterates performed were identical for strategies I and II, the canoni-
cal transformation of the data reduced computing time required by more than
50%. For strategy III, a parameterization was chosen so that F was symmetric
(F = L-1TL-T with LL’ = E as described above). Maximizing the likelihood with
respect to 3 instead of 6 parameters decreased the number of iterates and likelihood
evaluations needed considerably.

However, for this parameterization the search procedure appeared to be less
successful in determining the maximum of log C accurately. Restarting the search





from the ’converged’ values eventually led to the same estimates as for strategies
I and II, but this required several restarts and an excessive number of likelihood
evaluations, indicating problems of numerical nature, so that, on the whole strategy
III appeared less advantageous than II. Strategy IV performed markedly better.
The internal search for S which maximized log £ for given values of Ai increased
the time per likelihood evaluation by * 5%, but reduced the number of Gaussian
Elimination steps to a fraction of those required by the other strategies and reduced
the total time for the analysis to < 3% of that required when ignoring the special
structure of the data (strategy I).

CONCLUSIONS

The derivative-free approach is well suited to the multivariate estimation of variance
components by REML. It provides a flexible algorithm which can be adapted to
a range of models, differing in the random effects fitted and assumptions about
covariances between them, of interest for the analysis of animal breeding data.
As for multivariate REML algorithms described previously though, computational
requirements are high. Not only is the time required for each likelihood evaluation
increased considerably in comparison to the univariate case, but the number of
parameters to be estimated’simultaneously rises markedly with the number of traits.
This causes a dramatic increase in the number of search steps needed to locate
the maximum of the likelihood, with a correspondingly high number of likelihood
evaluations required.

Components of the likelihood comprise the determinants of the covariance
matrices of the random effects fitted and of the residual errors, as well as the
determinant of the coefficient matrix in mixed model equations and a quadratic
function of the data vector. The first 2 can often be obtained indirectly, requiring
only the determinants of matrices of variance components of size qr x qr, q x q or less.
Calculation of the latter 2 terms, however, requires a matrix of size proportional
to the number of traits and the number of levels of fixed and random effects in
the model, to be set up and ’swept out’. This matrix is typically very large but
also sparse so that sparse matrix techniques can be employed successfully to handle
analyses involving several thousand effects (see Graser et al (1987) or Meyer (1989)
for details).

Computational demands to absorb all rows and columns of the augmented
coefficient matrix into the first element are determined not only by the size of the
matrix but, more importantly, by the number of non-zero off-diagonal elements.
For multivariate analyses, this number is generally large due to contributions from
covariances between traits. If design matrices are equal for all traits, a canonical
transformation of the data can be utilized to eliminate a considerable proportion of
these off-diagonal elements, thus reducing computational effort required for each
likelihood evaluation markedly. Furthermore, if the model of analysis contains
only one random factor, we can reparameterize our analysis from the covariance
components to the eigenvalues and elements of the corresponding eigenvectors
arising in the canonical decompositon. This allows maximization to be carried out
as a nested 2-step procedure, reducing computational requirements dramatically.





Further research is required to investigate potential improvements of the algo-
rithm presented. There may be alternative parameterizations which give quicker
convergence, ie for which the maximum of the likelihood can be determined more

easily. The Simplex method has been reported to perform well for few dimensions
but to be progressively less successful as the dimension of search increases (Box,
1966). Use of a NAG library subroutine (E04CCF) which incorporates modifications
of the Simplex procedure, as suggested by Parkinson and Hutchinson (1972), to im-
prove its efficiency failed to reduce the number of likelihood evaluations required
for the cases examined (models 1 and 2, 2 traits, general data structure). Other
optimization procedures may require less iterates and thus reduce the number of
likelihood evaluations necessary.

In particular, it should be noted that by expanding the quadratic in the data
vector to the corresponding matrix of weighted sums of squares and crossproducts
for multiple right hand sides, as described in the Canonical transformation section,
each Gaussian Elimination step can yield several points on the likelihood surface.
While the Simplex method used here is sequential, an alternative search strategy
might exploit this additional information and thus reduce the heavy computational
demands of a multivariate animal model analysis.
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