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Summary - This paper extends to Poisson variables the approach of Gilmour, Anderson
and Rae (1985) for estimating fixed effects by maximum quasi-likelihood in the analysis
of threshold discrete data with a generalized linear mixed model.
discrete variable / Poisson distribution / generalized linear mixed model / quasi-
likelihood

Résumé - Une approche de quasi-vraisemblance pour l’analyse de variables de
Poisson en modèle linéaire mixte généralisé. Cet article généralise à des variables
de Poisson l’approche de Gilmour, Anderson et Rae (1985! destinée à l’estimation par
maximum de quasi-vraisemblance des ef,!’ets fi,!és lors de l’analyse de variables discrètes à
seuils sous un modèle mixte.

variables discrètes / distribution de Poisson / modèle linéaire mixte généralisé

INTRODUCTION

As shown by Ducrocq (1990), there has been recently some interest in non linear
statistical procedures of genetic evaluation. Examples of such modelling procedures
involve: 1) the threshold liability model for categorical data (Gianola and Foulley,
1983; Harville and Mee, 1984) and for ranking data in competitions (Tavernier,
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1991); 2) Cox’s proportional hazard model for survival data (Ducrocq et al, 1988);
and 3) a Poisson model for reproductive traits (Foulley et al’, 1987). In FGI,
estimation of fixed (II) and random (u) effects involved in the model is based
on the mode of the joint posterior distribution of those parameters. As discussed
by Foulley and Manfredi (1991), this procedure is likely to have some drawbacks
regarding estimation of fixed effects due to the lack of integration of random effects.
A popular alternative is the quasi-likelihood approach (Mc Cullagh and Nelder,
1989) for generalized linear models (GLM) which only requires the specification of
the mean and variance of the distribution of data. This procedure has been used
extensively by Gilmour et alb (1985) in genetic evaluation for threshold traits.
In particular, GAR derived a very appealing algorithm for computing estimates
of fixed effects which resembles the so-called mixed model equations of Henderson
(1984). The purpose of this note is to show how the GAR procedure can be extended
to Poisson variables.

THEORY

The same model as in FGI is postulated. Let Yk be the random variable (with
realized value y! = 0,1,2...) pertaining to the kth observation (k = 1,2,..., K).
Given Ak, the Y!s have independent Poisson distributions with parameter Ak, ie:

As the canonical link for the Poisson distribution is the logarithm (Me Cullagh
and Nelder, 1989), Ak is modelled as:

where p and u are (p x 1 ) and (q x 1 ) vectors of fixed and random effects respectively,
and x’ and z’ are the corresponding row incidence vectors, the parameterization
in P being assumed to be of full rank.

Notice that [2] is an extension to mixed models of the structure of &dquo;linear

predictors&dquo; originally restricted to fixed effects in the GLM theory: see eg Breslow
and Clayton (1992) and Zeger et al (1988) for more detail about the so-called

general linear mixed models (GLMM). Moreover, it will be assumed as in other
studies (Hinde, 1982; Im, 1982; Foulley et al, 1987) that u has a multivariate
normal distribution N(0, G) with mean zero and variance covariance matrix G,
thus resulting in what is called the Poisson-lognormal distribution (Reid, 1981;
Aitchinson and Ho, 1989).

FGI showed that the mixed model structure in [2] can cope with most modelling
situations arising in animal breeding such as, eg, sire, sire and maternal grand sire,
and animal models on one hand, and direct and maternal effects on the other hand.
A simple example of that is the classical animal model In (a2! ) = x!. p + ai +pi, for
the jth performance of the ith female (eg ovulation rate of an ewe) as a function of

a From now on referred to as FGI (Foulley, Gianola and Im) ; b from now on referred to
as GAR (Gilmour, Anderson and Rae).



the usual fixed effects (eg herd x year, parity), the additive genetic value ai and a
permanent environmental component pi for female i.

According to the GLM theory, the quasi-likelihood estimating equations for 13 are
obtained by differentiating the log quasi-likelihood function Q(j; y, G) (G being
assumed known), with respect to (3, and equating the corresponding quasi-score
function to zero, vix.

As clearly shown by the expression in [3], the quasi-likelihood approach only
requires the specification of the marginal mean vector 11 and of the variance
covariance matrix V of the vector Y of observations.

Given the moment generating function of the multivariate normal distribution
ie E(exp (t’Y) = exp [t’1I + (t’Vt/2)j, it can be shown that:

(Hinde, 1982; Zeger et al, 1988) and

(Aitchinson and Ho, 1989), 8!l being the Kronecker delta, equal to 1 if k = l, and
0 otherwise.

Generally models used in animal breeding yield, in the absence of inbreeding,
homogeneous variances so that for any k, a2 = zkGz! = a2, and In (ILk) = x!!-1-
(a2/2). Moreover, letting L!Kxx) _ {exp(z!Gzl) - 1! and MlKxx) = Diag 1,Ukl,
variances and covariances of observations defined in [9] can be expressed in matrix
notations as:

Using Fisher’s scoring method based on the gradient vector âQ(.)/âfi, and
minus the expected value of the Hessian matrix -E[,9’Q(.)Iai3alY], one gets an
iterative algorithm which can be expressed under the form of weighted least-squares
equations:



[t] being the round of iteration.
As in GAR, one may consider to approximate V. This can be accomplished

here using a first order Taylor expansion of exp (z!Gz1) around G = 0, ie replace
exp (z!Gz1) -1 1 in L, by z!Gzl’ This approximation is likely to be realistic as long
as the u- part of variation remains small enough in the total variation. Doing so, V
in [10] becomes V = M + MZGZM, with Z!Kxql = (Zl, z2, ... , z! , ... , Zk)’ being
the overal incidence matrix of u. Putting this formula into the inverse of W in !12!,
one has

This formula exhibits the classical form (R + ZGZ’ in the usual notation) of a
variance cori_ance matrix of data described by a linear mixed model; this allows us
to solve for? in [11] using the mixed model equations of Henderson (Henderson,
1984), ie here with:

or, alternatively, defining

The similarity between [16] and the formula given by FGI should be noted.
Actually, here tlk = Eu (.),k) replaces Ak, thus indicating the way random effects
are integrated out in the GAR procedure. It should be kept in mind that the main
advantage of [15] is to provide estimates ofp which can be computed in a similar way
as with mixed model equations of Henderson (1984). These equations also imply as
a by-product an estimate of u which, as pointed out by Knuiman and Laird (1990)
about the GAR system of equations, &dquo;has no apparent justification&dquo;.

DISCUSSION

The procedure assumes G known. Arguing from the mixed model structure of
equations in !15J, GAR have proposed an intuitive method for estimating G which
mimics classical EM type-formulae for linear models. FGI advocated approximate
marginal likelihood procedures based on the ingredients of their iterative system
in # and u. Actually, applying such procedures would mean to use a third level of



approximation; the first one was resorted to quasi-likelihood procedures and the
second one to the use of !15J instead of !11J. Alternatively, pure maximum likelihood
approaches based on the EM algorithm were also envisaged by Hinde (1982),
viewing u as missing and using Gaussian quadratures to perform the numerical
integration of the random effects. More details about methods for estimating
variance components in such non-linear models can be found eg in Ducrocq (1990),
Knuiman and Laird (1990), Smith (1990), Thompson (1990), Breslow and Clayton
(1992); Solomon and Cox (1992) and Tempelman and Gianola (1993).

It must be kept in mind that the mixed model structure in [2] applies to a large
variety of situations. In particular, it can be used to remove extra-Poisson variation
when the fit due to identified explanatory variables remains poor. In such cases,
some authors ( eg Hinde, 1982; Breslow, 1984) have suggested to improve the fit by
introducing an extra variable into the random component part of [2] ie by modelling
the Poisson mean as In (Ak) = xk13 + z!.u + ek. This procedure can be applied eg
to a sire model so as to fit the fraction (3/4) of the genetic variance that is not
explicitly accounted for in the model.

Finally, our approach can also be used for partitioning the observed phenotypic
variance (Q!) into its genetic (a9) and residual (or2) components. Let us assume that
the trait is determined by a purely additive genetic model on the transformed scale,
ie, In (A) + a where, as in !2J, q is the location parameter, and a - N(0, Ora 2) is
the genetic value normally distributed with mean zero and variance a a. 2 Following
Falconer (1981), the genetic value (g) on the observed scale can be defined as the
mean phenotypic value of individuals having the same genotype, ie, g = E(Yla).
Now,

with, using [7] and [91,

Thus, the heritability in the broad sense [H2 = Q9/(!9 + u§)] on the observed
scale can be expressed as:

The additive genetic variance on the observed scale (Q9*) can be defined as
0!2 ! (E(8g/8a))2Qa (see Dempster and Lerner, 1950; p 222), or alternatively as



09* _ [Cov (g, a)J2 ja! (see Robertson, 1950; formula 1, p 234). Now, E(agloa) = Ji,
and Cov (g, a) = poa2. Both formulae give the same result, ie

with a heritability coefficient in the narrow sense (h2 = Q9*/a!) equal to

Notice that, for ufl small enough, Q9 -! a9* so that [20] and [22] tend to
0,.2 / (or + J-l-1), which can be viewed as the expression of heritability on the linear
scale, as anticipated by FGI and expected from the expression of the system in [15].

CONCLUSION

Although some other more sophisticated procedures ( eg Bayesian treatment with
Gibbs sampling; Zeger and Karim, 1991) can be envisaged to make inference about
GLMM parameters, it has been shown that methods based on the quasi-likelihood
or related concepts are reasonably accurate for many practical situations (Breslow
and Clayton, 1992).
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